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Abstract
When regulated network capacities are violated, flights may be delayed to meet time-based slot restrictions. In addition, reac-
tionary delays occur when time buffers to subsequent flight legs are exceeded. This work aims to minimize both—primary and 
reactionary delays in a dynamic simulation of the European Air Transportation System. The slot allocation process is solved 
by minimizing network delay with a binary optimization approach instead of using the current first-planned–first-served 
principle. The new module presented in this study, called constraint reconciliation and optimization (CRO), is applied within 
EUROCONTROL’s Research Network Strategic Tool (R-NEST). The results are compared to delays generated by R-NEST’s 
computer-aided slot allocation (ISA–CASA). In simulations of tactical air traffic flow management (ATFM) operations, time 
is iterated over the day and flight plans are updated with random and propagated delays. The computational complexity of all 
possible delay- and slot-entry-permutations is reduced by the method of column generation for solving large linear problems. 
Three validation scenarios that contain flight plans, rotation margins, sector configurations, regulations, and deterministic 
or stochastic delays are evaluated. In the most realistic scenario, compared to ISA–CASA, CRO reduces primary and reac-
tionary delays by up to 16% while achieving low levels of airspace sector and airport overloads and fast computation times.

Keywords Demand Capacity Balancing · Reactionary Delay · Optimization · Air Traffic Flow Management · European Air 
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1 Introduction

Traffic in the European Air Transportation System (ATS) 
frequently threatens to exceed declared sector and airport 
capacities. In the (pre-) tactical air traffic flow and capacity 
management (ATFCM) process, demand–capacity imbal-
ances are resolved by allocating calculated take-off times 
(CTOT). These are selected according to demand–capac-
ity–balancing (DCB) constraints along the planned flight 
route of an AFTCM-restricted flight. Given the potentially 
large number of imbalances and their spatial distribution 
within the European Air Traffic Management (ATM) net-
work, numerous ways of CTOT assignments to adhere to 
given capacity constraints exist. In Europe, tactical DCB 
delay is allocated by the computer-aided slot allocation 
(CASA) heuristic based on the first-planned–first-served 
(FPFS) principle, which aims to meet achievable flow rates 
and fairness objectives accepted by airlines. However, CASA 
generates solutions without considering reactionary subse-
quent delay, which occurs when a flight arrives late for sub-
sequent flight legs.

Smaller ATFCM scenarios have been modeled by Odoni 
[1] and solved with LP optimization approaches by Lulli and 
Odoni [2]. To allow operational resolution throughout a day, 
computation times are reduced by the method of Column 
Generation to reduce LP optimization problems of several 
thousand decision variables, as applied to ATFM by Kauf-
hold et al. [3]. Bertsimas and Stock [4] resolved large-scale 
scenarios containing several thousand flights and several 
hundred network entities, while other continental scenarios 
are resolved with Column Generation by, e.g., Balakrishnan 
and Chandran [5] and by Lau et al. [6] with rolling time 

horizons to generate time-dependent sub-problems. Opti-
mization and FPFS have been studied by Barnhart et al. [7] 
and Ruiz et al. [8]. Propagated delay has been studied by 
Ivanov et al. [9], Montlaur and Delgado [10], and Campan-
elli et al. [11].

The presented work was performed with and on behalf 
of DLR Institute of Air Transport within the project 
SESAR PJ09. We have developed the constraint recon-
ciliation and optimization (CRO) as a tool for minimiz-
ing primary and reactionary subsequent delay in EURO-
CONTROL’s Research Network Strategic Tool (R-NEST) 
[12]. In this paper, the performance evaluation of CRO 
in comparison to the built-in CASA emulation called 
ISA–CASA [13] is presented as well as the principal setup 
of the CRO tool. Results for different weighting of pri-
mary and reactionary delays are obtained by varying a 
cost coefficient.

R-NEST is a model-based simulation tool for European 
ATFCM including a most-realistic representation of trajec-
tories, regulations, rotation margins, and random delays (see 
Fig. 1). During a dynamic simulation of the European ATS, 
reactionary and random departure delays push flights out of 
their estimated departure slots. Consequently, air traffic must 
be reconciled iteratively over the course of the day. Airport 
and en-route (airspace) regulations are specified by flow rates 
that must be respected within regulation periods. These flow 
rates represent a coordinated number of flights that can be 
safely handled in a given time period. To implement this, a 
slot allocation list is created for each regulation, consisting of 
time-equidistant slots, matching rates, and durations [13]. To 
satisfy the flow rates in all time-intervals, flights can only enter 
assigned so called traffic volumes with a valid entry slot. Those 

Fig. 1  R-NEST Screenshot of 
regulated traffic volumes (ATC 
capacity and staffing reason 
only) and trajectories, 2th June 
2017



Constraint reconciliation optimization to minimize primary and reactionary delay in a research…

traffic volumes represent specific traffic flows, e.g., along a 
defined route within the dedicated airspace sector. When a 
flight enters multiple regulations, fixed entry times (“time 
over”) may lead to the fact, that it is impossible to match all 
given slot entry times. Therefore, CASA accepts slots being 
allocated in time windows [14, 15]. Because each entry time 
has different possible slots, there are manifold permutations of 
slot allocations for flights in multiple regulations.

From the perspective of equity and fairness, which is an 
important subtopic in the context of ATFM optimization [14], 
it is challenging to deal with reactionary delays. As defined by 
Broome [16], fairness is relational and based on claims. Claims 
are to be satisfied proportionally, but prima facie they ought to 
be satisfied. According to Curtis, fairness requires efficiency 
[17]. It follows that claims require some satisfaction, suggest-
ing that flights threatened by reactionary delays may deserve 
consideration. Taking reactionary delays into account ben-
efits preceding flights, which leads to the question of whether 
claims of flights in the same rotation should be aggregated. 
However, whether claims ought to be aggregated is an open 
question in the fairness debate [18, 19]. Is it fair to delay a 
flight that will not cause reactionary delay instead of delaying 
a flight that will? Should reactionary delay be reduced to pro-
vide some satisfaction to the claims of the affected flights and 
to improve overall efficiency? If reactionary delays are to be 
penalized, how much should they be penalized relative to pri-
mary delays? These moral deliberations can only be resolved 
through cooperation, and the Broomean’ framework is a pow-
erful tool for structuring ethical debates [20]. We support this 
debate by providing insight into how the system responds to 
different types of cost coefficients.

