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Abstract
Fuel efficient coordination of aircraft operations in the Terminal Maneuvering Area of large airports can contribute to the 
reduction of the environmental impact of air traffic. To exploit the full potential of the air traffic system, coordinated routing 
in the Terminal Maneuvering Area, runway assignment and scheduling need to be optimized considering detailed models 
of the aircraft dynamics and performance. Due to the inhomogeneous nature and level of detail of these combined discrete 
and continuous decision problems, the optimization of the overall operations poses significant challenges. As part of an 
integrated approach to the solution of this hybrid problem, this work explores the generation of surrogate models for the fuel 
consumption of individual aircraft using optimal control methods to exploit the physical capability of the aircraft within an 
operationally permissible envelope. The surrogate models approximate the predicted fuel consumption of a given point-mass 
aircraft model on short generic trajectory segments. The trade-off between flight duration and fuel consumption on such 
segments is analyzed, focusing on the influences of initial aircraft mass, altitude, distance, mean climb angle, along-track 
wind velocity and linear wind shear. An extensive description of the optimal control-based data generation and surrogate 
modeling methodology is followed by a discussion of the effects of parameter variation. Based on an illustrative case study, 
the applicability of the approach is critically analyzed.
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1  Introduction

This section explains the context (Sect. 1.1), focus and con-
tribution (Sect. 1.2) as well as the structure (Sect. 1.3) of 
the present work.

1.1 � Context: 4D aircraft routing/scheduling

In light of global warming, it becomes increasingly impor-
tant to reduce the emissions of air traffic, particularly in 

large-scale commercial aviation. This need for higher effi-
ciency is reflected by high-level political agendas in some 
parts of the world, such as the Flight Path 2050 [10] pro-
gram by the European Commission, as well as more techni-
cal strategies for the evolution of the air traffic system, such 
as the European ATM Master Plan [38] within the SESAR 
Joint Undertaking.

Efforts to reduce air traffic emissions may target the indi-
vidual aircraft level, for example by enhancing engines and 
aerodynamic efficiency or by transitioning from fossil fuels 
to synthetic fuels, hydrogen or even battery-electric power 
trains—all of these based on renewable energy. While such 
measures can significantly increase efficiency on the physical 
aircraft level, operational aspects offer additional potential 
for improvement, oftentimes at a lower cost of implementa-
tion. This applies to individual aircraft operations, fleet-level 
coordination by operators and system-level coordination by 
Air Traffic Control (ATC). Modern navigation, guidance 
and information exchange systems successively enable the 
safe introduction of additional degrees of freedom, as in 
Continuous Climb Operations (CCO)/Continuous Descent 
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Operations (CDO), Trajectory-Based Operations (TBO) and 
Performance-Based Navigation (PBN), see [38]. Such pro-
cedures enable operators and ATC to consider ecological 
factors in addition to the primary goal of safe traffic flow. For 
example, CCO/CDO and TBO grant operators more control 
over the trajectory, while individually arranged PBN cor-
ridors enable ATC to safely handle the additional flexibility.

Optimization methods are key to exploiting these features 
of modern air traffic systems with the goal to reduce environ-
mental impact and cost while increasing airspace capacity. 
For example, open climb/descent instructions allow opera-
tors to choose the most efficient vertical profile according 
to their aircraft and missions [5]. On the fleet level, accurate 
scheduling of multiple flights helps save fuel while matching 
time-varying demands and logistic constraints, see [32]. At 
the same time, Air Traffic Management (ATM) strives to 
coordinate flights on the overall system level in a safe, fair 
and efficient way while continually adapting to uncertain-
ties arising from unforeseen events, weather and emergen-
cies [10, 38]. While fuel savings are of both environmental 
and economic interest, recent ATM research also aims at 
reducing indirect climate effects, for example by optimizing 
contrail formation, as in [41].

ATM optimization has been subject to research for a 
long time. Operational systems include Arrival Manager 
(AMAN) decision support systems for human controllers, 
see [23] for example. Studies have also targeted the inte-
gration of ATM and onboard Flight Management Systems 
(FMS), as in [28]. Still, the remaining potential for efficiency 
gains continues to inspire the development of new methods.

Many authors focus on either wide-area routing on graphs 
(in 2D/3D space or in 3D/4D spacetime) or arrival schedul-
ing and runway allocation problems, which are often formu-
lated and solved to global optimality using Mixed-Integer 
Linear Programming (MILP) based methods. Examples 
include 3D spacetime routing under uncertainty, see [13], 
4D routing in [4, 6, 7], as well as scheduling and runway 
allocation, see [1] (multi-runway scheduling), [14, 24] (with 
uncertainties), or [9, 33] (with arrival route selection). A 
weakness of such methods is that they cannot naturally 
accommodate detailed flight dynamics and fuel consump-
tion models. The question of how to quantify the fuel 
consumption on a discretized route network is thus often 
neglected. Furthermore, scheduling problems are often for-
mulated without explicitly modeling the routing aspect with 
its associated spatial separation constraints. Notably, the 
recent works [36, 37] implement free routing with separation 
using discrete optimization methods and quite sophisticated 
physical aircraft model approximations, without relying on 
a graph discretization of the route network.

The desire to incorporate more accurate models of the 
aircraft behavior has also led to optimal control-based meth-
ods, with increasingly detailed approaches being developed 

thanks to the unprecedented availability of computational 
resources. Research activities include optimal control meth-
ods based on point-mass aircraft dynamics and Nonlinear 
Program (NLP) transcription, such as those presented in [2, 
3, 11, 12, 15] as well as dynamic programming methods 
[20–22, 30]. Explicitly modeling the physical aircraft behav-
ior, such methods are particularly well-suited to the planning 
of individual trajectories—the discrete and combinatorial 
aspects arising from multi-aircraft coordination, however, 
have been found to introduce significant difficulties. For 
example, integrating the arrival sequencing and trajectory 
optimization as in [17, 19] can yield global optima, but as 
the number of aircraft increases, computational performance 
suffers strongly from a disproportionate growth of the num-
ber of hypothetically possible discrete sequences and pair-
wise separation constraints, an issue known as the curse of 
dimensionality.

Hybrid methods like the bi-level approach in [18] allow 
for the application of continuous optimal control methods to 
individual trajectories while solving discrete aspects of the 
coordination problem by means like genetic algorithms, see 
[16]. An alternative approach is studied in [43–46]: Here, 
a relation between feasible arrival times and the associated 
cost index is calculated by solving the Optimal Control 
Problem (OCPs); this relation is then used as a basis for 
MILP arrival sequencing problems considering time sepa-
ration constraints at given merge points. Similarly, [39, 40] 
calculate candidate CDO trajectories for multiple aircraft 
and solve Mixed-Integer Programming (MIP) models for 
optimal coordination. The question of whether to start with 
individual OCPs and subsequently solve the discrete coor-
dination problem, or to start with the coordination prob-
lem and subsequently find the corresponding trajectories, is 
addressed by [35].

In the related application of truck routing on highway 
networks, Watling et al. [47] solve OCPs to minimize fuel 
consumption on each highway link, varying entry and exit 
speeds as well as travel time. The tabulated results are used 
as weights for the shortest path problem in the space-time 
expanded network. The present, independently conducted 
study follows a similar overall concept, but introduces sur-
rogate models as an abstraction and focuses on the appli-
cation aspects of generating the required aircraft trajectory 
solutions.

1.2 � Focus and contribution: optimization of TMA 
traffic

This work addresses the gap between system-level optimi-
zation methods unable to handle detailed aircraft models, 
and aircraft-level optimal control methods incapable of 
solving the coordination aspects in a scalable way. Using 
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optimal control, we explore the generation of surrogate 
models of the flight performance as an interface.

Continuing the line of work by Grüter et al. [16] with 
a new problem decomposition, this study is part of an 
exploratory effort to develop and evaluate a holistic 
approach for traffic optimization in the Terminal Maneu-
vering Area (TMA) with the goal of reducing overall 
fuel consumption and delays. In our joint research pro-
ject HOTRUN (Holistic Optimization of Trajectories and 
Runway Scheduling), Hoch et al. [25, 26] approach the 
multi-aircraft routing and scheduling problem on the 
system level using a graph-based MILP method. Com-
plementary to this high-level optimization, our work is 
concerned with providing estimates of the best-case fuel 
consumption for individual aircraft on short trajectory 
segments, which serve as a basis for modeling objec-
tives and physical feasibility in the routing and schedul-
ing problem. The problem decomposition is described in 
more detail in Sect. 2.1.

