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Abstract
As the utilization of stratospheric airships becomes more prevalent, ensuring their safe operation becomes crucial. This 
paper explores the ability of an L

1
 adaptive controller to maintain fault tolerance in the actuators of a stratospheric airship. 

L
1
 adaptive control offers fast adaptation while separating adaptation and robustness. This makes the approach a suitable 

candidate for fault-tolerant control. The performance of the proposed design is compared to the Linear Quadratic Integral and 
Adaptive Sliding Mode Backstepping controllers. Simulation results show that the robustness of the airship model against 
faults is improved with the use of the L

1
 adaptive controller.

Keywords Adaptive control · Fault-tolerant control · Airship control

1 Introduction

Stratospheric airships, similar to other types of unmanned 
aerial vehicles, have a range of potential uses for both mili-
tary and civilian purposes, such as serving as platforms 
for observation, remote sensing, and communication relay. 
However, the dynamics of airships are fundamentally non-
linear and different from those of traditional aircraft. Typi-
cally, the center of gravity of an airship is located below the 
center of volume, making it susceptible to changes in air 
pressure and temperature. In addition, the mass and inertia 
of the airship are not constant. What is more, airships are 
generally considered underactuated vehicles, largely due to 
the lack of a lateral force actuator to counteract aerodynamic 
side forces, limited roll moments, and limited control surface 
effectiveness at low airspeeds [1, 2]. Therefore, designing 

flight control systems for stratospheric airships is a chal-
lenging task [3].

For the problem of airship control, many methodologies 
have been proposed in the literature, such as PID [4, 5], state 
feedback [6], backstepping control [7], dynamic inversion 
[8], adaptive control [9], and sliding mode control [10–12]. 
More details can be found in [13] and references therein.

In common with all aeronautical systems, stratospheric 
airships faults and failures may have serious consequences. 
Given the low temperatures and high levels of radiation in 
the stratosphere, both sensor and actuator failures are likely 
to occur, thus deteriorating the control performance and even 
jeopardizing the whole mission. Therefore, more in-depth 
research is required in this area.

Fault-tolerant control is a control system that can auto-
matically adapt and compensate for failures [14]. Fault-
tolerant control systems are categorized as either passive 
or active [15, 16]. Passive fault-tolerant control is based 
on robust control and assumes the worst-case conditions 
[17, 18]. Active fault-tolerant controllers consist of a fault 
detection mechanism and a supervision module. Based on 
the information provided by the fault detection module, the 
supervision module can make decisions on how to recon-
figure the controller [19]. A compromise between the two 
approaches is adaptive control, which is based on the recon-
figuration of the controller parameters without involving an 
explicit fault detection module [20, 21].

Very few approaches have addressed airship fault-tolerant 
control [13]. In [22], the authors proposed a strong track 
filter-based method for fault detection and applied it to 
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design a fault-tolerant backstepping attitude control system 
for autonomous airships in the event of sensor failures. In 
[23], an adaptive backstepping approach for fault-tolerant 
attitude control of stratospheric airships with input satura-
tion was presented. Another adaptive integral sliding mode 
approach has been applied to fault-tolerant tracking con-
trol for a multi-vectored thrust ellipsoidal airship in [24]. A 
fault-tolerant control method based on a constrained adap-
tive backstepping approach and utilizing a radial basis func-
tion neural network approximation was proposed in [25] for 
airships with thruster faults. The work of [26] dealt with the 
problem of trajectory tracking for a stratospheric airship in 
the presence of actuator faults, full-state constraints, input 
saturation, and unknown external disturbances. A fault-toler-
ant controller based on an adaptive neural network backstep-
ping approach was proposed to solve this problem. The atti-
tude tracking control of a flexible airship subjected to wind 
disturbances, actuator saturation, and control surface faults 
has been studied in [27]. An adaptive fault estimator was 
designed to estimate the faults of the control surfaces. The 
common issue of these works is that the backstepping con-
troller is always combined with other techniques to improve 
its robustness, which might make practical application and 
tuning relatively complicated. In [28], a fault-tolerant Model 
Reference Adaptive Control (MRAC) approach for an actua-
tor fault airship model was designed. However, accommo-
dating faults needs to ensure whole stability and uniform 
boundedness of the system during the transient regime. This 
is the main drawback of MRAC [29].

L1 adaptive control is a compelling option for airship 
fault-tolerant control because of its ability to fast and robust 
adaptation, resulting in the desired transient performance 
for both input and output signals [30]. The development of 
L1 adaptive control was driven by the need for a more cost-
effective validation and verification process for adaptive 
flight-critical systems [31]. This control method has been 
utilized in a variety of flight control systems, such as [32–35] 
to name a few. However, it appears it has not previously been 
applied to airship control.

