
Vol.:(0123456789)1 3

CEAS Aeronautical Journal (2023) 14:591–606
https://doi.org/10.1007/s13272-023-00642-5

ORIGINAL PAPER

System integration based on packing, piping and harness routing
automation using graph‑based design languages

J. Dinkelacker1,2  · D. Kaiser1 · M. Panzeri3 · P. Parmentier3 · M. Neumaier2 · C. Tonhäuser2 · S. Rudolph2

Received: 7 March 2022 / Revised: 11 January 2023 / Accepted: 16 January 2023 / Published online: 9 March 2023
© The Author(s) 2023

Abstract
The implementation of a fully instrumented, automated and simulation-enabled engineering software platform capable of
automating the currently still manual model-based systems engineering (MBSE) design process for physical systems archi-
tecture generation and optimization in an aircraft wing is presented. The software platform uses graph-based design languages
to integrate and entirely automate the mainly manual packing, piping and harness routing design. This design automation
and optimization is achieved by a novel software stack of an optimization software coupled with a design compiler. It is
shown that through rule-based model generation by a design compiler in the form of a design graph as a central data model,
a cross-domain data consistency is achieved. This allows for automated execution and coupling of engineering tasks over
several different domains such as packing, piping and routing design to converge to an optimized wing physical architecture
design variant in agreement with given predetermined design constraints.

Keywords  Design automation · Model-based system engineering · Graph-based design languages · Packing, piping, routing

1  Introduction

The work in this paper describes the implementation of a
simulation-enabled engineering software platform which is
capable to automate the model-based systems engineering
(MBSE) design process for physical systems architecture
generation and optimization. The automation of the MBSE
process is demonstrated on the optimal packing, piping
and routing of an aircraft wing. The implementation is
based mainly on parts of the outcome of the CLEANSKY2
research project PHAROS (Physical Architecture Optimiza-
tion System) [1–3] of the project partners IFB, IILS, NOE-
SIS, and AIRBUS.

In order to fully automate the system integration effort
based on a sequence of packing, piping and harness routing
algorithms encoded in graph-based design languages, the
formerly manual process chain is automated step by step.
This is achieved within a novel integrated engineering soft-
ware stack based on an optimizer1 with a so-called design
compiler2. The design compiler translates the graph-based
design languages into models which are executable and sim-
ulated in internal or external third party solvers or programs
and the optimizer reads back in the results and modifies the
relevant model parameters accordingly to achieve optimal
system variants.

Graph-based design languages take their inspiration from
human language, in which a grammar, formed by vocabulary
and rules, can be used to formulate an expression. Similarly
in a design language, design vocabulary and rules form a
production system (compare grammar) formulate the expres-
sion of a valid design. In graph-based design languages,
this design is represented as a graph, in which each node

The content of this paper reflects only the opinions and views of the
authors and the JU is not responsible for any use that may be made
of the information this paper contains.

 *	 J. Dinkelacker
	 dinkelacker@iils.de

1	 IILS Ingenieurgesellschaft für intelligente Lösungen und
Systeme, Trochtelfingen, Germany

2	 University of Stuttgart, Institute of Aircraft Design (IFB),
Stuttgart, Germany

3	 Noesis Solutions, Leuven, Belgium

1  The optimizer used here is OPTIMUS®, a software product of the
PHAROS project partner NOESIS bv, Belgium. See the website
www.noesissolutions.com for information on OPTIMUS®.
2  The design compiler used in this work to compile graph-based
design languages is the Design Compiler 43®, a software product of
the PHAROS project partner IILS mbH, Germany. See the website
www.iils.de for information on the Design Compiler 43®.

http://crossmark.crossref.org/dialog/?doi=10.1007/s13272-023-00642-5&domain=pdf
http://orcid.org/0000-0002-2814-6357

592	 J. Dinkelacker et al.

1 3

represents a requirement, a product function, a solution prin-
ciple, a component or an assembly, or any other engineering
concept. This design graph encodes the complete knowledge
of a product design and its associated design requirements
and goals in a machine-readable and machine-executable
form. The executor is the design compiler, which translates
a design language into a design graph.