Due to the different solving approaches, CRO and 
ISA–CASA result in different delay patterns and remain-
ing capacity overloads. Therefore, the evaluation considers 
both delays and remaining capacity overloads that may result 
from slot tolerances. Simulation results for various continen-
tal scenarios, including ATM, reactionary, and non-ATM-
delays, are compared between ISA–CASA and CRO in terms 
of solver performance, primary and reactionary delays, and 
overloads of traffic volumes.

2  Research network strategic tool (R‑NEST)

The Research Network Strategic Tool (R-NEST) is a mod-
eling and analysis tool for the European ATM Network 
(EATMN), which was developed by EUROCONTROL to 
test innovative processes in the context of network opera-
tions in a highly realistic network simulation environment. 
The tool runs dynamic ATFCM simulations in rolling time 
steps throughout the day and supports several modules that 
emulate different ATFCM actors. In this study, only the 
network management (NM) actor is enabled and its func-
tionality is compared between the built-in ISA–CASA and 
the user-built CRO. In the simulation, they are called every 
5 min to balance demand and capacity (see Fig. 2). Real 
data from aeronautical information regulation and control 
(AIRAC) are used and consolidated. Most relevant to this 
study are the capacity constraints (regulations) on traffic vol-
umes, capacity demand by trajectories, and reactionary and 
non-ATM delays.

2.1  Regulations

ATFCM regulations limit the capacity of network entities, 
such as airports or airspace volumes, for specific periods of 
time to satisfy operational safety on a high level. Sectors are 
segmented into traffic volumes based on prevailing demand 
patterns. Traffic volume regulations are implemented for a 
variety of reasons, including air traffic control (ATC) capac-
ity and staffing. Regulations are segmented into time bands, 
called entry slots, on which slot allocation lists are generated 
in which flight movements are assigned to the respective 
entry slot. For example, if a regulation has a flow rate of 
18 flights per hour, there is one single slot available for one 
flight at every 3 min to distribute the traffic as homogene-
ously as possible over the regulation time duration. Typi-
cally, flow rates are monitored in 20-min integration win-
dows with sliding steps of 10 min, so that the integration 
windows overlap (see Fig. 3). If all flights are assigned to 
allocated slots at their scheduled entry time, the flow rate is 
maintained. However, the regulations include window-width 
tolerances to allow elasticity for CASA calculations [21]. 

Fig. 2  True revision interval: R-NEST calls the DCB-module every 5 min to resolve imbalances
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Each slot has a capacity of one flight, and there are at most 
as many slots as there is available capacity. If flights arrive 
in one window but have a slot in another window, as slot 
times cannot always match entry times, demand may exceed 
capacity, resulting in overloads. Overloads are calculated as 
the difference between the number of flights entering a given 
traffic volume and the declared flow rate for each integration 
window. For example, if three flights enter a sector in the 
10:00–10:20 integration window and the declared capacity 
of arriving flights in that interval is two, there is an overload 
of one. If no slot is feasible, flights may be allocated to the 
end of the regulation, without capacity restrictions.

2.2  Flight plans

R-NEST takes the latest estimated flight plan data sets from 
the Demand Data Repository (DDR2) [22], which contain 
4D flight profiles as being filed by aircraft operators. For 
the DCB modules, only entry times for the regulated traffic 
volumes are relevant. Exempted flights, such as government 
flights, cannot be delayed but still consume capacity.

2.3  Delay types

Three types of delay are applied within R-NEST: primary 
ATFCM delay, reactionary delay and non-ATM delay. Delay 
is added to departure time and subsequent entry times, while 
flight times and 4D-profiles remain fixed.

Primary ATFCM delay is allocated by the DCB mod-
ule to resolve airport or en-route imbalances. Throughout 
the day, the ATM-delay can be amended until the flight is 
issued. While delayed flights may pass through multiple 
regulations, the delay is attributed to the most penalizing 
regulation (MPR), which is defined as the regulation that 
causes the most delay for a given flight [21].

Reactionary delay is the knock-on delay induced on sub-
sequent flights using the same aircraft. If the delay is greater 
than the rotation margin, reactionary delay occurs for the 

subsequent flight leg. Rotation margins are defined as sched-
uled departure time—arrival time—turnaround time, where 
the turnaround time is 53 min based on averaged Central 
Office for Delay Analysis (CODA) data [23]. In R-NEST, 
flight rotations are available for approximately 80% of the 
flights for which an aircraft registration number is available. 
After calculating reactionary delays are calculated in one 
time step of the simulation, they are not applied until the 
next time step. CRO then allocates slots and delays accord-
ing to the new estimated off-block time (EOBT), as shown 
in Fig. 4.

Non-ATM delay emulates stochastic departure distur-
bances based on historical data [23] that affect 25% of 
flights. The applied delay distributions with a minimum of 
5 min and a maximum of 30 min, are attributed from 2 h to 
5 min before EOBT. When a scenario is simulated several 
times, the random delays evolve equally in each simulation, 
which means that ISA–CASA and CRO are affected by the 
same random delays.

2.4  Simulation setup

R-NEST simulations cover a full day of operations within 
the European ATM network and process flights as well as 
capacity regulations, while DCB imbalances are resolved 
iteratively by the DCB-modules called CRO and ISA–CASA 
(see Fig. 2). It is assumed that all flights and regulations are 
known at the beginning of a simulation in terms of type, 
amount and time. The system state is determined by the 
flight states, that is delays, MPRs and slot (pre-)allocations. 
With a new iteration, the simulation time as well as the flight 
and slot allocation states are updated. Departure time slots 
shall be issued 2 h before the EOBT at the operational slot 
issue time 1 (SIT1) [21]. Until a flight is released, slots are 
pre-allocated, i.e., they can still be re-allocated to another 
flight. Non-ATM delays of up to 30 min are attributed ran-
domly in a time interval prior to the EOBT, while reaction-
ary delays are added when the preceding flight is issued. 