Hence, this paper presents the design of an L1 adaptive 
fault-tolerant controller for a stratospheric airship. The 
main advantage is that fast and robust adaptation permits 
the accommodating of faults and failures and enhances the 
safety of operation of stratospheric airships. Another advan-
tage is its relative simplicity of implementation compared 
to the previous methods based on the combination of robust 
control techniques.

In Sect. 2, the airship model is recalled. Section 3 describes 
the L1 adaptive controller design. In Sect. 4, L1 adaptive con-
trol is summarized. Simulations were performed for the air-
ship when subjected to actuator faults, some of the results are 
presented in Sect. 5, and the results for the controllers are com-
pared. Finally, some conclusions are drawn.

1.1  Notations

Boldface for matrices, vectors, and tensors; italics for all 
variables and lowercase Greek letters; and roman for all 
numerals, uppercase Greek characters, and mathematical 
operators.

‖ ⋅ ‖1 denotes the 1-norm of a vector.
For a stable proper transfer matrix G(s), ‖G(s)‖L1

 denotes 
its L1-norm. For time-varying signals, we use both time-
domain and frequency-domain notations. For example, for 
the signal �(t) , defined on t ∈ [0,∞) , we use �(s) for its 
Laplace transform.

2  Airship model

The stratospheric airship presented in this paper has an ellip-
soidal envelope. Buoyancy force is provided by helium con-
tained in the envelope.

The yaw control system consists of the up and down rudder 
which move in unison. The pitch and roll control systems are 
composed of the left and right elevators which move sepa-
rately. The airship is equipped with propellers fixed on both 
sides of the gondola, which are vector thrust systems that can 
rotate about their horizontal axis. These propellers provide the 
primary propulsion for the airship.

The mathematical model of the airship is defined from 
[36–39]. The kinematic model of the airship is derived by the 
frames from Fig. 1 [40] and it is formulated as

where Ξ1 =
[
�T �T

]T
, Ξ2 =

[
vT
a
ΩT

]T
, � =

[
x y z

]T is 
the airship position in the inertial frame, � =

[
� � �

]T is 
the attitude vector, va =

[
u v w

]T and Ω =
[
p q r

]T are the 
speeds and angular rates in the body frame, respectively, and

Ξ̇1(t) = TΞ2(t)

Fig. 1  Airship structure and frames
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where R(�) is the direction cosine matrix and J(�) is the 
transformation matrix [40].

The dynamic model of the ariship is given by

where Ma represents the generalized mass matrix, Fk rep-
resents the kinetics force vector, Fw represents the wind-
induced force vector, FGB represents the sum of the gravity 
and buoyancy vectors, FA denotes the aerodynamic force 
vector, F represents the control input and thrust vector, 
Nk,Nw,NGB,NA , and N are associated moments generated 
by Fk,Fw,FGB,FA , and F , respectively.

Let

then (1) can be rewritten as

where

Given that the airship is underactuated in the y-direction, or 
lacks an effector to counteract aerodynamic side forces [1], 
then Eq. (2) can be rewritten as follows

where Cz�e
,Cl�e

,Cl�r
,Cm�e

,Cn�r
 are the aerodynamic coeffi-

cients of the control surfaces, Tx and Tz are the thrust com-
ponents in the xb and zb axis, respectively. dx and dz represent 
the distance from the CV to the propeller in the xb and zb 
axis.

The thrusts can be linearized by the following transfor-
mation [1]

where Tp and Ts represent the thrusts of the port and star-
board side, respectively. The tilting angle can be computed 

T =

[
R(�) 0

0 J(�)

]

(1)M
a

[
v̇
a
(t)

Ω̇(t)

]
=

[
F
k
+ F

w
+ F

GB
+ F

A

N
k
+ N

w
+ N

GB
+ N

A

]
+

[
F

N

]
,

(2)U =

[
F

N

]
,

(3)Ξ̇2(t) = f2 + g2U(t),

f2 = M−1
a

⋅

[
Fk + Fw + FGB + FA

Nk + Nw + NGB + NA

]

g2(Ξ) = M−1
a

(4)