To address the lack of detailed physical aircraft models 
in the literature on graph-based routing and scheduling, 
we employ optimal control methods based on a realistic 
flight dynamics model. We introduce application-specific 
warmstart and parallelization procedures that enable the 
efficient generation of a large number of sample solu-
tions. Based on these, we discuss the effects of individual 
parameter variations and generate surrogate models that 
can be evaluated efficiently for a large number of trajec-
tory segments in the discrete routing problem. We discuss 
the challenges associated with this step and critically ana-
lyze the results in a 4D graph routing context.

Watling et al. [47] apply a similar problem decomposi-
tion to a route planning problem for trucks on a highway 
network. However, they solve OCPs for specific highway 
segments and discrete boundary conditions; we instead 
generate surrogate models with the goal to support a 
continuous parameter space. Furthermore, we address in 
detail the generation of the required OCPs solutions for 
aircraft trajectories with a higher number of parameters 
and point out the associated difficulties.

1.3 � Structure

Section 2 formulates the OCPs for trajectory segments, 
describes the data generation procedures, and discusses 
the derivation of surrogate models. Section 3 discusses 
the influence of individual parameters on the relation 
between flight time and fuel consumption, and analyzes 
the model performance in the 4D graph routing context. 
Section 4 summarizes the outcome of the study and gives 
an outlook on future research potential.

2 � Methodology

This section describes the assumptions, problem state-
ments and methods forming the basis for the subsequent 
analysis. Section 2.1 describes the overall framework and 
identifies the subproblems to be addressed. Section 2.2 
states the general assumptions underlying the study. Sec-
tion 2.3 formulates the OCPs which generate the data for 
the surrogate models derived in Sect. 2.4. Section 2.5 
defines scenarios for verification of the obtained models.

2.1 � Overall framework and interfaces

The air traffic coordination problem comprises continu-
ous dynamics on the aircraft/trajectory level as well as 
discrete aspects like arrival sequences on the system level. 
The holistic optimization of the overall system is therefore 
considered difficult.

A spacetime graph discretization approach with adap-
tive refinement developed by Hoch et al. [25, 26] in the 
HOTRUN project handles the high-level routing and 
scheduling problem using a MILP optimization. The ulti-
mate goal is to find discretized 4D trajectories for a set 
of aircraft in the TMA such that an optimal compromise 
between the overall fuel consumption on the system level 
and a fair distribution of schedule deviations at the Final 
Approach Fix (FAF) is reached. Constraints include safe 
separation between multiple aircraft, modeled based on the 
distances between discretized trajectory segments.

The system-level optimization depends on a model of 
the fuel consumption of individual aircraft that provides 
fuel burn estimates for edges in a spacetime graph. This 
fuel consumption model may, in principle, represent any 
aircraft or pilot behavior. For the present study, we assume 
that every individual aircraft is operated optimally with 
respect to its fuel consumption while following the pre-
scribed 4D route. Based on this assumption we consider 
a subproblem concerned with quantifying the minimum 
fuel consumption of individual aircraft on 4D trajectory 
segments given by the graph discretization of the airspace 
and planning time horizon.

One approach to the solution of this subproblem is to 
apply optimal control methods to flight dynamics models 
which provide an estimate of the instantaneous fuel flow 
as a function of aircraft states and controls. To that end, we 
formulate continuous-time OCPs to minimize the fuel con-
sumption on trajectory segments parameterized by their 
geometry, flight duration, initial aircraft mass and wind 
conditions, subject to physical and operational limitations. 
While reference [47] considers explicit velocity bound-
ary conditions in a classical shortest-path problem, the 
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MILP routing and scheduling method by [25, 26] does not 
account for velocity, climb angle and track angle at graph 
nodes to reduce the size of the coordination problem. We, 
therefore, introduce appropriate assumptions in Sect. 2.2 
to create the corresponding surrogate models.

The MILP approach in [25] results in a very large number 
of edges in the routing/scheduling graph. Because of this, 
solving OCPs for every individual edge, as done in [43–46] 
for complete approach trajectories, or for highway links in 
[47], would result in a prohibitive computational effort and 
impractical runtimes. Thus our main focus is to explore the 
construction of surrogate models approximating the mini-
mum fuel consumption for a relevant range of trajectory seg-
ment parameters based on optimal control. This approach 
relates to the Universal Value Function Approximation 
(UVFA) concept in the field of Approximate Dynamic Pro-
gramming (ADP) and Reinforcement Learning (RL), though 
for a true UVFA we would need to explicitly consider all 
aircraft states at the segment boundaries.

Our explorative study can thus be subdivided in the fol-
lowing phases: 

Data generation	� Section 2.3 deals with the subproblem 
to generate fuel-minimal trajectories in 
significant numbers using optimal con-
trol methods.

Model derivation	� Section  2.4 addresses the derivation 
of efficient surrogate models from the 
given optimal trajectories.

Verification	� Section  2.5 discusses verification 
scenarios.

2.2 � Application‑specific assumptions

The following assumptions are defined for all subsequent 
analyses: 

A-1	 �All trajectory segments are short and straight (lateral 
deviations are allowed, though).

A-2	 �Any effects of Earth curvature and rotation are insig-
nificant and can be safely neglected because of A-1.

A-3	 �Only low-bandwidth maneuvers typically encountered 
in commercial transport aircraft are of interest.

A-4	 �The aircraft dynamics can be represented by an aug-
mented point mass model due to A-3. A bank angle rate 
limit is sufficient to represent the rotational dynamics. 
An aerodynamic sideslip angle of zero is assumed.

A-5 �The effect of mass change during flight along any single 
trajectory segment is negligible in accordance with A-1. 
The initial mass, however, may vary, and it may be ben-

eficial to explicitly model mass change for computa-
tional reasons.

A-6	 �The wind field on every trajectory segment can be mod-
eled by a horizontal reference wind velocity aligned 
with the segment and a linear wind gradient over alti-
tude, based on A-1. Vertical wind velocity is not con-
sidered and the wind profile is the same everywhere on 
the trajectory segment.

A-7	 �The atmospheric conditions correspond to the ICAO 
Standard Atmosphere (ISA).

A-8	 �The aircraft configuration, i.e., high-lift devices and 
landing gear, is fixed on every individual trajectory seg-
ment.

A-9	 �In general, the aircraft may use an altitude corridor 
ranging from the specified start altitude to the speci-
fied final altitude, extended by hc ∶= 30.48m , i.e., one 
flight level, in both directions. Beyond this, CCO/CDO 
is required for every trajectory segment with a specified 
altitude change exceeding ±hc.

A-10 �Lateral maneuvers deviating from the straight tra-
jectory segments (A-1) are restricted according to 
Required Navigation Performance (RNP) 0.1, corre-
sponding to a corridor half-width of yc ∶= 185.20m . 
For simplicity, we consider neither the spatial extents 
of the aircraft nor the composition of the RNP error 
budget.

A-11 �Every trajectory segment starts and ends in steady-
state straight and level flight.

A-12 �The Calibrated Airspeed (CAS) at the start and end 
of every trajectory segment corresponds to the mean 
CAS on this segment.

Assumptions A-1 and A-3 are based on the overall TMA 
coordination problem statement and the chosen decomposi-
tion described in Sect. 1.2. Assumptions A-2, A-4 and A-5 
follow from these and are generally accepted standard prac-
tice for similar problems. Assumptions A-6, A-7 and A-8 are 
approximations introduced to limit the dimensionality of the 
considered parameter space; we consider them reasonable 
based on A-1 and the explorative nature of the present study, 
but there remains potential for future extension. Assump-
tions A-9 and A-10 are justified within the TMA, which 
is our focus area. Assumption A-12 is introduced due to 
the limitations of the system-level coordination approach 
developed in parallel by Hoch et al., which does not explic-
itly model the velocity at the segment boundaries (see also 
Sect. 2.3.2), as well as to limit the dimensionality of the 
considered parameter space. Analogously, assumption A-11 
reduces the dimensionality of the parameter space.
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2.3 � Optimal trajectory segments

This section describes the approach taken to generate a 
large number of optimal solutions for trajectory segments 
as a basis for surrogate modeling in Sect. 2.4. Section 2.3.1 
introduces the aircraft model underlying the analysis. 
Section 2.3.3 formulates two parameterized OCPs. Sec-
tions 2.3.4 and 2.3.5 explain how we solve a large num-
ber of instances efficiently and effectively. Section 2.3.6 
discusses limitations inherent to the methodology and its 
implementation.

2.3.1 � Aircraft dynamics and performance model

We consider an extended point-mass aircraft model for-
mulated in a local Cartesian reference frame according to 
assumptions A-2 and A-4. Note that beyond the ease of 
implementation these assumptions allow us to consider 
generic trajectory segments which are not referenced to any 
global position except for altitude.