Fig. 3  Temporal visualization of a sample regulation showing the 
mapping of flights to the integration windows with a slot tolerance. 
The slot time is 10:09z, while the entry time is 10:12z, within the slot 

tolerance. However, the slot time is in integration window 1, while 
the entry time is in integration windows 1 and 2. This can lead to 
overloads in integration window 2
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Reactionary and non-ATM delays cause off-block and entry 
time updates, potentially invalidating pre-allocated slots. 
Time is iterated in 5-min intervals, called true revision inter-
vals. The DCB module is called after each simulation time 
step, obtaining a potentially unbalanced system state, that 
should be reconciled. The DCB module computes ATFM 
delays and slots to resolve DCB imbalances. Allocation con-
sistency is checked by R-NEST.

2.5  ISA–CASA

ISA–CASA is a heuristic DCB module in R-NEST that 
emulates the operational CASA slot allocation function-
ality for tactical FPFS solutions to network imbalances 
(Fig. 5 shows a resolved regulation). Initially, CASA cre-
ates a slot allocation list (SAL) in each regulation, allo-
cating one flight after the other. Flights are ordered by 

the first-planned–first-served principle, prioritized by 
their planned time over (ETO) into the regulation. The 
delay of a flight in a regulation is the difference between 
the entry time of the allocated slot and the planned entry 
time (delay = CTO − ETO). In general, when one flight is 
in several regulations, they require different delays that 
are incompatible. CASA iterates through the regulations 
and slots to resolve these incompatibilities with the most 
penalizing regulation [21]. The regulation that forces the 
highest delay value on a flight is designated as MPR and 
this delay is selected for the flight. The flight is forced into 
the other regulations with this delay and it will receive a 
slot. If there is another flight in the candidate slot, it will 
be pushed out of the slot, requiring subsequent reconsoli-
dation. Entry slots in other (non-MPR) regulations of this 
flight should be within the window width tolerance, which 
is defined in each regulation to a value between 200 and 

Fig. 4  Departure slot structure of two subsequent flight legs and 
blocked departures due to reactionary delay. Flight 1 is allocated to its 
fifth departure timeslot. For Flight 2, its first and second timeslots are 

blocked, due to reactionary delay from flight 1. Flight 2 is allocated to 
its fourth departure timeslot

Fig. 5  Exemplary entry counts of regulated traffic volume LSAGSE 
in R-NEST after ISA–CASA resolution. Green bars are entry counts 
in overlap intervals of 20-min integration windows with 10 min slid-

ing step. The green line represents nominal capacity, whereas the red 
line represents the regulated flow rate
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600 s. If no slot is found, an overload slot may be created 
in the next window [8], which may lead to overloads of the 
integration windows.

3  Constraint reconciliation optimization 
(CRO)

CRO is a DCB module in R-NEST that minimizes primary 
and reactionary delays to reconcile network imbalances 
by generating and solving a large-scale ATFM optimiza-
tion problem using the branch-cut-and-price approach. 
Initially, CRO receives an unbalanced network state, con-
sisting of flights, regulation entries, and slots. In pre-pro-
cessing, issued and exempted flights are allocated to the 
closest succeeding slots. With the remaining flights and 
available slots, an initial solution is generated heuristi-
cally. The resolved flights and slots are used to initialize an 
optimization problem with a feasible solution. The prob-
lem is solved incrementally using the column generation 
method. From the final solution, delays, MPR, and slots 

are allocated and CRO terminates with a balanced network 
state (see Fig. 6).

3.1  Overlap interval rule

Slots are allocated within slot tolerances and in the case 
of CASA, the tolerances depend on the resolution process. 
MPR depends on all currently allocated flights; when one 
flight is amended, other flights may be affected. To include 
tolerances in the optimization, they must be applied inde-
pendently of the resolution process. To balance delays 
and overloads, CRO applies the overlap interval rule. The 
basic idea is that capacity integration windows overlap 
with sliding steps and that capacity compliance of each 
integration window is guaranteed by the capacity compli-
ance of all overlap intervals contained in it (see Fig. 7).

According to the overlap interval rule, a flight can be allo-
cated to all slots that are in the same overlap interval as the 

Fig. 6  Constraint reconciliation optimization (CRO) flowchart

Fig. 7  Overlap interval rule. When all flights have a slot which is in 
the same overlap interval as the entry time, all integration windows 
capacities are met. With a 20-min integration window and 10-min 

sliding steps, the overlap interval is 10 min. In this case, the integra-
tion window is composed of two overlap intervals, and the capacity of 
the overlap intervals is half of the capacity of the integration window
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entry time. Accordingly, no flight will receive a slot outside 
the overlap interval of its entry time. This provides that the 
allocated slot and the entry time are in the same integration 
windows (see Fig. 7), as opposed to different integration 
windows (see Fig. 3). When all flights arriving in an over-
lap interval are allocated to a slot, capacity compliance is 
achieved in all integration windows.

3.2  Flight preprocessing

CRO flight data pre-processing distinguishes between fixed 
flights and flights to be shifted according to ATFM delay 
minimization. Exempted and issued flights are fixed; there-
fore, they do not receive an ATFM delay. If a flight’s slot 
violates the overlap interval rule, i.e., the slot is in a different 
overlap interval than the entry time, an alternative slot must 
be allocated. Fixed flights are allocated to the nearest avail-
able slot in the same overlap interval. If no slot is available, 
the fixed flight contributes to overload. The remaining flights 
to be optimized, are released to free up the remaining slots 
for optimization.