⎡⎢⎢⎢⎢⎢⎣

fx
fz
nx
ny
nz

⎤⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 q̄Cz𝛿e
q̄Cz𝛿e

0 0

0 0 q̄Cl𝛿e
− q̄Cl𝛿e

q̄Cl𝛿r
− q̄Cl𝛿r

dz dx q̄Cm𝛿e
q̄Cm𝛿e

0 0

0 0 0 0 q̄Cn𝛿r
q̄Cn𝛿r

⎤⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

Tx
Tz
𝛿eL
𝛿eR
𝛿rU
𝛿rB

⎤⎥⎥⎥⎥⎥⎥⎦

,

(5)
{

Tx =
(
Tp + Ts

)
cos�

Tz = −
(
Tp + Ts

)
sin�

as � = atan
(
−Tz∕Tx

)
 , with maximum and minimum values 

of 90◦ and −90◦ , respectively.
A traditional approach in flight control is to con-

trol separately the inner-loop and the outer-loop. The 
outer-loop (trajectory) vector is � . The inner-loop (body 
frame velocity, rotation rates and attitude) vector is 
x̄ = [Ξ2, �] = [u, v, w, p, q, r, 𝜙, 𝜃, 𝜓].

The objective of this paper is to compute the the input 
U = [fx, fz, nx, ny, nz] of desired forces and moments so that 
the inner-loop follows the reference input from the trajectory 
controller.

Remark 1 It is obvious that airship aerodynamic and mass 
uncertainties, external disturbances, potential faults and/or 
failures can degrade the control system performance and 
even cause instability if they are not explicitly addressed in 
control design.

3  L
1
 adaptive controller design

Given the model in (2), and considering external disturbances 
as a vector �(t) , the attitude dynamics of the airship can be 
written in a compact form as

A typical approach in designing adaptive control is to lin-
earize the non-linear model around a specific equilibrium or 
operating point. Hence, a linear controller can be developed 
based on the linearized system model and then by adding 
the adaptive controller, it allows for improved robustness 
of the system. Actually, it permits for less “burden” of the 
adaptive controller through the use of prior knowledge of 
the system [41].

As for all aeronautical systems, the airship is in trim flight 
when the net forces and moments sum to zero. This includes 
contributions from the aerodynamics, gravity, buoyancy, and 
thrust [42].

By linearization about a trim (equilibrium) point, the non-
linear system in (6) can be approximated by

where x̄(t) = x0(t) + x(t) , where x0(t) represents the trim vec-
tor, U(t) = u0(t) + u(t) , u0(t) is the trim command, �̃(x, u, t) 
is a non-linear unknown function that includes the higher 
order terms of the Taylor series expansion of f(x) + g(x)U , 
�(t) and the external disturbance, Ap ∈ ℝ9×9 and Bp ∈ ℝ9×5 
are unknown matrices

Remark 2 As a result of the system linearization, as it 
is common in the control of aeronautical systems, two 

(6)̇̄x(t) = f(x̄) + g(x̄)U(t) + �(t).

(7)ẋ(t) = Apx(t) + Bpu(t) + �̃(x, u, t),
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decoupled movements can be considered, namely longitu-
dinal and lateral:

• The longitudinal motion consists of the states 
xlon = [u w q �] and the inputs ulon = [fx fz ny].

• The lateral motion consists of the states xlat = [v p r � �] 
and the inputs ulat = [nx nz].

Separate controllers are developed for each mode as shown 
in Fig. 2.

3.1  Longitudinal controller design

Considering only the longitudinal state vector xlon and the 
longitudinal input ulon , the reduced system from (7) can be 
written as

where Alon ∈ ℝ4×4 is the uncertain matrix of the longitudinal 
dynamics, Blon ∈ ℝ4×3 is the uncertain matrix of longitudi-
nal inputs and f̃lon ∈ ℝ4 is an unknown function. The output 
is ylon = [u q �].

Since the matrices Alon and Blon are unknown, the follow-
ing approximations can be made:

(8)ẋlon(t) = Alonxlon(t) + Blonulon(t) + f̃lon(t),

where A1 ∈ ℝ4×4 is a known matrix estimated assum-
ing nominal conditions and parameters, ΔA ∈ ℝ4×4 is an 
unknown matrix of the system dynamics, and

where B1 ∈ ℝ4×3 is a known matrix, ΔB1 ∈ ℝ3×3 is an 
unknown matrix of the control input uncertainties.