The aerodynamic and propulsion forces as well as air-
craft-specific physical and operational limitations are mod-
eled according to BADA 4.2 [31], provided by Eurocon-
trol. Discontinuities are smoothly approximated to enable 
the application of gradient-based optimization methods with 
analytical derivatives. The state vector of our aircraft model 
has Nx = 10 dimensions and is defined as

with the along-track and cross-track positions x and y , 
geodetic altitude h , kinematic velocity VK , track angle �K , 
flight path angle �K , bank angle �A , normalized lift and 

thrust coefficients C̄L ∈ [0, 1] and C̄T ∈ [0, 1] , as well as the 
mass m (omitted for some problem statements). We limit the 
bank angle to ||�A

|| ≤ 30 deg . The normalized lift coefficient 
maps to the range from zero to the maximum lift coeffi-
cient expressed by a BADA constraint, while the normalized 
thrust coefficient maps to the thrust range allowed by the 
BADA model. By modeling the lift and thrust coefficients as 
dynamic states, we can impose rate limits as bounds on their 
derivatives, which we introduce as controls. The control vec-
tor of dimension Nu = 4,

comprises the lift and thrust coefficient rates and the bank 
angle rate, which we limit to || ̇̄CL

|| ≤ 0.01 s−1 , || ̇̄CT
|| ≤ 0.2 s−1 , 

and ||𝜇̇A
|| ≤ 5 deg s−1 , as well as a normalized speedbrake 

command �sb ∈ [0, 1] . The limits were designed based on 
preliminary studies with the goal to suppress numerical 
chattering and obtain smooth, gradual, realistic maneuvers 

(1a)x ∶= [x, y, h,VK ,𝜒K , 𝛾K ,𝜇A, C̄L, C̄T ,m]
⊤

(1b)u ∶= [ ̇̄CL,
̇̄CT , 𝜇̇A, 𝛿sb]

⊤
,

suitable for the application of interest. We further define an 
output vector,

comprising the Mach number Ma , CAS VCAS , fuel mass flow 
ṁF and load factor nz,K . For passenger comfort we restrict 
the latter to −1.2 ≤ nz,K ≤ −0.8 (negative values represent-
ing upward accelerations). Further aircraft-specific limits 
on states and outputs are taken from BADA, such as upper 
bounds on Ma or VCAS.

We skip the customary description of the equations of 
motion, which is not particularly relevant in the follow-
ing, and instead refer the critical reader to Appendix 1. In 
essence the aircraft model is represented by 

Herein, the inequality constraint function c aggregates all 
limits imposed on x , u and y.

Finally, we point out that our methodology currently 
makes use of BADA models, but does not depend on them. 
Other aircraft models and data sources can be integrated in 
the future.

2.3.2 � Trajectory segment definition

Based on the overall system architecture described in 
Sect. 2.1, we define a trajectory segment appearing in the 
MILP routing/scheduling approach by a tuple

This comprises the initial mass m̂s and altitude ĥs , the slope 
𝛾̂K (defined as the elevation angle between the start and end 
point), the along-track ground distance x̂f  , as well as the 
longitudinal wind velocity ûW and its gradient with respect 
to altitude DhûW , and, finally, the flight duration tf  . Depend-
ing on the context, we assume all of these parameters to be 
given, or we vary parameters, in particular tf  , to obtain sets 
of solutions for similar segments. For ease of notation, we 
will write S in any case. Figure 1 illustrates the parameteri-
zation. The final altitude,

is determined by S ; the reference wind velocity is applied 
at the mean altitude. Note that the aircraft is not required to 
follow a straight line between the start and end point.

(1c)y ∶= [Ma,VCAS, ṁF, nz,K]
⊤

(2a)ẋ = f (x, u),

(2b)c(x,u) ≤ 0.

(3)S ∶= (m̂s, ĥs, x̂f , 𝛾̂K , ûW ,DhûW ; tf ).

(4)ĥf = ĥs + x̂f tan(𝛾̂K),
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2.3.3 � Optimal control problem formulation

We redefine the aircraft states and controls as signals on the 
continuous finite time horizon T = [0, tf ] , 

and introduce the parameter vector

to be defined later for specific problem variants.
Using these, we formulate a nonlinear Optimal Control 

Problem (OCP) for the flight along a trajectory segment 
during T  . The objective of the form

includes a primary cost term J and a penalty term P . The 
penalty term serves as a means to suppress undesirable 
aspects of feasible trajectories. Both terms are defined later.

The trajectory is subject to the differential constraint

given by the nonlinear aircraft dynamics f  and accompanied 
by physical and operational limitations of the aircraft

as defined by the aircraft model in Sect. 2.3.1; the parameter-
ized position boundary conditions

(5a)x ∶ T → ℝ
Nx , t ↦ x(t),

(5b)u ∶ T → ℝ
Nu , t ↦ u(t),

(5c)p ∈ ℝ
Np ,

(6)min(
x(⋅),u(⋅),p

)
(
J(x(⋅), u(⋅), p) + P(x(⋅), u(⋅))

)

(7a)ẋ(t) = f (x(t), u(t)) ∀t ∈ T

(7b)c(x(t), u(t)) ≤ 0 ∀t ∈ T

given by the trajectory segment definition S , see Sect. 2.3.2 
and Fig. 1; the altitude corridor constraint

according to assumption A-9; the continuous descent/climb 
constraint

inactive for trajectory segments without significant altitude 
change (assumption A-9); the lateral corridor constraint

implementing assumption A-10; the trim constraints

imposing steady-state straight and level flight at the initial 
and final boundary (assumption A-11); the additional veloc-
ity constraints

according to assumption A-12.
Note that the altitude corridor constraint (7d) comes into 

effect only in case of near-horizontal flight. Otherwise, it is 
superseded by the CCO/CDO constraint (7e).

The CAS constraints (7h) and (7i) are designed to achieve 
a reasonable velocity profile even though the velocity at 
the segment boundaries is not prescribed. Without such 
constraints, optimization would typically result in descent 
segments accelerating from a very low velocity to a very 
high velocity, and climb segments starting at a very high 
velocity and ending at a very low velocity. This behavior 
is undesirable because it exploits aspects that are not mod-
eled explicitly to obtain formally better but unreasonable 
solutions. Equating the boundary velocities and the mean 
velocity ensures that the overall speed level is maintained 
while allowing for temporary deviations. This constraint is 
applied to CAS to capture the natural altitude dependency 
of the optimal (in terms of efficiency) airspeed. It results in 

(7c)
⎡
⎢⎢⎣

h(0)

x(0)

y(0)

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

ĥs
0

0

⎤
⎥⎥⎦
,

⎡
⎢⎢⎣

h(tf )

x(tf )

y(tf )

⎤
⎥⎥⎦
=

⎡
⎢⎢⎣

ĥf
x̂f
0

⎤
⎥⎥⎦

(7d)min(ĥs, ĥf ) − hc ≤ h(t) ≤ max(ĥs, ĥf ) + hc ∀t ∈ T

(7e)
{

𝛾K(t) ≤ 0 ∀t ∈ T, if ĥs > ĥf + hc
𝛾K(t) ≥ 0 ∀t ∈ T, if ĥs < ĥf − hc

(7f)−yc ≤ y(t) ≤ yc ∀t ∈ T

(7g)

⎡⎢⎢⎢⎢⎢⎣

𝛾K(0)

𝜒K(0)

V̇K(0)

𝛾̇K(0)

𝜒̇K(0)

⎤
⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

𝛾K(tf )

𝜒K(tf )

V̇K(tf )

𝛾̇K(tf )

𝜒̇K(tf )

⎤
⎥⎥⎥⎥⎥⎦

= 0

(7h)VCAS(0) = VCAS(tf )

(7i)VCAS(0) = t−1
f ∫

tf

t=0

VCAS(t) dt

Fig. 1   Trajectory segment parameterization: initial mass, initial 
height, mean climb angle, distance, and wind shear profile
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velocity profiles where True Airspeed (TAS) increases with 
increasing altitude.

The objective consists of a primary objective J and a pen-
alty term P designed to support the convergence of the direct 
optimal control solver (Sect. 2.3.4) and suppress undesirable 
oscillations in the solution. The terms are weighted such that 
P is insignificant compared to J . The latter is expected to be 
on the order of 101 to 102 (see below).

Most prominently, solutions on which a high flight time is 
imposed tend to exhibit zigzagging behavior with alternating 
lateral excursions from the mean flight path. These can be 
explained by the optimization algorithm seeking to maintain 
an admissible and efficient air speed while satisfying the 
long imposed flight duration. Flying on a straight path in 
such cases requires a low speed and, therefore, incurs a high 
fuel consumption if this low speed is even feasible. Zigzag-
ging elongates the flight path and thereby allows for a higher 
speed and higher efficiency. Contrary to this, short imposed 
flight durations inherently require high speed on short paths, 
so they yield straight trajectories.