For the implementation, diagram types of the interna-
tionally standardized Unified Modeling Language (UML)
are used. The vocabulary is defined in UML class diagrams
and rules are defined as Model-to-Model (M2M) transfor-
mations, which only allow modification according to the
corresponding class diagrams. The rules are combined into
the production system as a UML activity diagram, which is
translated by the design compiler into the design graph in
form of an UML instance diagram. These representations
in the UML standard allow for great flexibility in the for-
mulation of any design problem as a design language and
also permit further developments through UML’s predefined
extension mechanism. After compilation the instance dia-
gram of the design graph can be translated into domain-spe-
cific languages (DSL) by dedicated plug-ins for further pro-
cessing. Results of the processing can be returned into the
design graph, or even be used to alter the program sequence
of the production system. More information on graph-based
design languages can be found in [4–6]. The design language
presented here includes the disciplinary models of packing,
piping and routing in order to draw conclusions for the opti-
mization of the design of the physical system architecture of
an aircraft flight control system. Because of the integration
of these three design domains into one design language, con-
sistency between the individual engineering models of each
domain is automatically guaranteed by their shared source,
the design graph.

2 � Related work

An overlook of related works on algorithmic approaches
to packing, piping, routing and optimization problems is
shortly given hereafter. Since the integration of these pro-
cesses in a single software platform is a novel development,
this review of related works is focused on the individual
application of the algorithmic approaches. Multidisciplinary
optimization of complex physical systems has been identi-
fied as a tool to help navigate the complexity of preliminary
aircraft design as soon as computer-aided design became
available for engineers [7].

Different approaches are discussed in [8, 9]. The opti-
mization approach of the presented problem is closest to
the Individual Discipline Feasible Design (IDF) [8], in
that each individual algorithm produces a feasible design
solution for the according discipline, while the global

optimizer has control over the parameters in each algo-
rithm, to reach a globally optimal design solution.

A comparable problem definition of a preliminary
design of an integrated Flight Control System is presented
in [10], but differs greatly in the degree of automation,
sub-system-linking and design intelligence. The fact that
the integrated automated packing, piping and routing all
belong to the class of NP-complete mathematical problems
demonstrates the theoretical difficulty for individual and
global design solutions.

Packing. Optimized packing of objects plays an impor-
tant role in many areas of engineering design. The prob-
lem is known in literature as 3-D bin packing problem
(BPP) [11]. The developed packing algorithm uses a Par-
ticle Swarm Optimization (PSO) for the exploration of the
design space. It has been shown to give good results in the
context of aircraft wing design [12] although not in the
same problem class. In other recent work in [13, 14] the
combined optimization of packing and routing of simpli-
fied bars for components and routing paths is discussed.
This approach enables the use of gradient-based methods
to generate feasible layouts, but is not necessarily appli-
cable to more complex geometries.

Piping. Some approaches for automated pipe design
have been proposed in the past. There are grid-based
approaches, like [15], but these have the drawback that
the bend position and the bend angles are limited by the
available grid points. Therefore, a dense grid is preferable,
which leads to high computational requirements.

More sophisticated approaches take different optimiza-
tion objectives, like the length and the bend angles, as well
as further constraints, such as the maximum bend angle
and a minimal straight length between two bends, into
account and are not limited to a grid. Such an approach,
without the interaction of the pipes between each other, is
shown in [16]. A combined packing and piping approach
was proposed by [17]. In this approach a 2-D problem
without obstacles is solved by a gradient-based algorithm
using sensitivities. A multi-objective ant colony optimiza-
tion is presented in [18].

Routing. The industry standard for wire harness devel-
opment is divided into the electrical and mechanical
design process, which have to be integrated manually into
one coherent wire design, using electrical workbenches for
CAD tools. Routing algorithms for path finding have been
predominantly formulated as 2-D problems, like Dijk-
stra- and A*-algorithms. An enhanced A*-algorithm with
attraction and repulsion is presented in [19]. Fundamental
work in [20, 21] was expanded in [22] to develop a virtual
environment for the 3-D wire harness design problem. An
automatic clamp placement and hybrid multi-objective
optimization in combination with harness routing is pre-
sented in [23].

593System integration based on packing, piping and harness routing automation using graph‑based…

1 3

3 � Program structure

The structure of the software platform is based on the mod-
els, algorithms and data flows in the establishment of a phys-
ical architecture of an aircraft wing, individually numbered
from (− 3) to (13) and defined in the context of the PHAROS
project [1] in Fig. 1.