3.3  Slot‑entry‑lists

If a flight’s entry time is within a regulation, the flight 
requires a slot. When a flight enters more than one regula-
tion (as in Fig. 8), it requires a slot in each of these regula-
tions. A list of slots, one for each regulation entry of a flight, 
is referred to in this document as a slot-entry-list, contain-
ing a matching delay value. All available slots within the 
entry time overlap interval can be allocated. In general, with 
multiple slots in an overlap interval, one of multiple slots 
can be allocated for a given entry time. If a flight passes 
multiple regulations, multiple slots are available for each of 
these regulations. This means that there are many possible 
permutations for the allocation of slots for a flight. Con-
sequently, there may be several possible slot-entry-lists for 
each possible delay value. Selecting a feasible combination 
of slot-entry-lists for all flights is a combinatorial challenge.

3.4  Most penalizing regulation (MPR)

The MPR is defined as the regulation that causes the great-
est delay to a flight [21]. As described above, CASA iterates 

through the flights and regulations and designates the MPR 
in the solution process. In contrast, the optimization problem 
reconciles all flights and regulations at once, so it is not clear 
which one is the most penalizing one. However, to evaluate 
who caused the delay, there must be a regulation designated 
as MPR that is responsible for the delay. CRO defines the 
MPR as the regulation with the maximum time to slot (dif-
ference between slot time and ETO) of all entries. The other 
regulation slots could be reached with less delay being allo-
cated, so they are less penalizing. Therefore, in CRO, the 
MPR depends on the final slot-entry-list of the flight.

3.5  Initial heuristic

We introduce an initial heuristic that finds feasible solutions 
to initialize the optimization. In contrast to the optimization 
approach, the initial heuristic processes all flights sequen-
tially to allocate the earliest slots. If there are free slots for 
all entries within the slot tolerance, they are allocated with-
out delay allocation. When a flight violates a slot tolerance, 
the lowest delay that allows a slot for all entries is selected. 
If no valid slot entry list is found, the flight is allocated to the 
end of the regulation. Each flight is processed once, so there 
is no reconciliation of linked flights as in ISA–CASA. This 
method guarantees that a feasible solution is found for each 
flight and that the final system state represents a feasible 
solution to the optimization problem.

3.6  Binary integer problem (BIP)

The BIP represents the challenge of finding slots for all 
flights with minimum delay.

Sets:

• F: The set of all flights.
• S: The set of all slots.
• Lf: The set of slot-entry-lists available to f.

Indices:

• f: Flight.
• s: Slot.

Fig. 8  Slot-entry-list: Flight 
221716 enters two regulated 
traffic volumes, is allocates to 
a slot in each, and receives a 
30 min delay from ISA–CASA, 
with the most penalizing regula-
tion being GSE02
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• l: Slot-entry-list of a flight f containing its delay d and 
slots s.

Parameters:

• df  : Delay of a flight f.
• c: Reactionary delay cost coefficient.
• rd

f
 : Dependent variable of the reactionary delay of flight 

f with delay d.
• sal

f
 : Is equal to 1 if flight f with list l has slot s, 0 other-

wise.
• wl

f
 : Delay cost of flight f in slot-entry-list l.

Decision variables:
xl
f
 : Is equal to 1 if flight f is allocated to list l  , 0 

otherwise

For a flight f, its delay d and assigned slots s are repre-
sented by a slot-entry-list l. The decision to schedule the 
flight in this manner is represented by a binary decision vari-
able xl

f
 (5). Each variable has a delay cost term wl

f
 calculated 

(1)wl
f
= df + crd

f

(2)min
x

∑

f∈F

∑

l∈Lf

wl
f
xl
f

(3)s.t.
∑

l∈Lf

xl
f
= 1∀f ∈ F

(4)
∑

f∈F

∑

l∈Lf

sal
f
xl
f
≤ 1∀s ∈ S

(5)xl
f
∈ {0, 1}∀f ∈ F,∀l ∈ Lf

from the primary delay d of its slot-entry-list and the cor-
responding reactionary delay rd

f
 multiplied by the reaction-

ary delay cost coefficient c (1). A start constraint for each 
flight ensures that exactly one slot-entry-list xl

f
 is selected, 

i.e., that each flight departs only once (3). All slots are 
capacity constrained to one entry and the parameter sal

f
 

specifies which variables require the slot (4).
The cost function (2) is minimized while satisfying all 

constraints (3–5). Each possible solution contains exactly 
one slot-entry-list for each flight, with a delay value in min-
utes. Each feasible solution satisfies all constraints, and 
each flight entering a regulation time window has a slot in 
the matching overlap interval. The cost of a solution is the 
sum of all primary and reactionary delay costs. An opti-
mal solution has the lowest total cost possible, given that all 
constraints are satisfied. This means that there is no better 
solution without violating at least one constraint. It’s impor-
tant to note that in the context of this work, “cost” refers to 
optimization factors, not monetary expenses.

3.7  Solving the optimization problem

In CRO, each flight has many possible combinations of 
delays and slot-entries. Since each combination is repre-
sented by a single variable, there are many variables in the 
problem formulation and an exponentially large number of 
feasible solutions. The linear relaxation, i.e., the relaxation 
of the integer condition, is solved efficiently by the simplex 
algorithm. The optimal solution of the relaxed problem is a 
lower bound for the optimal solution of the integer problem, 
since the more constrained integer problem cannot be better 
than the less constrained continuous problem. The differ-
ence between the lower bound and the upper bound is the 
optimality gap, which indicates how much better the optimal 
solution could theoretically be. We use the solving constraint 

Fig. 9  Column generation workflow
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integer programs (SCIP) framework [24, 25] to find the best 
possible solution.

Column generation reduces the computational time for 
large linear optimization problems by considering only a 
subset of all possible variables. The basic idea is that the 
optimal solution of a subset of variables is a global opti-
mum—if all other variables do not have reduced costs. The 
reduced costs come from the duality theory of linear optimi-
zation and can be computed using dual variables [26]. Since 
the reduced cost can be computed for each departure option 
and the respective slots, the theory can be applied here.