By neglecting the unknown parameters, the nominal sys-
tem can be written from (8) as

Next, an LQR controller is designed for the system with 
nominal parameters defined in (11). Recalling the LQR con-
troller from [43], for the following linear system

as the control law u(t) = −Kx(t) that minimizes the quad-
ratic cost function

where Q and R are weighting matrices, with

(9)Alon = A1 + ΔAlon,

(10)Blon = B1(�3 + ΔB1), ,

(11)ẋlon(t) = A1xlon(t) + B1ulon(t),

(12)ẋ(t) = A x(t) + B u(t),

(13)J = ∫
∞

0

(
xTQx(t) + uT (t)Ru(t)

)
dt

Fig. 2  Control architecture
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where P = PT ≥ 0 is the solution to

Hence, the control law ulon for the system in (8) can be writ-
ten as follows

where kp1 is the feedback matrix of the LQR controller and 
u1 is the adaptive control law that compensates for unknown 
disturbances and system parameters. The choice of the feed-
back gain kp1 is a gain matrix that defines Am1 = A1 + B1kp1 , 
where Am1 ∈ ℝ4×4 is a Hurwitz matrix that defines the 
desired dynamics of the system.

The system that is ultimately controlled by the adaptive 
control is as follows

where �1 = �3 + ΔB1 and �̃
1
(t, x) = ΔA

1
x(t) + (�

1
− �

3
)K

1

x
1
(t) + f̃

1
.

Assuming h̃1(t, x) = B1

(
�1x1(t) + �m1

(t)
)
+ Bu1

𝜎u1(t) , the 
system in (17) can be parametrized as follows

where �1 is a matrix of constant unknown parameters rep-
resenting model uncertainties, with dimension ℝ3×4 , �m1

(t) 
is an unknown matched disturbance of dimension ℝ3 , �u1(t) 
is an unknown unmatched scalar disturbance, and Bu1

 is a 
constant matrix of dimension ℝ4×1 such that BT

1
Bu1

= 0 and 
the matrix 

[
B1;Bu1

]
 has rank 4.

3.2  Lateral controller design

The design of the lateral controller is similar to the longi-
tudinal controller. Considering only the lateral state vector 
xlat and the lateral input ulat , the reduced system from (7) 
can be written as

where Alat ∈ ℝ5×5 is an unknown matrix of the lateral 
dynamics, Blat ∈ ℝ5×2 is an unknown matrix of lateral 
inputs, and f̃lat ∈ ℝ5 is an unknown function. The output is 
ylat = [� �].

Similarly to the longitudinal dynamics, the system with 
nominal parameters can be written as follows

(14)K = R−1BT�

(15)AT� + �� +Q − �B R−1BT� = 0.

(16)ulon = −k⊤
p1
x̄1 + u1,

(17)ẋ1(t) = Am1
x1(t) + B1�1u1(t) + h̃1(t, x),

(18)
�̇
1
(t) =A

m
1

x(t) + B
1

(
�
1
�
1
(t) + �

1
x
1
(t) + �

m
1

(t)
)
+ B

u
1

𝜎
u
1

(t),

(19)ẋlat(t) = Alatxlat(t) + Blatulat(t) + f̃lat(t),

(20)ẋlat(t) = A2xlat(t) + B2ulat(t),

Proceeding in a similar way as Eqs. (16) to (17) leads to the 
following model for the lateral system

where �2 is a matrix of constant unknown parameters rep-
resenting model uncertainties, with dimension ℝ2×5 , �m2

(t) 
is an unknown matched disturbance of dimension ℝ2 , �u2

(t) 
is an unknown unmatched disturbance of dimension ℝ2×2 , 
and Bu2

 is a constant matrix of dimension ℝ5×2 such that 
BT
1
Bu1

= 0 and the matrix 
[
B1;Bu1

]
 has rank 4.

The objective is to design control inputs u1(t) and u2(t) 
that would make the chosen system outputs track reference 
commands with bounded errors in the presence of uncertain-
ties external disturbances.

The resulting models in (18) and (21) make straightfor-
ward application of L1 adaptive control that is described in 
the next section.

4  L
1
 adaptive control

Both airship longitudinal and lateral control formulations in 
(18) and (21) are equivalent to the general class of systems 
defined by

where Am =∈ ℝn×n is the matrix of the desired system 
dynamics, B ∈ ℝn×m is a known matrix, C ∈ ℝm×n is a 
known matrix, x(t) ∈ ℝn is the state vector which is assumed 
to be available through measurement, u(t) ∈ ℝm is the con-
trol input vector, �⊤ ∈ ℝm×n is a matrix of constant unknown 
parameters representing model uncertainties, �m(t) ∈ ℝm is 
an unknown matched disturbance, �u(t) ∈ ℝn is an unknown 
unmatched disturbance, Bu ∈ ℝn×(n−m) is a constant matrix 
such that BTBu = 0 , 

[
B Bum

]
 has rank n.