We consider the zigzagging undesirable from an opera-
tional perspective and, therefore, suppress it. Penalties on 
the lateral position, ∫

T
y2dt , and on the bank angle, ∫

T
�2
A
dt , 

effectively reduce this phenomenon even at small weights of 
10−5 m−2 s−1 and 10−5 deg−2 s−1.

Additionally, a penalty on the normalized speed brake 
control, ∫

T
�sb

2dt , weighted by 10−3 s−1 , prevents the opti-
mizer from getting stuck in local optima with increased 
speed brake usage. Speed brakes are still used where neces-
sary, typically in a steep descent.

A small quadratic penalty on the normalized thrust com-
mand rate, ∫

T

̇̄C2
T
dt , expresses a preference for solutions with 

gradual changes in thrust. It is weighted by 10−2 s−1 and thus 
contributes a maximum cost on the order of 10−2 to the over-
all objective, assuming an expected flight time of not more 
than a few hundred seconds.

Analogously, we penalize the normalized lift coefficient 
command rate by ∫

T

̇̄C2
L
dt with a weight of 10−2 s−1 . Com-

bined with the corresponding rate limit (Sect. 2.3.1) this 
helps ensure gradual maneuvers to satisfy assumption A-3.

From the base problem thus formulated we construct two 
independent parameterized problem statements which differ 
in their primary objective functions J, the bounds imposed 
on the final time and the treatment of mass change: 

Problem T 	� minimizes the flight time, i.e., J = qtf tf  where 
qtf = 1 s−1 (which yields large values com-
pared to the penalties). In this case, the flight 
time is subject to optimization, i.e., we define 
the parameter vector from Eq. 5c as p ∶= tf  
with Np = 1 . According to assumption A-5 we 
consider m = m̂s a constant.

Problem F 	� minimizes the total fuel consumption by maxi-
mizing the final mass, i.e., J = −qm m(tf ) with 
qm = 1 kg−1 (again, typical values are signifi-
cantly larger than the penalty terms). In this 
case, the flight time is fixed, i.e., effectively 
Np = 0 , and we model the dynamic mass 
change to integrate the fuel flow together with 
the other states.

Based on the trajectory segment definition in Sect. 2.3.2, 
a straight-forward approach to data generation would be to 
create a grid of segment parameters according to eq. 3 and 
solve Problem F  independently at every grid point, pos-
sibly in parallel. Though simple, this approach lacks both 
efficiency and effectiveness. The former is because common 
solution methods based on NLP transcriptions rely on an ini-
tial guess and can perform significantly better when solving 
multiple closely related problem instances in a row than they 
do with independent or strongly varying instances. The latter 
is due to the initial guess not only affecting computational 
performance but also the outcome of the optimization; solv-
ing a sequence of closely related instances tends to increase 
the success rate compared to independent runs.

Because of this, we seek to exploit similarities between 
trajectory segments. Due to the specific characteristics of the 
problems at hand we choose to subdivide the data generation 
task as follows:

•	 A sweep over tf  reveals the relation between flight dura-
tion and fuel consumption on a trajectory segment with 
otherwise constant parameters, see Sect. 2.3.4.

•	 A directed, hierarchical exploration of the remaining 
parameter space, see Sect. 2.3.5, covers the flight enve-
lope, running a tf  sweep at every sample.

2.3.4 � Fuel versus time: a nonlinear trade‑off

We model the OCPs formulated in Sect. 2.3.3 using an 
extended development version of the optimal control code 
FALCON.m1 [34], which provides object-oriented facilities 
for the formulation of continuous-time problems in Mat-
lab and their transcription into sparse NLPs. The resulting 
NLPs are then solved iteratively by the large-scale local NLP 
solver Ipopt [48], a filter line search interior-point optimiza-
tion algorithm, using the linear solver routine ma57 from 
the HSL [27] package for sparse linear algebra subproblems.

A trapezoidal collocation scheme with a uniform time 
discretization of 50 samples is applied in our studies. 
This discretization is very coarse; it corresponds to steps 

1  https://​falcon-​m.​com/.

https://falcon-m.com/
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of approximately 1 s to 7 s depending on tf  . For exemplary 
cases, we confirmed that a higher resolution does not sig-
nificantly affect the results relevant for our project, i.e., the 
relation of fuel consumption and flight time for a given tra-
jectory segment definition S.

Our preliminary numerical studies indicate that Prob-
lem F  , in variants with a fixed or free flight time, is 
inherently more difficult than Problem T  , judging from 
relatively high sensitivity to parameter values, numeri-
cal scaling and initial guess. In the case of large imposed 
flight times, we observe that the optimization converges to 
elongated flight paths with zigzagging lateral deviations 
allowing to maintain an efficient airspeed, as described 
in Sect. 2.3.3. This leads us to suspect that an associated 
worsening of convergence behavior may be due to ambigu-
ity of the solution, for example concerning the placement 
and side of the lateral excursions, as well as the initial 
guess being less accurate since it may not include the same 
excursions. Accordingly, the convergence of maximum-
time problems also proves difficult. Nevertheless, we can 
generate a large number of fuel-minimal solutions with 
varying flight times in an acceptable time frame by imple-
menting the application-specific procedure detailed in the 
following.

Given a generic trajectory segment S , we first solve 
Problem T  . A primitive initial guess for the dynamic 
states is usually sufficient, though we may use existing 
solutions from related instances. A Broyden-Fletcher-
Goldfarb-Shanno (BFGS) approximation to the second 
derivative of the NLP works well here. We obtain the 
minimum flight duration t∗

f ,min
 and the associated fuel con-

sumption mF|t∗
f ,min

 . If this step fails for a specific instance 
we cannot draw any straight-forward conclusions on the 
feasibility of the flight along the corresponding trajectory 
segment, due to the inherent fragility of the numerical 
solution methods.

Next, we solve Problem F  , setting

and initializing with the solution of Problem T  . From here 
on, we consider tf ,min = t∗

f ,min
+ tf ,offset the minimum flight 

duration; the offset tf ,offset ∶= 1 s is introduced to avoid 
potential infeasibility caused by small deviations of the air-
craft model, which includes a dynamic mass state not mod-
eled in Problem T  , or by differences in the numerical setup; 
it is considered negligible in our application scenario. With-
out these small differences in the problem formulation and 
implementation, and without the time offset, a valid solution 
for Problem T  would mean that there must be a valid solu-
tion for Problem F  as well. Though our approach does not 
allow us to draw such strict conclusions, we can reasonably 
expect that there is a solution to Problem F  at tf  in all but 

(8)tf ∶= tf ,min ∶= t∗
f ,min

+ tf ,offset

exceptionally sensitive cases (which are not of particular 
interest), and should obtain this solution unless numerical 
issues prevent convergence. We obtain the minimum fuel 
consumption mF,min|tf ,min

 that allows the aircraft to traverse 
the trajectory segment in minimum time.

Starting from the point (tf ,min,mF,min|tf ,min
) on the Pareto 

frontier of time and fuel consumption, we solve a sequence 
of Problem F  instances with successively increasing tf  in 
steps of tf ,step . In every step, the numerical optimization is 
initialized at the previous solution and thereby achieves 
convergence up to the specified tolerances quickly in most 
cases. Notably, there is a trade-off between the step size in 
tf  , accuracy of the mF values and computational perfor-
mance. Typically, small steps can be expected to increase 
the convergence speed of individual problems and repre-
sent the resulting (tf ,mF) curve more accurately, whereas 
large steps reduce the number of problems solved, thus 
potentially reducing overall computation times as well as 
the resolution of the results.

This insight suggests that step-size adaptation strate-
gies may yield better trade-offs between performance and 
accuracy than fixed-step sizes, as observed in many other 
well-known numerical methods. Indeed, we find that very 
good results can be obtained by increasing or reducing the 
tf  step size by a constant factor (within prescribed bounds) 
based on a linear prediction of the next mF value and a 
given prediction error bound. However, this approach 
requires careful tuning of the adaptation strategy and can 
result in unsatisfactory convergence characteristics and 
long computation times in some cases. Here, the key issue 
is the unpredictable runtime of NLP solvers, which does 
not reliably correlate with the parameter variation step 
size. Consequently, we use fixed steps of tf ,step ∶= 2 s for 
all analyses presented in this paper.