CRO starts column generation with only a subset of all 
possible variables and iteratively adds those variables to 
the problem that could reduce the cost of the solution (see 
Fig. 9). An initial set of variables is generated from the cur-
rent network state of R-NEST. CRO then iteratively creates 
new variables that have the potential to reduce the overall 
delay cost of the solution. If the reduced costs of a candi-
date variable are negative, a solution that includes that vari-
able could have a lower cost than the current best solution. 
Reduced costs are computed from delay costs and dual vari-
ables of the variable’s start- and slot-constraints [6]. In the 
optimization problem, each departure time can be mapped 
to different slots for each entry, so the slot entry list with the 
most reduced cost is of interest. If more than one candidate 
slots in the same overlap interval (Fig. 10a) have the same 
minimum dual cost (Fig. 10b), the one with the lowest time 
deviation (Fig. 10c) is selected (Fig. 10d).

Variables are generated for one flight after another. Ini-
tially, variables are created with zero delay. Then, the delay 
is gradually increased and variables are generated until the 
maximum delay is reached. The maximum delay occurs 
when a flight entry is at the end of the regulation, which 
corresponds to the highest possible delay. The variable with 
the most reduced cost is added to the problem. When no 
more variables with reduced costs are found, SCIP starts the 
branch-and-bound process.

3.8  Setting the flights (postprocessing)

CRO passes the solution to the ATM problem to R-NEST. 
For each optimized flight, the primary ATM-delay is set, 
slot entries are allocated and MPR is assigned. When 

CRO has finished updating the system state, the simula-
tion continues. After every True Revision Interval, CRO 
performs the next reconciliation, until the day’s simulation 
is complete.

4  Scenario setup

Three realistic ATS scenarios are simulated1 with historical 
European traffic data for June 02, 2017 (6th AIRAC cycle), 
a regular Friday with a summer flight schedule. They are 
defined by the types of delays being considered, with more 
delay types associated with an increasing order of complex-
ity (see Table 1). Scenarios of lower complexity facilitate 
the interpretation of the slot allocation mechanism. The first 
scenario contains only ATFM delay. It is static, because the 
initial solution is not disturbed in subsequent iterations, 
i.e., it does not need to be recomputed. The second sce-
nario contains ATFM delay and reactionary delay, whereas 
the third scenario also contains non-ATM delay. These two 
scenarios are dynamic, because reactionary (and non-ATM) 
delays tactically disturb the system state, creating new slot 
conflicts that must be reconciled. The random number gen-
erator always produces the same non-ATM delay with the 
same 174,160 min in all simulations.

All scenarios contain the same traffic demand and regu-
lation scheme, i.e., the regulations, rates, and durations are 
all the same. Only ATC capacity and staffing regulations 
are activated. Basic data are tabulated in Table 2. With the 
exception of delay types, all other scenario data, R-NEST 

Fig. 10  Selecting a slot with the lowest dual cost and lowest time difference in an overlap interval in the pricing process

Table 1  Three scenarios and the activated delay types

Scenario name Activated delay type

ATFM Reactionary Non-ATM

Static x
Dynamic I x x
Dynamic II x x x

1 We use a PC with Intel Core i7-6700 CPU @ 3.40  GHz with 
32 GB RAM.
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settings, and CRO settings are consistent. To reduce compu-
tation time, CRO parameters allow deviations from the theo-
retically optimal solution. Candidate variables are searched 
with delay increments of 10 s and added to the problem 
only if the cost is reduced by 10 s. The optimality gap limit 
is set to 1%.

Some flights are affected by only one regulation, whereas 
many flights face two or more regulations (see Table 3), 
which means that there are many interrelated slot-entry-lists.

4.1  Limitations

The European ATS is very complex. To carry out real-
istic and valuable research, some simplifications have to 
be made to allow interpretability. In addition, some phe-
nomena are simply too complex for the selected model-
ling approach, as human actions are often involved in the 
operations. Therefore, this study has some limitations, 
mainly due to the dynamic nature of the EATMN.

1. All flights are known at the beginning of the simulation. 
There are no new flight plans, resubmitted flight plans, 
or diversions. In addition, except for non-ATM delays, 
flights strictly adhere to their schedules. There are no 
other uncertainties in the flights.

2. All regulations and their declared flow rates are known 
at the beginning of the simulation. Sector configura-
tions and regulations are constant, and there are no FMP 
actions to adapt to predicted demand/capacity imbal-
ances.

3. Reactionary delay relationships are based on available 
tail numbers. Buffer times are the same for all relation-
ships. No additional mechanisms are modeled to com-
pensate for reactionary delay.

5  Results

The three scenarios described above are simulated in 
R-NEST over the course of the day according to the pro-
cess in Fig. 2, with DCB modules either ISA–CASA or 
CRO being called every 5 min of simulation time. For each 
scenario that includes reactionary delay, we perform the 
trade-off for different reactionary delay cost coefficients. 
The larger the coefficient, the more reactionary delays are 
penalized relative to primary delays. Simulations are run for 
the entire day with a fixed cost coefficient. Reactionary delay 
cost coefficients range from zero (no penalty for reactionary 
delays), one (primary and reactionary delays are penalized 
equally), and infinity (emphasis on reactionary delay reduc-
tion). Each setting is simulated once, and delays, computa-
tion times, and remaining overloads are evaluated.