Assumption 1 The unknown model parameters are restricted 
within a known compact convex set Θ , represented by 
� ∈ Θ . The system input gain matrix � is assumed to be 
an unknown (non-singular) strictly row-diagonally domi-
nant matrix with the sign of �ii known. It is also assumed 
that there exists a known compact convex set Ω , such 
that � ∈ Ω ⊂ ℝm×m . The disturbances �

m
(t) and �

u
(t) are 

restricted within known compact sets Δm and Δu , respec-
tively. In addition, it is assumed that both disturbances are 
differentiable with bounded derivatives, meaning there exist 
finite reals d�m and d�u such that:

(21)
ẋ
2
(t) =A

m
2

x
2
(t) + B

2

(
�
2
u
2
(t) + �

2
x
2
(t) + �

m
2

(t)
)
+ B

u
2

𝜎
u
2

(t, x),

(22)

ẋ(t) =Amx(t) + B
(
�u(t) + �x(t) + �m(t)

)
+ Bu�u(t, x),

y(t) =Cx(t),

‖�̇m(t)‖2 ≤ d𝜎m , ‖�̇u(t)‖2 ≤ d𝜎u ∀t ≥ 0.
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Remark 3 These assumptions, from a practical point of 
view, are indeed reasonable. They are based on conserva-
tive knowledge about the magnitude of airship uncertainties 
obtained through analysis, experimental evaluation, or wind-
tunnel testing. For instance, assuming known maximum 
possible variations of aerodynamic coefficients concern-
ing nominal values is entirely justifiable. Such assumptions 
align with conventions for real-world systems, where techni-
cal specifications or engineering insights usually establish 
known compact ranges for unknown parameters that the 
system can accommodate without any compromise.

The architecture of the L1 adaptive controller is made up 
of three components: a state predictor, an adaptation law, 
and a control law, as shown in Fig. 3.

The state prediction is determined by

where �̂�(t) , �̂(t) , �̂m(t) , and �̂u(t) are the estimates of the 
unknown system parameters and x̂(t) is the estimate of the 
state vector x(t).

The adaptation laws are defined as

where x̃ = x̂ − x is the prediction error, Γ > 0 is the adap-
tation gain, and ℙ is the solution of the algebraic Lyapu-
nov equation (Am)

⊤¶ + ¶Am = −Q , Q > 0 , while Proj(⋅, ⋅) 
denotes the projection operator defined over the sets Θ , Ω , 
Δm , and Δu (more details in the appendix).

Remark 4 The adaptation law is based on Lyapunov sta-
bility theory and ensures that the prediction error remains 

(23)
̇̂x(t) =Amx̂(t) + B

(
�̂(t)u(t) + �̂(t)x(t) + �̂m(t)

)
+ Bu�̂u(t),

(24)

̇̂� = Γ Proj
(
�̂,−(x̃⊤¶B)⊤u⊤

)
,

̇̂
� = Γ Proj

(
�̂,−(x̃⊤¶B)⊤x⊤

)
,

̇̂�m(t) = Γ Proj
(
�̂�m,−(x̃

⊤¶B)⊤
)
,

̇̂�u(t) = Γ Proj
(
�̂�u,−(x̃

⊤¶Bu)
⊤
)
,

bounded. As a result, this guarantees assured transient per-
formance for the L1 adaptive controller. Further details can 
be found in [30, 44].

Let

The control law is given by

where �̂�(s) = �̂�1(s) + �̂�2(s)�̂�u(s) , �̂�1(s) are the Laplace trans-
form of �̂�1(t) = �̂�(t)u(t) + �̂�m(t) , �̂�2(s) = H−1

m
(s)H0(s)�̂�u(s) , 

Kg = −(CA−1
m
B)−1 is a pre-filter of the MIMO control 

law, F(s) is an m × m strictly proper transfer matrix and 
K ∈ ℝm×m.

For analysis purposes, without loss of generality, F(s) is 
chosen as F(s) = D(s)

s
 , where D(s) is a proper stable transfer 

function. Hence, the control law can be written:

which leads, for all � ∈ Ω , to a strictly proper stable

with DC gain G(0) = �m.
The L1 adaptive controller is subjected to the L1 norm 

condition [30]

where L = max�∈Θ ‖�‖L1
= maxi

�∑
j

����ij
���
�

 and Ḡ(s) =(
s� − A

m

)−1
B(� −G(s)).