Furthermore, we find that evaluating the analytical second 
derivative of the NLP instead of its BFGS approximation 

Fig. 2   Schematic relation of flight duration and fuel consumption on 
a descent segment: short durations (high speeds) yield high fuel con-
sumptions, moderate durations allow for idle descent, long durations 
(low speeds) yield high fuel consumptions due to increased induced 
drag
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improves convergence during this flight time sweep in Prob-
lem F  . Note that this is contrary to the finding for Prob-
lem T  , which tends to be solved much more reliably and 
efficiently with a BFGS approximation. This observation 
can be explained by the relatively small step size in the tf  
sweep, which typically results in a sequence of very simi-
lar solutions, meaning that we may profit from the locally 
superlinear convergence characteristics of the NLP solver. 
When varying other parameters, as described in Sect. 2.3.5, 
the variation steps are usually larger and the focus is on 
achieving robust convergence of Problem T  before starting 
the time sweep.

Figure 2 illustrates a typical shape of the resulting (tf ,mF) 
relation for a descent trajectory segment. Short flight times, 
i.e., high speeds, cause high fuel consumption due to para-
sitic drag. At moderate flight times the fuel consumption 
drops, but at some point slowing down further starts to 
require significantly more fuel due to an increase in induced 
drag. The fuel consumption curves sometimes exhibit a lin-
ear region in idle descent, as depicted, otherwise the behav-
ior is consistent with the fuel-vs-time Pareto front generated 
by [30] for a longer trajectory including climb, cruise and 
descent phases.

For the operation of individual aircraft the high-speed 
region between tf ,min and the minimum fuel time is clearly 
most attractive, as it provides good trade-offs between the 
two cost factors time and fuel. For system-level optimiza-
tion, however, higher flight times with an additional, moder-
ate increase in fuel consumption may be acceptable or even 
beneficial on some trajectory segments if this improves the 
overall efficiency. Nevertheless, we deem it justified to ter-
minate the tf  sweep before reaching excessively high flight 
durations. In addition to avoiding unattractive flight condi-
tions for individual aircraft, such a cut-off helps drastically 
reduce computation times. This is because the fuel-minimal 
trajectories at high tf  tend to be less clearly distinguished 
than at high speed; numerical experiments indicate that 
such solutions often exhibit step descents, where the exact 
number and distribution of steps is highly sensitive to the 
numerical configuration. Physically it seems likely that many 
local optima arise in these cases, hindering convergence. 
Based on these preliminary observations, we terminate the 
procedure once either the flight duration exceeds a threshold,

or the fuel consumption becomes excessive:

Additionally, we terminate once a problem instance fails to 
converge to a valid solution.

(9)tf > max
(
1.5 tf ,min, tf ,min + 5 (tf |mF,min

− tf ,min)
)
,

(10)
mF > max

(
1.5mF,min,

mF,min + 1.5 (mF|tf ,min
− mF,min)

)

2.3.5 � Expanding the parameter envelope

Our analyses as well as the generation of surrogate models 
require a large number of sample solutions covering the part 
of the flight envelope contained in the parameter space for 
trajectory segments. Parallel computing and solver warm 
starts are essential to obtain these sample solutions within 
a reasonable timeframe, but data generation is not per se 
a time-critical task. Since it is fully decoupled from any 
real-time routing and scheduling, computing resources only 
limit the number of data points that we can generate in prac-
tice and may thereby limit the quality of surrogate models 
derived from the data. Real-time routing and scheduling 
though is only affected by the surrogate model evaluation 
time.

We employ a custom framework built on top of Matlab’s 
Parallel Computing Toolbox to guide the parameter sweeps 
for data generation. A naïve approach is to iterate over a grid 
of parameters and rely on the easily accessible parfor fea-
ture for parallelization. This, however, requires that the order 
of execution is completely arbitrary—an assumption that is 
not suitable for taking advantage of warm start functionali-
ties of NLP solvers, which should use a closely related solu-
tion as a basis. Therefore, we model a parameter sweep as a 
graph, where every node or task represents a combination of 
parameters and every edge expresses a dependency. The lat-
ter may represent either hard dependencies that strictly need 
to be available for a task to run, or soft dependencies in the 
sense that at least a given number of the predecessor nodes 
needs to be solved. The graph of hard dependencies must 
be a Directed Acyclic Graph (DAG) for a valid execution 
sequence to exist. For soft dependencies, this requirement 
does not hold, but we satisfy it nonetheless.

Using dependencies, we can specify the direction of the 
parameter sweep in a very natural and generic way even in 
multiple dimensions. For example, this allows us to model 
a wave front expansion of the parameter envelope, thereby 
avoiding to spend computing time on parameter combina-
tions that are far beyond the capabilities of the aircraft. At 
the same time, we use the dependencies to initialize the opti-
mization problems.

Sweeps are orchestrated by a controller object in the cli-
ent Matlab session. Tasks whose dependencies are satisfied 
are scheduled and executed in parallel on a pool of worker 
instances by means of Matlab’s parfeval() functional-
ity. The framework is set up such that the Optimal Control 
Problem (OCP)/NLP structures for Problem T  and Prob-
lem F  are constructed only once on each worker using 
FALCON.m and reused for every task.

Figures 3, 4, 5 illustrate the individual layers of the hier-
archical dependency structure employed in the present study. 
All relations are formulated as soft dependencies requiring 
at least one valid result for initialization. The (m̂s, ĥs) graph 
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in Fig. 3 forms the basis; the root node is in the lower left 
corner. At every node of this graph, we append the (x̂f , 𝛾̂K) 
dependency structure shown in Fig. 4; then we expand every 
resulting node by the (ûW ,DhûW ) combinations illustrated 
by Fig. 5. The nodes are color-coded by their distance from 
the root node of their respective layer, measured in dis-
crete steps, to show the expected direction of expansion. In 
essence, we gradually expand the envelope starting from low 
mass and low altitude to high mass and high altitude, from 
horizontal flight at the maximum segment distance to climb 
and descent on short segments, and from zero wind to posi-
tive and negative wind speed and wind shear. We include 
edge cases such as segments starting at the Operational 
Empty Mass (OEM), m̂s = mOEM , and descents to negative 
altitudes in exceedance of the lowest real-world geographic 

depressions as a basis for interpolation, even though they 
themselves are not actually feasible. For the OEM cases, 
we relax any lower bounds on the aircraft mass; for nega-
tive altitudes no action is required as we do not model the 
Earth’s surface.

Note that we apply the parameter sweep procedure pre-
sented in this section to all parameters except the flight dura-
tion tf  . The calculation of tf ,min (Problem T  ) and sweep over 
tf  (Problem F  ) is performed sequentially within every task 
to avoid communication and initialization overheads associ-
ated with parallelization.

Using the parameter grid shown in Figs.  3, 4, 5 and 
described above, we generate data for the subsequent surro-
gate model development. The parameter sweep is run in par-
allel on a hexacore desktop computer (Intel Core i5-8600K 
with 32GB of RAM), using four Matlab worker instances 
and one client instance. The computation times of the tasks 
are stated in Table 1. Each of the tasks includes a tf  sweep. 
Note that the mean duration of the failed tasks is almost 
equal to the mean duration of successful tasks since there is 
often no way for the NLP solver to quickly determine that a 
problem is likely infeasible. Tasks whose dependencies are 
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Fig. 3   Mass and altitude sweep structure: envelope expansion from 
low to high mass/height
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Fig. 4   Distance and climb angle sweep structure: successive increase 
of mean absolute slope
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Fig. 5   Wind speed and gradient sweep structure: successive increase 
in absolute wind speed and shear

Table 1   Data generation task status and duration

a Wallclock time, sum over all worker instances
b Excluding skipped cases

Tasks Durationa (s)

Total Mean Median

Total 8400 152,260 23.52b 12.37b

Successful 6154 145,493 23.64 12.56
Failed 317 6767 21.27 2.13
Skipped 1929 0 – –
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not satisfied due to failures are skipped. For the successful 
tasks, we determine the number of resulting trajectories and 
the relative performance of Problem T  and Problem F  , as 
stated in Table 2. We observe that the time required to solve 
Problem T  is relatively stable, with values ranging from 
0.17 to 4.85 s . For Problem F  we obtain a better median 
performance, but the spread is ten times larger, leading to 
worse mean times. In total, we obtain 173725 valid trajecto-
ries, among these 167,571 solutions of Problem F  instances, 
within 10 h and 41 min. These only serve as a basis for sur-
rogate modeling in Sect. 2.4, so the time expended for the 
trajectory computations is irrelevant for real-time use of the 
derived surrogates. However, computational performance 
limits the size of the parameter space that can be covered 
and the ability to scale the approach to the large number of 
different aircraft types to be considered in practical ATM 
applications.