5.1  Static scenario

The Static scenario does not include any reactionary or 
non-ATM delay, and no reactionary delay cost trade-off 
is performed. CRO finds a near-optimal solution and allo-
cates slots and delays accordingly. Since there are no slot 
inconsistencies and no external changes to the system state 
occur when the simulation is iterated to the next time step, 
CRO does not need to re-optimize and change slots. The 
final network stats are shown in Table 4. Compared to 
ISA–CASA, CRO, reduces the remaining overloads by 8% 
and the primary delay by 56%. The maximum runtime of 
CRO is 7.85 s. The optimality gap is 0.34%, which means 
that the optimal solution could be better by a maximum of 

Table 2  Scenario data and settings

Value

Scenario data
 Day 2nd June 2017
 Number of flights 34,007
 Number of flights impacted by regulations 6815
 Number of regulations: ATFCM staffing and capac-

ity reason
81

 Number of slots in regulations 5663
 Number of entries (flights in regulations) 9475

R-NEST ATFCM settings
 True revision interval 5 min
 Slot issue time (SIT1) 2 h
 Entry count integration windows 20 min
 Sliding step 10 min

CRO optimization settings
 Overlap interval 10 min
 Optimality gap limit 1%
 Minimum reduced cost of variable 10 s
 Minimum delay increment of a priced variable 10 s

Table 3  Number of flights with 
the number of regulations

# Regulations 1 2 3 4 5 6 7

# Flights 4822 1458 434 81 11 7 2

Table 4  Static: final network stats

DCB-module Primary delay [min] Overloads

ISA–CASA 24,732 66
CRO 10,871 61
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this percentage, or 37 min. This shows that CRO is able to 
find good solutions that significantly reduce delays while 
maintaining current levels of overload, quickly, and close 
to optimal.

5.2  Dynamic I: ATFCM and reactionary delay

In the Dynamic I scenario, reactionary delay is enabled 
and reactionary delay is penalized in the cost function. We 
perform cost trade-offs with reactionary cost coefficients 
ranging from zero to infinity (CRO-0.0 to CRO-inf). After 
each CRO run, time is advanced and reactionary delays are 

induced on subsequent flights. These subsequent delays 
result in slot inconsistencies and create demand–capacity 
imbalances. The final network stats are shown in Table 5.

The remaining overloads of CRO resolutions with dif-
ferent reactionary cost coefficients are irregularly distrib-
uted from 63 to 67, below the 73 ISA–CASA overloads, 
which is a reduction from 8% to 14%. The primary and 
reactionary delays are shown in Fig. 11.

Compared to ISA–CASA, CRO reduces primary 
and reactionary delays for all reactionary delay cost 
coefficients.

As the coefficients increase, primary delays in CRO 
steadily increase from 10,698 to 12,833 min, and reac-
tionary delays, which are all lower, steadily decrease from 
6498 to 728 min. The minimum total delay is achieved 
with an equal delay penalty coefficient of 1.0.

Different reactionary delay cost coefficients in CRO are 
compared. A small reactionary delay cost coefficient of 0.1 
reduces reactionary delay by 3592 min compared to zero 
reactionary delay cost at the detriment of increasing primary 
delay by 210 min. A slightly larger coefficient of 0.5 reduces 
reactionary delay by 5052 min at the detriment of increas-
ing primary delay by 594 min, so the additional savings of 
1460 min of reactionary delay comes at the detriment of 
additional 384 min of primary delay compared to CRO-0.1. 
A coefficient of 1.0 reduces reactionary delay by 5278 min 
at a detriment of 807 min of additional primary delay. Com-
pared to CRO-0.5, the additional savings in reactionary 
delay is 226 min at a detriment of 213 additional minutes of 

Table 5  Dynamic I: final network stats for solution modules ISA–
CASA and CRO with reactionary delay penalization between 0.0 and 
infinity (minimum value is indicated in bold)

DCB-Module Primary 
delay 
[min]

Reaction-
ary delay 
[min]

Primary + reac-
tionary [min]

Overloads

ISA–CASA 24,604 14,498 39,102 73
CRO-0.0 10,698 6498 17,196 63
CRO-0.1 10,908 2906 13,814 66
CRO-0.5 11,292 1446 12,738 63
CRO-1 11,505 1220 12,725 64
CRO-2 11,828 1045 12,873 65
CRO-10 12,557 815 13,372 67
CRO-inf 12,833 728 13,561 65

Fig. 11  Dynamic I: primary 
and reactionary delay for ISA–
CASA and CRO (DCB–module 
of minimum value is indicated 
in bold)
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primary delay. Larger reactionary cost coefficients increase 
primary delays more than they reduce reactionary delays.

Comparing the best CRO solution with a penalty of 
1.0 with ISA–CASA, CRO reduces primary delay by 
13,099 min, reactionary delay by 13,278 min and the total 
delay by 26,377 min.

The maximum runtime for a single CRO execution ranges 
from 7.2 to 13.8 s. The mean runtimes for all CRO runs 
of a simulated day range from 2.7 to 3.6 s. The maximum 
optimality gap is less than one percent. Solving stats are 
given in Table 6.

5.3  Dynamic II: ATFCM, reactionary and non‑ATM 
delay

In the Dynamic II scenario, the non-ATM delay is activated 
as a random system disturbance in addition to the reaction-
ary delay. After each CRO run, time advances and flights 
receive non-ATM and reactionary delays. The random off-
block time deviations create slot inconsistencies and new 
imbalances. The given non-ATM delay is much larger than 
the primary delay and is, therefore, the driving factor for the 
reactionary delay. The simulation results and final network 
stats are summarized in Table 7.

Overloads for CRO computations with different reaction-
ary cost coefficients are scattered between 36 and 41, reduc-
ing ISA–CASA overloads by about 28–34%. Primary and 
reactionary delay values are shown in Fig. 12:

Compared to ISA–CASA, CRO also reduces primary and 
reactionary delay in this scenario for all reactionary delay 
cost coefficients.

In CRO, for reactionary delay cost coefficients between 
zero and inf, the primary delay ranges from 21,811 to 
23,346 min, while the reactionary delay is about seven times 
greater, ranging from 197,026 to 207,233 min.

A comparison of the different reactionary delay cost 
coefficients in CRO shows that as the coefficient increases, 

primary delays tend to increase and reactionary delays tend 
to decrease. However, counterintuitively, CRO-0.1 and 
CRO-0.5 have lower primary delays than CRO-0. Com-
pared to zero reactionary delay penalty, a coefficient of 0.1 
reduces primary delay by 377 min and reactionary delay 
by 6981 min. A coefficient of 0.5 reduces primary delay by 
313 min and reactionary delay by 9643 min. A coefficient of 
1.0 results in the lowest total delay, increasing primary delay 
by 454 and decreasing reactionary delay by 10,661 min. For 
larger reactionary penalties, total delays are greater.