(25)
Hm(s) = C

(
s� − Am

)−1
B,

H0(s) = C
(
s� − Am

)−1
.

(26)u(s) = KF(s)
(
Kg r(s) − �̂�(s)

)
,

(27)u(s) = K
D(s)

s

(
Kg �(s) − �̂(s)

)
,

(28)G(s) ≜ �KD(s)
(
s�m + �KD(s)

)−1
,

(29)Ḡ(s)‖L1
L < 1

Fig. 3  Block diagram of the L
1
 

adaptive controller
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In addition, the selection of D(s) must guarantee that 
G(s)H−1

m
(s) is a properly stable transfer matrix.

Remark 5 Controller analysis is straightforward from [30] 
and [44], and is omitted here.

5  Simulation for airship fault‑tolerant 
control

The objective of the simulations is to evaluate the perfor-
mance of the L1 adaptive controller for airship attitude con-
trol, compared to the Adaptive Sliding Mode Backstepping 
(ASMB) controller proposed in [39] and the Linear Quad-
ratic Integral (LQI) controller.

In this context, robustness refers to the controller ability 
to keep attitude errors within an acceptable range despite 
varying disturbances and uncertainties.

The evaluation is based on the observation of the sys-
tem output and analyzing how the L1 adaptive controller 
performs, in comparison with the LQI and ASMB control-
lers. The main goal is to determine how the system response 
with the L1 adaptive controller is smoother and more accu-
rate compared to the responses of the LQI and ASMB 
controllers.

5.1  Airship LQI control

The design of the LQI controller is first outlined, with a 
focus on improving robustness against disturbances in the 
longitudinal controller. To achieve this, we incorporate 
the integral of the regulated output error, represented by 
elon(t) = ∫ t

0
rlon(t) − ylon(t) , into the linear system in (11). rlon 

is the desired output for the longitudinal controller.
The augmented system can be written as follows

The control law for the longitudinal system is defined as 
follows

where the proportional feedback gain vector k⊤
p1

 is designed 
to achieve the same system dynamics matrix as the L1 adap-
tive controller Am1

= A1 − B1 k
⊤
p1

 and ki1 is the integral gain 
vector of the LQI controller.

(30)

[
ẋlon
ėlon

]

���
ẋ1

=

[
A1 0

−Clon 0

]

���������
Ā1

[
xlon
elon

]

���
x1

+

[
B1

03×3

]

���
B̄1

ulon +

[
04×3
�3

]

���
BI1

rlon.

(31)ulon = −k⊤
p1
x̄1 − k⊤

i1
elon,

The design of the lateral controller is similar to the lon-
gitudinal controller. We consider for the system in (19) the 
integral of the regulated output error, denoted by

where rlat is the commanded output for the lateral controller.
The augmented system of (20) can be written as follows

The control law for the lateral system is defined as follows

where the proportional feedback gain vector k⊤
p2

 is designed 
to achieve the same system dynamics matrix as the L1 adap-
tive controller Am2

= A2 − B2 k
⊤
p2

 and ki2 is the integral gain 
vector of the LQI controller.

5.2  Simulation results

The considered model is a 250 m length, 75 m diameter air-
ship [42]. For the design of the L1 adaptive controller, the 
transfer functions D1,2(s) =

1

s(s+9.8)
 and k = 36 . The design 

of the L1 adaptive controller aims for robustness against 
model uncertainties within specified ranges. These ranges 
i n c l u d e  �1,2 = [0.25, 1.75]  ,  Δ1,2 = 10  a n d 
Θ1,2 =

{
�i ∈ [−2 2], i = 1, 9

}
 . The ASMB controller gains 

are chosen as in [39] with similar dynamics to the LQI and 
the L1 adaptive controllers.

To achieve this goal, the controllers were evaluated under 
three different scenarios to determine their performance: 
without failures, with elevator failure, and with rudder fail-
ure. The root mean square of the tracking error (RMSE) was 
used as a performance evaluation metric for the controllers.

In all cases, a time-varying wind disturbance with com-
ponents given by [0, 5 + 5 sin(2𝜋t), 5 + 5 sin(2𝜋t)]⊤m∕s , was 
introduced at a simulation time of t = 60 s.

5.2.1  Nominal case

In the nominal case, no failures were introduced in the sys-
tem, except the time-varying wind disturbance at simulation 
time t = 60 s.