2.3.6 � Limitations

A major limitation of the MILP optimization method for 
graph-based TMA routing and scheduling in the HOTRUN 
project is the impracticality of modeling the aircraft velocity 
and direction of flight at all nodes. As explained in Sects. 2.1 
and 2.2, we resort to heuristic constraints based on the notion 
of CAS and the mean velocity to obtain reasonable velocity 
profiles on every individual segment, and we assume steady-
state straight and level flight at the segment boundaries.

Furthermore, due to limited computational resources, our 
nonlinear optimal control approach cannot cover very high-
dimensional parameter spaces with sufficient resolution. 
This means that the optimal control methodology introduces 
similar limitations to those described above.

The local optimization method employed to solve the 
OCPs/NLPs, see Sect. 2.3.4, may get stuck in a local opti-
mum which is not the desired solution. In fact, we observe 
switches in the solution structure during the tf  sweep. In 
some cases, no valid solution is obtained.

The dependency-based parameter sweep approach 
described in Sect.  2.3.5 has three potential drawbacks 

compared to independent solver runs. First, since failed 
tasks are not necessarily physically infeasible, dependent 
tasks may be inadvertently skipped; we attempt to avoid this 
issue to some degree using soft dependencies, which allow 
tasks to run once any neighboring task succeeds. Second, 
tasks may fail due to the chosen initialization, and we do 
not retry them with a new initial guess. Third, the hierarchi-
cal expansion of the parameter envelope means that physi-
cally feasible cases may be skipped because of an assumed 
dependency on physically infeasible cases. For example, 
we only consider cases with wind or wind shear after suc-
cessfully solving the corresponding scenario without wind. 
Nevertheless, we think that these limitations are acceptable 
for an explorative study.

2.4 � Surrogate models

This section deals with the step of aggregating the gener-
ated trajectory samples in surrogate models for real-time 
use. Section 2.4.1 describes the interface and other require-
ments; Sect. 2.4.2 presents a simple modeling approach.

2.4.1 � Interface and requirements

To determine edge weights in a large routing and scheduling 
graph, surrogate models are required to efficiently provide 
estimates of the fuel consumption as well as the admissible 
flight envelope. Both need to be expressed as functions of 
the trajectory segment parameters S , which in turn corre-
spond to the attributes of edges in the graph. Modeling the 
envelope boundary is a very important aspect in our aero-
space application, as the complete set of considered aircraft 
and environment parameters affects the physical capability 
of the aircraft to traverse a given trajectory segment in a 
given time. While it is possible to model infeasibility as 
infinite (or artificially exaggerated) fuel consumption, we 
consider it more appropriate to formulate a surrogate model 
with two independent functions, one predicting the fuel con-
sumption and the other representing the flight envelope. The 
latter can be modeled as an implicit function indicating set 
membership.

It is desirable for the surrogate models to be not only 
computationally efficient, but also deterministic, meaning 
that the evaluation is guaranteed to succeed in a finite time. 
This makes such models applicable in a real-time context 
where the optimal control methods used for data genera-
tion are too slow and unreliable, given their convergence 
characteristics.

2.4.2 � Grid‑based approach

The hierarchical envelope expansion approach described in 
Sect. 2.3.5 is designed to support working with a regular 

Table 2   Number of valid trajectories per successful data generation 
task and trajectory computation times

a Wallclock time per trajectory

Min Max Mean Median

Solutions
 Problem T 1 1 1 1
 Problem F 1 112 25.9 22

Solver timea ( s)
 Problem T 0.17 4.85 0.41 0.39
 Problem F 0.12 59.12 0.58 0.29
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grid of parameter values. Thus it is a natural approach to 
collect the results in a multidimensional array, with dimen-
sions corresponding to S (see Sect. 2.3.2), and apply linear 
interpolation at the query points.

However, it is to be considered that the dataset always 
contains gaps due to individual cases failing for nonphysical 
reasons. This is a major incentive for the surrogate modeling 
approach; besides yielding shorter evaluation times, the sur-
rogate model can smooth over the small interior regions of 
the parameter space where the data generation procedure 
fails even though valid solutions are known to physically 
exist. In a 7D grid the interpolated value of every query 
point is based on the values at 27 = 128 neighboring verti-
ces, meaning that the chance of at least one of these neigh-
bors being an invalid data point is excessively high. Because 
of this, linear interpolation is not immediately applicable 
if the envelope boundaries are not aligned with the grid 
dimensions.

To alleviate this issue, we fill small gaps and extrapolate 
slightly beyond the valid region. To this end, we first define a 
distance-based weighting scheme approximating a truncated 
multivariate Gaussian kernel with a radius of 2 grid points 
and a standard deviation of 1 grid step. Centered at every 
missing point, we use this kernel to calculate a weighted sum 
of valid grid values, as well as the sum of weights corre-
sponding to valid data points in the vicinity. Both operations 
can be implemented conveniently and efficiently as discrete 
convolutions. The gaps are then filled with the weighted 
mean arising from these values.

Since this approach not only fills gaps in the interior 
of the feasible domain, but also extrapolates beyond its 
(unknown) boundary, we construct an implicit function 
approximation of the boundary based on the original data-
set. This is achieved by assigning 1 to every valid grid point 
and 0 to every invalid grid point, and smoothing this array 
using a discrete convolution with a Gaussian kernel with a 
radius of 1 grid step. The boundary is then approximated by 
the manifold at a value of 0.5.

The grid-based surrogate model enables the evaluation 
of both approximate fuel consumption and envelope mem-
bership of graph edges at a rate of more than 8 × 106 s−1 on 
the desktop computer also used for data generation. This is 
clearly several orders of magnitude faster than solving the 
underlying OCPs. Furthermore, the surrogate model evalu-
ation is deterministic.

Appendix 2 gives an overview of alternative surrogate 
modeling methods, which are not implemented in the present 
study based on preliminary experiments.

2.5 � Verification

Within the scope of this study, we limit ourselves to the 
analysis of exemplary cases to gain a basic understanding 
of the applicability of the developed approach.

As a basis for discrete routing, we generate a spacetime 
graph. In the present study we consider only the vertical plane, 
although the surrogate models can just as well be integrated 
into the 4D routing/scheduling framework by Hoch et al. [25, 
26]. We build a graph extending over 150 km in the horizontal 
dimension and over an altitude range from 0 to 10,000m ; the 
discretization is 10,000m or 15,000m in the horizontal dimen-
sion and 200m in the vertical dimension. Implicitly enforcing 
a CDO constraint we generate edges with climb angles in the 
range from −10 to 0 deg by connecting the neighboring nodes 
resulting from the discretization. For the time dimension, 
we choose a discretization of either 5 s or 10 s , with a suffi-
ciently long time horizon of 1000 s . Along the time dimension, 
instances of spatially neighboring nodes are connected if they 
are reachable within the velocity range of the aircraft. Note 
that this results in a velocity discretization whose resolution 
increases with decreasing speed. Since the high-speed region 
of the fuel-vs-time trade-off is more attractive, future work 
should reconsider the graph construction.

We consider three distinct wind conditions: no wind, con-
stant headwind ( uW = −15m s−1 ), and a linear wind shear 
( DhuW = 0.003 s−1 with uW = −10m s−1 at h = 5000m ). In 
each case, we calculate the wind speed and gradient at the 
nominal midpoint of every trajectory segment, according to 
Fig. 1.

We model a descent from 8000 to 3000m over a ground 
distance of 150 km and choose the start node as well as a 
set of final nodes accordingly. As start mass, we choose the 
mean of mOEM and mMTOM of the aircraft model used for data 
generation.

Based on the spacetime discretization and the wind field, 
we estimate edge weights using the fuel consumption sur-
rogate model. To find fuel-minimal discrete trajectories, we 
resort to a standard shortest path algorithm. In the ATM appli-
cation, a MILP method may be used instead.

Finally, we solve a multi-phase Optimal Control Prob-
lem (OCP) following the discrete trajectory for comparison. 
We spare the reader the full problem formulation; essentially, 
we model an Optimal Control Problem (OCP) as a series of 
trajectory segments similar to Problem F  , with one segment 
per edge of the discrete solution and fixed times at the seg-
ment boundaries. However, we omit the boundary conditions 
(7c), the trim constraints (7g) and the mean CAS constraint 
(7i). Additionally, we apply the CAS constraint (7h) not for 
every individual phase/segment, but for the full trajectory, and 
enforce continuity of all aircraft states at the phase boundaries.
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A comparison of the discrete and continuous trajectories 
and fuel consumptions then gives insight into the expected 
error magnitude.

Further verification aspects to consider in the future include 
the numerical accuracy and grid independence of the optimal 
control-based data generation, the envelope coverage of the 
surrogate models and the accuracy of discrete solutions with 
respect to free-flight OCP solutions.