Specifically, when comparing CRO-1 and ISA–CASA, 
primary delay is reduced by 14,411 min, while reactionary 
delay is reduced by 21,898 min and total delay is reduced 
by 36,309 min.

The maximum runtime for a single CRO run is 13.8 s. 
The maximum mean run time for all CRO runs to reconcile 
a full day is 3.8 s. The maximum optimality gap is 0.98% 
and the maximum mean gap is 0.09%. The solving stats for 
CRO are summarized in Table 8.

6  Discussion of the results

One static and two dynamic scenarios, each consisting of a 
complete daily sample of European air traffic, are resolved 
iteratively. Two solution strategies are applied: ISA–CASA, 
a first-planned–first-served-based heuristic, emulating the 
operational CASA, and CRO, an optimization approach 
based on column generation, including penalization for 
reactionary delays depending on a coefficient.

The remaining overloads of the scenarios resolved by 
CRO are between 8% and 34% lower than those resolved by 
ISA–CASA, indicating the efficiency of the overlap interval 
rule. Different reactionary delay cost coefficients showed no 
systematic influence on the remaining overloads.

Table 6  Dynamic I: solving stats, maximum runtime and maximum 
gap per CRO call, mean runtime and mean gap for the whole day 
(minimum value bold, maximum value italic)

CRO 
coeffi-
cient

Max runtime 
(s)

Mean 
runtime 
(s)

Max gap (%) Mean gap (%)

0 9.7 2.9 0.62 0.02
0.1 8.6 2.8 0.30 0.00
0.5 7.2 2.7 0.54 0.01
1 9.6 3.2 0.25 0.00
2 10.6 3.2 0.47 0.00
10 11.7 3.2 0.26 0.00
inf 13.8 3.6 0.04 0.00

Table 7  Dynamic II: final network stats for solution modules ISA–
CASA and CRO with reactionary delay penalization between 0.0 and 
infinity (minimum bold)

DCB-Module Primary 
delay 
(min)

Reactionary 
delay (min)

Primary + 
reactionary 
(min)

Overloads

ISA–CASA 36,676 196,659 233,335 57
CRO-0 21,811 185,422 207,233 39
CRO-0.1 21,434 178,441 199,875 40
CRO-0.5 21,498 175,779 197,277 41
CRO-1 22,265 174,761 197,026 39
CRO-2 22,215 174,812 197,027 36
CRO-10 23,346 174,487 197,833 41
CRO-inf 22,668 174,466 197,134 37



Constraint reconciliation optimization to minimize primary and reactionary delay in a research…

Comparing the static and the dynamic I scenarios, the 
primary delays are slightly smaller in the latter, with a 

difference of 0.5% for ISA–CASA and 1.6% for CRO-0. 
This shows that the reactionary delay alone does not disturb 
the flights as much as to increase the primary delays. For 
both resolution methods, there are significant amounts of 
reactionary delays, i.e., 59% and 61% of the primary delays.

When comparing the static and the dynamic II scenarios, 
primary delays are much higher in the latter, with an increase 
of 48% for ISA–CASA and 101% for CRO-0. Presumably, as 
flights are pushed into the regulations by non-ATM delays, 
there is less capacity available, and flights require more pri-
mary delays to obtain slots.

In addition, compared to the dynamic I scenario, in the 
dynamic II scenario, the primary delays are by 49% higher 
for ISA–CASA and 104% higher for CRO-0, while the reac-
tionary delays are more than ten times higher (as expected 
from the non-ATM delay).

Fig. 12  Dynamic II: primary and reactionary delay for ISA–CASA and CRO (DCB–module of minimum value is indicated bold)

Table 8  Dynamic II: solving stats, maximum runtime and maximum 
gap per CRO call, mean runtime and mean gap for full day (maxi-
mum value italic, minimum value bold)

CRO 
coeffi-
cient

Max runtime 
(s)

Mean 
runtime 
(s)

Max gap (%) Mean gap (%)

0 11.3 3.2 0.98 0.09
0.1 10.8 3.2 0.97 0.08
0.5 10.3 3.3 0.86 0.04
1 10.5 3.5 0.92 0.06
2 10.5 3.5 0.92 0.06
10 12.4 3.8 0.98 0.04
inf 13.8 3.8 0.55 0.01
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CRO reduces the primary delay by 56% compared to 
ISA–CASA in the static scenario, indicating that optimi-
zation can improve reconciliation. In the dynamic I sce-
nario, CRO-0 reduces the primary delay by 56.5% and the 
reactionary delay by 55.2% compared to ISA–CASA, for a 
total delay reduction of 56%, showing that optimization can 
reduce reactionary delay even without reactionary delay pen-
alties. In the dynamic II scenario, CRO-0 reduces primary 
delay by 40.5%, reactionary delay by 5.7%, and total delay 
by 11.2%.

Cost trade-offs with different reactionary delay cost coeffi-
cients are performed in the Dynamic I and II scenarios. In most 
cases, increasing the reactionary delay cost coefficient results 
in a smaller amount of reactionary delay at the cost of increas-
ing the primary delay (see Figs. 11, 12). Equally penalizing 
both types of delay results in an overall delay minimization.

In the dynamic I scenario, comparing the delay-minimiz-
ing CRO-1 (equal penalty) setting with ISA–CASA, the pri-
mary delay is reduced by 53.2% and the reactionary delay is 
reduced by 91.6%. The total delay (primary and reactionary) 
delay is reduced by 67.5%. Reactionary delay is reduced by 
as much as 95% when the optimization focus is entirely on 
reactionary delay. In the dynamic II scenario, comparing 
CRO-1 to ISA–CASA, primary delay is reduced by 39.3% 
and reactionary delay is reduced by 11.1%. The sum of 
primary and reactionary delay is reduced by 15.6%. With 
infinite emphasis on reactionary delay, the sum is reduced 
by 11.3%.