Simulation results indicate that all controllers perform 
well in the absence of wind disturbances, as demonstrated 

elat(t) = ∫
t

0

rlat(t) − ylat(t),

(32)

[
ẋlat
ėlat

]

���
ẋ1

=

[
A2 0

−Clat 0

]

���������
Ā1

[
xlat
elat

]

���
x1

+

[
B2

03×3

]

���
B̄1

ulat +

[
04×3
�2

]

���
BI1

rlat.

(33)ulat = −k⊤
p2
x̄2 − k⊤

i2
elat,
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by the attitude angles of the airship relative to desired refer-
ences in Fig. 4. The performance of the three controllers 
is similar before the introduction of wind disturbances and 
the commands are within acceptable limits, as illustrated 
in Fig. 5.

When the wind disturbance was introduced, it became 
clear that for the lateral-directional system, the L1 adaptive 
controller performed better than both the ASMB and LQRI 
controllers. This difference is evident in Fig. 4, where it can 
be observed that the amplitude of attitude errors is larger 
with the ASMB and LQRI controllers, especially in the case 
of the roll angle. The roll angle, in particular, cannot be 
directly compensated for because the airship lacks ailerons. 
For the pitch angle, the ASMB controller performs better 
than the L1 adaptive controller, as shown in Table 1.
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Fig. 4  Attitude angles for nominal case with wind inputs ( L
1
 blue, LQI magenta, ASMB green)

Fig. 5  Rudder and elevator 
commands for nominal case 
with wind inputs ( L

1
 blue, LQI 

magenta, ASMB green)
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Table 1  RMSE analysis in the nominal case

 Angle Controller RMSE  RMSE RMSE
Total Before disturbance After disturbance

Pitch � L
1

1.25 0.99 1.46
ASMB 1.03 0.81 1.21
LQR 1.47 1.11 1.76

Roll � L
1

0.56 0.68 0.41
ASMB 1.70 1.23 2.07
LQR 0.60 0.49 0.69

Yaw � L
1

20.25 24.18 15.34
ASMB 19.48 23.69 14.05
LQR 21.68 24.91 17.87



405L
1
 adaptive fault-tolerant control of stratospheric airships  

However, as can be observed in Fig. 5, this performance 
of the ASMB controller is attributed to impulses in the ele-
vator command when using the ASMB controller. In practi-
cal applications, this may be a serious issue, as it can burden 
the actuators and cause them to operate beyond their nomi-
nal range. Similar impulses with relatively low amplitude 
can also be observed in the rudder command.

It should be noted that attempts to mitigate these impulses 
and achieve a smoother command response were unsuccess-
ful without compromising the ASMB controller response 
time and overall performance.

5.2.2  Pitch control under failure of the elevator command

Elevator command failure in an airship significantly impacts 
pitch control, limiting altitude stability and maneuverability, 
potentially compromising safety and operational efficiency.

To evaluate the controller performance under elevator 
command faults, the following scenario was considered:

• Complete loss of effectiveness (100%) of the left elevator 
command �eL at simulation time t = 20 s;

• Constant bias in the right elevator command �eR at simu-
lation time t = 30 s;

• Time-varying wind disturbance with com-
ponents  x  ,  y  and  z-d i rec t ions  g iven  by 

[5, 5 + 5 sin(2𝜋t, 5 + 5 sin(2𝜋t)]⊤m∕s at simulation time 
t = 60 s.

The goal was to replicate failure scenarios that the system 
could encounter during real-world operation.

The pitch angle of the airship relative to the desired refer-
ence is illustrated in Fig. 6. The RMSE analysis of the pitch 
angle response to the desired reference in Table 2 shows that 
the L1 adaptive controller outperforms the LQI controller in 
the case of elevator failure under wind conditions. However, 
in this scenario, the ASMB controller demonstrates better 
performance than the L1 adaptive controller.

Nevertheless, similar to the nominal case, as it is shown 
in Fig. 7, it becomes evident that the elevator command 
with the L1 adaptive controller is smoother compared to the 
ASMB controller, and it does not manifest the elevator com-
mand spikes observed in the case of the ASMB controller

These simulations conclude that the L1 adaptive controller 
demonstrates relatively better performance over the ASMB 
and LQI controllers in the presence of elevator failures.

5.2.3  Lateral/directional control under failure of the rudder 
command

The goal was to evaluate the system performance in case of 
failure of the rudder command.