The task of designing a physical system architecture for
a wing is a joint effort led by the OEM (Original Equipment
Manufacturer) and their suppliers. In the upfront part, the
OEM maps the requirements onto the definition of the func-
tional and logical system architecture in a manually-driven
MBSE process, as shown in the upper half of Fig. 1. The
expected future system behavior is validated preliminary

through 1-D simulations, in this special case in form of a
Modelica3 model (marked (− 1) in Fig. 1).

The 1-D simulation models and simulation results are
stored in a PDM / PLM (Product Data / Lifecycle Man-
agement) system (marked (0) in Fig. 1). From several other
departments of the OEM and (from a potential multitude
of) suppliers, all relevant 3-D CAD models (marked (− 2)
and (− 3) in Fig. 1) of all system components and the avail-
able installation space (i.e., the wing structure) are stored
in the PDM/PLM system. As output, the geometry of the
installation space (marked (4) in Fig. 1), the CAD-data of
the system components (marked (3) in Fig. 1), the network

Fig. 1   Models, data flows and algorithm sequence overview in the PHAROS project context [1]

3  Modelica® is a unified object-oriented language for systems mod-
eling developed by and registered trademark of the Modelica Asso-
ciation. See the website www.modelica.org.

594	 J. Dinkelacker et al.

1 3

connection lists (marked (2) in Fig. 1), and a bill of material
(BOM) (marked (1) in Fig. 1) are available as design data
for the subsequent tasks of packing, routing and piping by a
supplier (here implemented by algorithms).

These data from the several design domains (1-D sim-
ulation and 3-D geometry) are considered as input to the
described automation process. To simulate the integration
into the described OEM process, the data are created man-
ually and its components are marked across the domains
with a unique identifier, to ensure consistency between the
models.

The lower half of Fig. 1 shows the current State-of-the-
Art (SotA) engineering design process of packing, piping
and routing in form of a software tool and design process
landscape. The output data sets explained for the upper half
of Fig. 1 (BOM, network lists, CAD models of components
and installation space) serve as input (identically marked (1,
2, 3 and 4) in Fig. 1) for the execution of the three developed
algorithms of packing, piping and routing.

A set of given design constraints (marked (5) in Fig. 1)
are translated into mathematical rules or ontologies, which
are combined with a potential initial placement (marked (6))
as a starting point for a packing algorithm (marked (7)).
This is embedded in and steered by an optimization strat-
egy (marked (12)) which computes a feasible placement of
the systems components (marked (8)). Based on this feasi-
ble placement, a piping and routing algorithm (marked (9,
10)) compute a feasible piping and routing (marked (11)).
Finally, as a result, the optimized placement, piping and
routing models (as 3-D CAD), the electrical wire harness
(as XML) and the hydraulic pipe network (as XML) are
provided. These results include the requested performance
metrics and other related design documents (both marked
as (13) in Fig. 1).

In the following, the sequential interplay of the com-
pletely automated algorithmic model generation of linkage
extraction, design space geometry generation, packing, pip-
ing and routing is illustrated. This sequence of algorithms
is implemented in design languages, embedded in an opti-
mization loop, which is executed in the PHAROS software
stack consisting of OPTIMUS® and Design Compiler 43®.
The different parts of the software platform are described
in order:

–	 Sect. 3.1 Modelica linkage extraction explains and dem-
onstrates in short the extraction of the linkage informa-
tion of the Modelica system components contained in
a Modelica system simulation file into a design graph,
from which a so-called “from-to” connection list as input
for the routing and piping algorithms is derived.

–	 Sect. 3.2 Geometry Enrichment shows the import of the
geometry data as input for the packing, piping and har-
ness routing algorithms.

–	 Sect. 3.3 Packing, 3.4 Piping and 3.5 Harness Rout-
ing illustrate the results of the running process chain of
the packing, piping and routing algorithms and give a
brief summary of the fundamental functionalities of the
respective algorithms. The focus is on the automated
generation of the individual program results to prove the
automated execution.

–	 Sect. 3.6 gives an overview of the optimization strategy
and the performed optimizations of the software stack.