Primary delay evolves differently compared between 
the static and dynamic I scenarios, decreasing slightly 
by 128 min for ISA–CASA while increasing by 653 min 
for CRO-1, showing that CRO allows an increase in pri-
mary delay to reduce reactionary (and total) delay. The 
difference in primary delay between the Dynamic I and 
Dynamic II scenarios is greater, with an increase of 
12,072 min for ISA–CASA and 10,760 min for CRO-1, 
indicating that both DCB modules are affected by the non-
ATM delays.

An increasing reactionary delay cost coefficient results in 
decreased reactionary delay and increased primary delay in 
the dynamic I scenario. On the other hand, in the dynamic II 
scenario, the effect of the reactionary delay cost coefficient 
is not as clear, with coefficients between 1 and inf converg-
ing to reactionary delay between 174,466 and 174,812 min. 
One explanation is that in the dynamic II scenario, most of 
the reactionary delay is caused by non-ATM delay, which is 
not affected by DCB.

Accordingly, the relative reductions by CRO are smaller 
in the dynamic II scenario than in the Static and dynamic 
I scenarios. CRO tends to assign delays just before buffer 
times, so that when a flight encounters non-ATM delay, a 
reactionary delay occurs. When all buffers are exhausted, it 

is impossible to avoid reactionary delay at the network level. 
These relative reductions must be put into perspective with 
the absolute delay reductions, which are even greater than 
in the dynamic I scenario.

An optimality gap of 1% relative to the current problem is 
achieved for all scenarios. Computation times peak at 14 s, 
well below the true revision interval of 5 min.

7  Conclusion and outlook

In this work, we introduce a new module for Slot Alloca-
tion in an existing simulation framework for European Air 
Traffic Management (R-NEST). This module CRO resolves 
demand–capacity imbalances for all flights and regulations 
by optimization, with the capability to penalize reactionary 
delays. The simulation contains flight plans, rotation mar-
gins, sector configurations, regulations, and deterministic 
or stochastic delays.

Three scenarios with increasing levels of complexity 
and realism are resolved. The first scenario (static) contains 
flight plans, sector configurations, and regulations. The sec-
ond scenario (dynamic I) includes flight rotations, so that if 
a flight is delayed, a later flight in the rotation will also be 
delayed. The last scenario (dynamic II) includes stochastic 
departure time deviations (non-Atm delay).

CRO reduces primary and reactionary delay for the 
scenarios while maintaining low levels of overload. Cost 
tradeoffs with different reactionary delay cost coefficients 
show that in most cases, increasing the coefficient reduces 
reactionary delay while increasing primary delay. Equivalent 
penalty minimizes total delay.

Comparing the relative delay reductions from ISA–CASA 
to CRO-1 between the dynamic I and dynamic II scenarios, 
the relative reductions are lower in the latter. The reason for 
this is that the large amount of non-ATM delay causes high 
reaction delays. This indicates the limitations of optimiza-
tion when a large portion of the delay is non-ATM delay. 
On the other hand, the absolute reductions are greater than 
in Dynamic I, with a total delay reduction of approximately 
36,000 min, indicating significant efficiency gains from 
optimization.

The optimization results should be interpreted with 
the caveat that CRO does not take into account the first-
planned–first-served paradigm. In addition, it does not 
reserve capacity for flight plans that are initiated at a later 
point in time. In particular, it is important to recognize the 
significant role that the operational environment plays in 
shaping these results. To get a broader picture of the CRO 
performance, more traffic samples could be resolved, repre-
senting different nominal and non-nominal network cases. 
Potential computational bottlenecks or solution degradation 
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for more constrained scenarios need to be investigated. The 
flexibility of the column generation process can be used to 
trade off computation time against solution quality.

Primary and reactionary delays are distributed differently 
when different resolution methods and penalties are used. 
For the price of a small increase in primary delays, reaction-
ary delays can be substantially reduced compared to CRO-0. 
The cost coefficient provides some control in the optimiza-
tion process, i.e., the model can be tuned to minimize the 
primary delay, the secondary delay, or by any intermediate 
ratio. However, it is not possible to know which parameters 
are optimal in terms of airline cost, network stability, and/or 
fairness, so a broader discussion is warranted.

Modifying an automated decision-making system for 
resource allocation such as DCB requires careful con-
sideration. A common requirement is that the resolu-
tion method be acceptable to the relevant stakeholders, 
such as passengers, airlines, air traffic control, airports 
and network management. A normative and an empiri-
cal approach could be combined to ensure acceptability, 
culminating in workshops and surveys. To enable the 
stakeholders to assess fairness in the technically difficult 
topic of DCB, it must be prepared in such a way that slots, 
reactionary delays, heuristics, optimization, and fairness, 
can be debated in a reasonable amount of time—without 
priming any ethical judgments.

To structure the debate, it is useful to define who the 
claimants are, what the reasons for the claims are, what the 
strength of the claims are, how they relate to each other, 
and how they are weighted-up. At the heart of the matter 
is the resolution of competitions involving multiple claims, 
whether multiple flights require slots in the same regula-
tions, or flights threatened with reactionary delay demand 
some satisfaction of their claims. In addition, techni-
cal details such as slot tolerances affect the relationship 
between competing flights to some extent. Their influence 
on sequencing should be evaluated and their relevance to 
fairness should be determined. However, the contribution 
of deterministic factors is blurred as sequences are shaken 
throughout the day by, for example, non-ATM delays. In 
summary, determining a level of fairness for a system 
state or a resolution method requires ethical judgments 
involving a variety of technical details. Accordingly, the 
applicability of optimization to ATFM relies on a rigorous 
assessment of fairness.

Beyond addressing fairness concerns, the ability to 
interoperate with more realistic scenarios, such as hotspot 
declarations, late filers, or en-route uncertainties could be 
explored. Additional cost functionalities for equity, can-
cellation thresholds, or user-driven priorities could be 
incorporated. How the novel imbalance reconciliation 
philosophy would interact with dynamic airport (APT), 
flow management position (FMP), and airspace user (AU) 

decision making could be explored through functionally 
extended simulations.
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