The rudder plays a crucial role in controlling the yaw 
motion of the airship, which is essential for maintaining sta-
bility and directional control. Without the ability to control 
yaw through the rudder, the airship’s ability to change its 
heading or direction could be severely compromised. This 
could lead to difficulties in navigating, turning, and main-
taining a desired course, potentially affecting the overall 
control and safety of the airship during flight.
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Fig. 6  Pitch angle for elevator failure case with wind inputs ( L
1
 blue, 

LQI magenta, ASMB green)

Fig. 7  Elevator commands for 
failure case with wind inputs 
( L

1
 blue, LQI magenta, ASMB 

green)
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Table 2  Pitch angle RMSE analysis in the nominal case

 Angle Controller RMSE  RMSE RMSE
Total Before disturbance After disturbance

Pitch � L
1

1.28 0.96 1.54
ASMB 1.06 0.86 1.25
LQR 2.79 1.21 3.76
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To replicate this situation, the following scenario was 
considered:

• Lock in place at position 10 deg of the upper rudder com-
mand �rU at simulation time t = 20 s;

• Time-varying wind disturbance with com-
ponents  x  ,  y  and  z-d i rec t ions  g iven  by 
[5, 5 + 5 sin(2𝜋t, 5 + 5 sin(2𝜋t)]⊤m∕s at simulation time 
t = 60 s.

The lateral/directional angles of the airship relative to 
the desired references are illustrated in Fig. 8. The L1 adap-
tive controller performs better than the ASMB and the LQI 
controller in the case of rudder lock-in-place in wind con-
ditions. This is especially true for roll angle control. From 
Fig. 9, it appears that with the L1 adaptive controller, the 
right elevator command �eR permits to produce the necessary 

roll command to counteract the effect of the bias of the rud-
der, which reflects the good performance of the controller in 
controlling the roll angle � . This is confirmed by the RMSE 
analysis of the roll and yaw outputs to the references, as 
shown in Table 3. As expected, the LQI controller has shown 
the worst performance.
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(b) Attitude errors.

Fig. 8  Attitude angles for rudder failure case with wind inputs ( L
1
 blue, LQI magenta, ASMB green)

Fig. 9  Rudder and elevator 
commands for rudder failure 
case with wind inputs ( L

1
 blue, 

LQI magenta, ASMB green)
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Table 3  RMSE analysis in the nominal case

Angle Controller RMSE RMSE RMSE
Total Before disturbance After disturbance

Roll � L
1

1.16 0.63 1.54
ASMB 1.70 0.84 2.222
LQR 2.91 1.62 3.91

Yaw � L
1

23.44 32.74 16.45
ASMB 19.48 33.42 15.29
LQR 30.90 34.91 31.44
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6  Conclusion

This paper presents an approach for L1 adaptive fault-tol-
erant control of stratospheric airships. The adaptive con-
troller shows better performance in simulations compared 
to Linear Quadratic Integral (LQI) and Adaptive Sliding 
Mode Backstepping (ASMB) controllers. This is espe-
cially true for attitude control in the presence of failures 
and external disturbances.

Thus, the advantages of the L1 adaptive controller are 
evident. This approach can potentially be applied to other 
airship systems, for instance, airships controlled using 
moving mass technologies [45]. Another research direc-
tion is the integrated guidance and control of airships in 
stratospheric winds.

Practical validation is the ultimate goal to showcase the 
effectiveness of the proposed design. However, performing 
direct physical tests on a full-scale stratospheric airship is 
a complex, challenging, and expensive task due to factors 
such as the high altitudes at which these airships operate, 
the specialized equipment required, safety coordination, 
operating procedures limitations, and the associated costs.

Appendix: the projection operator

The projection-type adaptive law permits to maintain the 
unknown parameters within their predefined sets [46].

Due to their inherent time-variant and non-linear behavior, 
adaptive controllers cannot be certified via the metrics used for 
linear conventional controllers, such as gain and phase margin. 
Projection operator is a robustness augmentation technique 
that bounds the output of a non-linear adaptive controller while 
conforming to the Lyapunov stability rules. It can also be used 
to limit the control authority of the adaptive component so that 
the said control authority can be arbitrarily close to that of a 
linear controller [47].

The projection operator is defined for two vectors f , p ∈ ℝn 
by

where f ∶ ℝn
→ ℝ is a smooth, convex function given by:

where pmax is a norm bound imposed on the vector p , and 
𝜀p > 0 is a chosen tolerance bound.

proj(p, z) ∶=

⎧
⎪⎨⎪⎩

z if f (p) < 0,

z if f (p) ⩾ 0 and ∇f (p)Tz ⩽ 0,

z −
(∇f )Tz

‖∇f‖2 ∇ff if f (p) ⩾ 0 and ∇f (p)Tz > 0,

f (p) =

(
�p + 1

)
pTp − p2

max

�pp
2
max
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