Each domain algorithm is encoded in a design language,
specifically tasked to solve its corresponding problem in
the design process. They posses their individual vocabu-
lary, rules and production system. All individual design
languages are aggregated into a single execution design lan-
guage, which itself is embedded in an super ordinate optimi-
zation loop controlled by OPTIMUS®. This means, that each
design language can first be developed and described inde-
pendently. Individual design languages may have depend-
encies on other design languages and external programs,
needed for the solution of their respective task. General re-
executable algorithms can be formulated in their own design
language, that can be called for a specific application of a
problem. Integratability of the different parts is ensured by
the design language approach.

The results of the software stack rely on academic data of
a flight control system architecture and the wing and compo-
nent geometries. This academic data consists of a manually
created CAD-model of the design space which exhibits the
most important topological and parametric characteristics
expected in an industrial CAD-model such as type of parts
and size as well as a corresponding system model in form of
a Modelica model. The use of academic data may obscure
some difficulties, which can only become apparent, if indus-
trial data from a manufacturer are used. However, the soft-
ware stack is transferable to such data, since the processes
and algorithms are applicable to arbitrary geometric input
and system data.

3.1 � Modelica linkage extraction

According to Fig. 1, information on system component con-
nections of the electrical wire harness and hydraulic piping
is implicitly contained in the Modelica system model. This
Modelica model would be used in an early design phase
for the preliminary dimensioning and 1-D simulation of a
system and is created manually as input for the optimization
process.

Such a Modelica model of a flight control system simu-
lation is shown in Fig. 2 as presented in the OpenModelica
editor OMEdit. The system model of a flight control system
includes a main actuator control unit (ACU) and several
peripheral actuators and control surfaces. Additionally to the

595System integration based on packing, piping and harness routing automation using graph‑based…

1 3

electric actuators, the flight control system possesses a redun-
dant hydraulic actuation system. The top row of Fig. 2 shows
the eight slats, the right column shows the six spoilers and the
bottom row shows the three flaps with their respective cor-
responding actuators. The model has two generators depicted
on the left and three hydraulic pumps, for each control surface
type, depicted next to them. Electric connections for signal
or power are colored dark blue and hydraulic connections are
colored light blue. A comprehensive list of the system compo-
nents can be read from the design graph in Fig. 6.

A key functionality of the Modelica modeling language is
the ability to rely on external libraries to build and simulate
complex user-specific models. At the core of the various free
and commercial libraries is the standard Modelica library,
which contains models from multiple domains, from simple
logical gates to mechanical and electrical components. Many
models are built by instantiating components and intercon-
necting them, to reproduce the desired system behavior. As
the Modelica language specification encompasses many
functionalities, the subsequent methods focus on the extrac-
tion of the information of components and connections.

The object-oriented nature of the Modelica language defi-
nition makes the translation to a representation in a design
graph straightforward. The extracted information of the sys-
tem model includes the names, types and library paths of
the model components, with their specified parameters, as
well as the connections between them. Further specifications
about the model components are defined in the respective
Modelica file. Figure 3 shows the Modelica system model
translated into a design graph in a graph-based design lan-
guage in the Design Compiler 43®.

Fig. 2   Modelica system model
of a flight control system simu-
lation in OpenModelica OMEdit

Fig. 3   Translated design graph of the Modelica system model shown
in Fig. 2 Fig. 4   Section of extracted connection list from Fig. 2

596	 J. Dinkelacker et al.

1 3

In Fig. 3, the Modelica components are represented as red
nodes and the connections are shown as green nodes in the
design graph. This design graph can be used to extract the
connection list, shown in part in Fig. 4, or to be expanded
on in a design language.

The linkage extraction from the Modelica model file is
implemented using a parser to translate the input Modelica sys-
tem model from its concrete syntax formulation into an abstract
syntax tree (AST). This generic form of the AST is then inter-
preted using dedicated rules in order to extract the required
information of the system model elements and their respective
interconnections into a design graph. This design graph can be
used to specify and expand on aspects of the system defined in
the Modelica model and serves as a starting point for the design
process for the system architecture optimization.

3.2 � Geometry enrichment

The extracted design graph of the Modelica system model is
appended by geometric data, which is also provided in the
defined input data. In the execution of the subsequent steps

of the design language, all flight control system components
(previously shown in red) are identified and the correspond-
ing geometrical graph instances are created and linked.