3 � Results and discussion

Section  3.1 discusses the optimal trajectory segments 
obtained from the OCPs. Section 3.2 presents a case study 
to analyze the applicability of the surrogate models in graph-
based trajectory planning.

3.1 � Optimal trajectory segments

This section describes the optimal trajectory segments 
obtained by the procedures discussed above. We consider an 
exemplary short-range turbofan aircraft according to BADA. 
In Sect. 3.1.1 we describe the effects of individual parameter 
variations on the resulting fuel/time relations. Section 3.1.2 
gives an impression of the results for simultaneous param-
eter variations.

3.1.1 � Effects of isolated parameter variations

To foster an understanding of the shape of the parameter 
effects to be captured by surrogate models, we define an 
exemplary descent trajectory:

We then vary each individual parameter, with increments in 
both directions, starting from the nominal value. For each 
resulting combination of parameter values we apply the 
procedure from Sect. 2.3.4 to identify the minimum fuel 
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Fig. 6   Fuel/time relation at varying mass: higher mass is advanta-
geous in the fast descent
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Fig. 8   Fuel/time relation at varying distance: longer distances 
increase the range of feasible durations
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consumption as a function of flight duration. The results are 
presented in Figs. 6, 7, 8, 9, 10, 11.

Figure 6 shows the effect of the start mass varying from 
mOEM to mMTOM . We observe that low mass leads to higher 
fuel consumption at high speed (low duration), but also to a 
lower sensitivity with respect to flight duration, compared 
to cases at higher mass. For a descent segment, this can be 
explained by the gravity component tangent to the inclined 
flight path compensating a higher share of the drag if the 
mass is higher, thus reducing the required thrust and fuel 
flow. Conversely, at low speed more lift is required and thus 
more induced drag must be overcome, giving an advantage 
to a lighter aircraft. The minimum flight time is unaffected 

by the mass variation, indicating that it is limited by inde-
pendent factors such as the upper bound on CAS. Note that 
we cannot draw any conclusions on the maximum flight 
duration, as it is determined by the termination criteria set 
in Sect. 2.3.4.

Figure 7 shows the fuel-vs-time curve for varying start 
altitude. As expected, fuel consumption decreases with 
increasing altitude (and decreasing air density), while the 
maximum speed increases, resulting in lower minimum 
times (note that a constant CAS limit corresponds to an 
altitude-dependent TAS limit). Only the two cases at the 
highest altitudes do not match this expectation, but this may 
be due to numerical issues. Furthermore, we observe that a 
linear region appears at high altitude, indicating a transition 
from powered to idle descent in a certain speed range (cf. 
Fig. 2). This is a significant nonlinearity that needs to be 
well represented in surrogate models, since the idle descent 
regime comes with low fuel consumption.

Figure 8 shows the effect of varying distance. Since we 
consider absolute fuel consumptions and flight durations, 
the curves shift and scale quite linearly with the distance. 
Increasing distance also broadens the range of feasible 
durations.

Figure 9 shows the effects of slope variation. The steep 
descent case at 𝛾̂K = −11 deg failed because the final CAS 
constraint could not be achieved, and the case at 𝛾̂K = −9 deg 
is either almost infeasible or sensitive to numerical issues. 
The cases at 𝛾̂K = −7 deg and 𝛾̂K = −5 deg yield virtually 
the same results and clearly exhibit an idle descent section, 
which disappears when further increasing the slope. The 
point of minimum fuel consumption shifts to a lower speed 
when leaving the idle descent regime, whereas the minimum 
time varies only marginally.
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Fig. 9   Fuel/time relation at varying slope
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Fig. 10   Fuel/time relation at varying wind velocity: effects diminish 
at low speed
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Fig. 11   Fuel/time relation with wind shear: in descent, headwind 
costs more fuel at high altitude
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Figures 7, 8, 9 indicate that fuel consumption rises at low 
flight time (high speed) can exhibit significantly different 
shapes, depending on the trajectory segment parameters. At 
short flight durations, the fuel consumption gradient tends to 
be larger, and relatively sharp kinks appear at the high-speed 
end of the idle descent region.

Figure 10 considers a varying wind speed. The case at 
ûW = 13.33m s−1 failed after a single tf  step, but the remain-
ing cases exhibit a high degree of regularity. Negative wind 
velocities correspond to a headwind (cf. Fig. 1) and lead 
to higher flight durations and fuel consumption. However, 
the effect diminishes with increasing flight duration, i.e., 
decreasing (kinematic) velocity. In cases with positive wind 
speed we observe lower flight durations and lower fuel con-
sumption. In addition, the idle descent regime can be clearly 
seen here.

Figure 11 depicts the impact of varying wind shear. 
The linear wind gradient assumed here has no effect on 
the minimum flight time. However, it significantly affects 
the fuel consumption, with negative wind shear (meaning 
stronger headwind at higher altitude) resulting in higher fuel 
consumption than positive wind shear (meaning stronger 

headwind at lower altitude) for this descent segment. The 
effect is more pronounced at high speeds than at low speeds.

3.1.2 � Simultaneous parameter variations

Figure 12 shows the vertical profiles of a set of 167,571 
fuel-minimal trajectory segments, color-coded by CAS. We 
ask the sophisticated reader to excuse the rasterized nature 
of this depiction, which makes it impossible to discern all 
individual lines but occupies less storage, and point out the 
diversity of the flight paths resulting from parameter vari-
ation. These range from almost straight to stepwise climb 
and descent profiles; the latter are in principle undesirable 
as CCO/CDO can yield higher efficiency [5], but the pre-
scribed variation of the flight duration forces the trajectories 
to assume such shapes. We do not present the overall (tf ,mF) 
curves here, as the results from individual parameter varia-
tion discussed in Sect. 3.1.1 provide more insight.

3.2 � Verification: case study

Running the verification scenarios specified in Sect. 2.5 
we obtain the results listed in Table 3; Fig. 13 presents the 
associated flight paths, and Fig. 14 the fuel consumptions. 
It is immediately apparent that the spacetime discretization 
has a strong influence on the resulting flight duration. Not 
only is there a difference of one twentieth in-flight durations 
between the cases with coarse discretization and the cases 
with fine discretization; also within each group the variation 
of wind speed and wind shear does not change the flight 
duration. This indicates that an even finer discretization may 
be required to take full advantage of the trade-off between 
flight duration and fuel consumption discussed earlier. How-
ever, further analysis is required to determine if the choice 
of space or time discretization is more critical.

In the presented cases the graph-based solution with a 
coarse discretization slightly overestimates the fuel-con-
sumption, whereas with a fine discretization it underesti-
mates the fuel consumption by a larger amount; the latter 

Fig. 12   Vertical profiles and CAS

Table 3   Case study: results of 
graph-based routing and relative 
fuel consumption mismatch 
compared to a continuous 
OCP for a descent from 8000 
to 3000m over a distance of 
150 km

Case Discretization Wind Flight duration Fuel mismatch ratio 
(relative to OCP)

x (m) h (m) t  (s) uW at 
h = 5000m 
( ms

−1)

DhuW ( s−1) tf  (s)

a 15,000 200 10 0 0 800 0.034
b 15,000 200 10 −  15 0 810 0.025
c 15,000 200 10 −  10 0.003 800 0.021
d 10,000 200 5 0 0 785 −  0.079
e 10,000 200 5 −  15 0 785 −  0.133
f 10,000 200 5 −  10 0.003 785 −  0.072
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can be clearly seen in Fig. 14. This is unexpected because 
the edge weights are determined from trajectory segment 
solutions with more constraints, compared to the full trajec-
tory OCP; also, the edge weights in the graph are calculated 

without taking into account that the aircraft mass reduces 
from one trajectory segment to the next. However, the 
simplifying assumptions on the CAS at the boundaries of 
individual trajectory segments may be a factor contributing 

Fig. 13   Case study: flight paths for a descent from 8000 to 3000m over a distance of 150 km
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to the deviation. Future work may address this issue and 
perhaps lead to conservative estimates. Nevertheless, in the 
considered cases, we observe that the relative mismatch is 
of a magnitude that we consider acceptable, given the sim-
plifying assumptions of this study. This, of course, does not 
yet indicate any correspondence of the results to reality. Fur-
ther research is also required to compare these solutions to 
unrestricted optimal trajectories, i.e., trajectories calculated 
by optimal control methods without imposing constraints 
to follow the discrete reference solution in space and time.

The optimal control flight paths are shown in Fig. 13 
often exhibit undesirable step descents, even though no 
constraints were imposed on the flight path angle at the seg-
ment boundaries and indeed some waypoints are crossed 
at nonzero flight path angles. We explain this behavior by 

the combination of CDO constraints and fixed waypoint 
arrival times which strongly restricts the solutions. Future 
work should address this issue; possible remedies include 
improved assumptions on the segment boundary states or a 
more explicit treatment of these, as well as a relaxation of 
waypoint times. The latter, of course, needs to be designed in 
close coordination with the discrete planning method.

Furthermore, it is to be expected that the fuel cost mod-
els may perform worse in some situations, especially at the 
boundaries of the feasible region. Nevertheless, the case 
studies confirm that the overall concept of discrete 4D min-
imum-fuel trajectory planning for aircraft based on optimal 
control results for individual trajectory segments is feasible.
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Fig. 14   Case study: fuel consumption from graph-based routing and OCP for a descent from 8000 to 3000m over a distance of 150 km
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4 � Conclusion and outlook

In this paper, we demonstrate an efficient way to generate 
segment-based surrogate models for the fuel consumption 
of aircraft, which may serve as a basis for subsequent graph-
based trajectory optimization.

In Sect. 2.3, we introduce procedures that enable the 
fast generation of a large number of optimal control solu-
tions for short aircraft trajectory segments. We find that 
a directed expansion of the parameter envelope using 
warm start procedures is an effective method to cover 
the parameter space. Minimum-time and minimum-fuel 
problems exhibit different convergence characteristics; 
solving a minimum-time problem first and then solving 
minimum-fuel problems with successively increasing pre-
scribed flight duration turns out to be an efficient proce-
dure to investigate the relationship between flight time 
and fuel consumption. How to reliably distinguish physi-
cal and computational infeasibility of individual problem 
instances remains an open question.

Section 2.4 investigates a grid-based surrogate mod-
eling approach with smoothing to fill in missing data 
points. This is found to be a practical method for approx-
imating fuel consumption and the flight envelope, but 
future research may reconsider alternative methods such 
as those mentioned in Appendix 2 to improve scalability 
and reduce the reliance on individual data points.

Section 3.1 exemplarily analyzes the individual influ-
ences of aircraft mass, altitude, distance, slope, wind 
velocity and wind shear on the fuel-vs-time trade-off 
observed on a short descent trajectory segment. We dem-
onstrate that even the isolated effects of the parameters 
exhibit significant nonlinearities that must be represented 
correctly by surrogate models. Furthermore, this analysis 
may serve as a basis for the derivation of simple approxi-
mations capturing the main effects.

Section 3.2 demonstrates the basic feasibility of the 
hybrid optimization approach by comparing graph-based 
routing solutions with the associated continuous trajecto-
ries obtained from OCPs. Fuel consumption predictions 
are found to agree well in cases with a coarse discretiza-
tion, but significant mismatches arise for a fine discretiza-
tion. The neglected boundary conditions of velocity and 
flight path angle are identified as a weakness that should 
be reconsidered in the future.

Future work may also consider additional modeling 
aspects, such as configuration changes, as well as other 
aircraft classes and operating environments. For exam-
ple, fully automated flight planning and guidance is 
envisioned in the Urban Air Mobility (UAM) domain, 
where the energy consumption of electric Vertical Take-
Off and Landing (eVTOL) aircraft is a critical factor, 

making trajectory optimization methods particularly rel-
evant [29]. Additionally, parametric uncertainties of wind 
and aircraft mass may be considered, with the goal of 
quantifying their effects or generating trajectories that are 
robust against deviations from the nominal parameters.

Appendix 1: Aircraft model: equations 
of motion

This section outlines core aspects of the aircraft model 
structure.

The position propagation is given by 

We incorporate a model of the ISA to calculate the static 
air density � , temperature � , pressure p and speed of sound 
a as functions of h . The wind velocity uW is modeled as a 
linear function of altitude with a given gradient DhuW.

The aerodynamic velocity vector in the local North-East-
Down (NED) reference frame is given by

From this, we determine the orientation of the aerodynamic 
reference frame A . CAS can be calculated according to 
BADA [31].

The total force vector (FG
T
)K is calculated in the kinematic 

reference frame; it comprises gravity (assuming a constant 
gravitational acceleration g = 9.80665m s−2 ), aerodynamic 
forces and propulsion forces. The propulsive and aerody-
namic forces are calculated using BADA models, which 
we cannot reproduce in this paper. The interested reader 
may refer to [31]. We map the normalized thrust command 
variable C̄T to the admissible range dynamically calculated 
according to BADA equations. We obtain a thrust force T  
and the associated fuel mass flow ṁF . Since the considered 
aircraft model does not include full attitude information, we 
assume that the thrust force is collinear to the aerodynamic 
velocity. The fuel mass flow results in a mass reduction 
according to ṁ = −ṁF in case the mass state is modeled.

Analogously, BADA yields a maximum lift coefficient 
as a function of the aircraft states; we scale this coefficient 
by the command variable C̄L to obtain the lift coefficient 
CL . Then we obtain the drag coefficient CD as a function 
of CL , aircraft states and controls. Using the dynamic pres-
sure resulting from the atmosphere model and aerodynamic 

(12a)ẋ = VK cos(𝛾K) cos(𝜒K),

(12b)ẏ = VK cos(𝛾K) sin(𝜒K),

(12c)ḣ = VK sin(𝛾K).

(13)(VA)O = [ẋ, ẏ,−ḣ]
⊤
− [uW , 0, 0]

⊤
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velocity, as well as the reference wing area according to 
BADA, we calculate the lift and drag forces L and D.

Given the total force (FG
T
)K in the kinematic reference 

frame, the translation dynamics yield 

We calculate the total load factor as

Appendix 2: Candidate methods 
for surrogate modeling

This section points out several methods that may allow other 
researchers to improve on the grid-based surrogate modeling 
approach from Sect. 2.4.

The grid-based approach is not ideal when it comes to 
covering high-dimensional parameter spaces, as the number 
of samples scales exponentially with the dimension. Instead, 
Design of Experiments (DoE) methods may be applied to 
resolve higher-dimensional relations with fewer samples. 
Resulting in irregularly placed samples, this leads to the 
problem of scattered data interpolation in high dimensions. 
For the application under investigation, it is important to be 
able to efficiently evaluate the resulting model at a very large 
number of sample points. At the same time, the admissible 
parameter envelope needs to be represented, i.e., there needs 
to be a distinction between feasible and infeasible regions.

A basic approach that yields highly efficient surrogate 
models is to create a Linear Least Squares (LLS) or Non-
linear Least Squares (NLS) fit using a set of basis functions 
or a parameterized model function. This yields continuous 
approximations without explicitly including the underly-
ing data points (suitable for DoE) and allows incorporating 
prior knowledge, for example, basic analytical models of the 
density/altitude dependence of aircraft dynamics. While we 
made attempts along these lines in the early stages of the 
study, it became evident that the nonlinear cross-couplings 
between the parameters do not permit us to develop reason-
ably accurate model structures in higher dimensions. Nev-
ertheless, it may be possible to create a suitable hierarchical 
function structure corresponding to the hierarchical envelope 
expansion introduced in Sect. 2.3.5. Alternatively, Artifical 
Neural Networks (ANNs) may be considered as a generic 
model structure; however, we expect these require a very 
high number of sample points. With all LLS/NLS methods, 

(14a)V̇K = m−1 [1, 0, 0] (FG
T
)K ,

(14b)𝜒̇K = m−1 [0, 1, 0] (FG
T
)K (VK cos(𝛾K))

−1,

(14c)𝛾̇K = −m−1 [0, 0, 1] (FG
T
)K V−1

K
.

(15)nz,K = m−1[0, 0, 1](FG
T
)K − g cos(�K)

the envelope may be represented either by explicit functions 
describing its boundaries or by an implicit function indicat-
ing set membership; coming up with a suitable basis func-
tions is generally not trivial.

Delaunay triangulation is a method rather well-suited to 
the representation of the admissible envelope. From given 
data points, this method generates simplexes in the parameter 
space, within which barycentric interpolation allows to esti-
mate intermediate values. The simplexes formed by valid data 
points inherently approximate the admissible envelope. In non-
convex regions, �-shapes can be applied to avoid extrapolation. 
However, constructing a full Delaunay triangulation does not 
scale well with the dimension of the parameter space. For this 
reason [8] introduces a sparse Delaunay triangulation around 
a given query point. While applicable to high-dimensional 
spaces, our preliminary experiments indicated that the per-
formance might not suffice for the expected number of model 
evaluations.

Methods for scattered data interpolation or approximation 
based on Radial Basis Functions (RBFs), such as Shepard 
interpolation (see [42], for example) allow constructing an 
implicit indicator function to represent the envelope. How-
ever, preliminary experiments indicated that the density of data 
points required for high-dimensional problems may exceed 
our resources.
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