As an example for this specification, Fig. 5 shows the
graphical representation of the nodes in the design graph in
relation to a flap actuator specified from a Modelica element,
with all connection interfaces and a link to its geometric data
(existing component).

The assignment of the respective geometry data (as STEP
file) is done automatically via matching unique identifiers of
the component input data. The extended graph of the flight
control system with all specified components is shown in
Fig. 6.

From this geometric information, the design compiler can
generate the 3-D view shown in Fig. 7. Note that the com-
ponent geometries are only added but the positioning is not
yet done. In this state, the components to be positioned by
the packing algorithm are placed at the origin of the model.
The STEP files linked to the components serve as input for
the following packing operation, as well as the piping and
routing in the subsequent process steps. The geometries used
here are based on a academic model of an AIRBUS A380
wing with a wing span of about 80 m. Note that the geom-
etry data are not adapted to the optimization results in the
software stack. Since the creation of the data lies outside of

Fig. 5   Example of a flap actuator in the design graph

Fig. 6   Extended design graph including geometrical data

Fig. 7   Visualization of the non-packed geometries

597System integration based on packing, piping and harness routing automation using graph‑based…

1 3

the optimization problem in the described process, the con-
struction information is not accessible in the design graph,
therefore, the models are not modifiable.

3.3 � Packing

The developed packing algorithm is implemented as a design
language, that can apply various heuristic optimization strat-
egies to a problem of positioning multiple components in a
3-D assembly space while complying with boundary condi-
tions such as:

–	 collision detection and collision avoidance
–	 contact or geometric membership of components
–	 proximity or distance of packed components
–	 go and no-go areas for placement of components in

assembly space

The user can adapt the packing design language to the
specific application by setting parameters and constraints
in rules. Since the packing problem in this application is
limited to a small number of components with great dif-
ferences in their respective positional freedom, it is split
into a pre-processing step, that positions the actuators and a
package variation for the global optimization, that positions
the electronic components according to control parameters.
These parameters are accessible to the global optimizer to
control design variation. This split reduces computing time,
because it removes the necessity of positioning the actua-
tors for each run, which have significantly fewer degrees of
freedom, restricted by their respective control surface.

Pre-processing. The geometrical input for the pre-pro-
cessed package is:

–	 wing structure (packing space)
–	 wing skin (packing space)
–	 3 flaps (already positioned, treated as packing space)
–	 5 flap actuators (to be positioned)
–	 8 slats (already positioned, treated as packing space)
–	 8 slat actuators (to be positioned)
–	 6 spoilers (already positioned, treated as packing space)
–	 6 spoiler actuators (to be positioned)

For the initial optimization of the actuator positions mul-
tiple objective functions can be applied. In this particu-
lar case uniform spatial distribution was selected. Before
the packing process is started, all necessary requirements
and constraints need to be integrated by the user as math-
ematical constraints in the rules of the design language.
The geometrical information of the packing space and of
all components to be positioned are read from the design
graph by the design compiler. One boundary condition
is the contact between the actuators and the associated

flight control surfaces. This means that the packing needs
to maintain a predefined distance and orientation to each
slat actuator - slat pair, flap actuator - flap pair and spoiler
actuator - spoiler pair. In consequence, the actuators are
only movable along a predefined line, defined by the
respective control surface. This has the effect of reducing
the problem complexity, as all coordinates can be com-
puted directly from one optimization parameter (i.e., opti-
mize x and position y(x), z(x) and orientation �(x) , �(x)
and �(x) are implicitly given). This way the degrees of
freedom can be decreased by linear coupling of the com-
ponent coordinates for data reduction and to save computa-
tion time. Further constraints are the collision avoidance
of the components among each other and between each
component and the packing space.

Optimization problem. For the integrated wing optimiza-
tion in the PHAROS software stack, a geometrically less com-
plex scenario is chosen for the packing problem, in order to
show adaptability of successive piping and routing algorithm
results. Here the control surfaces and actuators are fixed at their
positions, while electronic boxes are introduced as components.
The boxes represent the start and destination of the routing
algorithm as well as obstacles for the routing and piping algo-
rithms. The geometrical input for the packing optimization is:

–	 wing structure (packing space)
–	 wing skin (packing space)
–	 all flaps, slats and spoilers (packing space)
–	 all previously placed actuators (packing space)
–	 ACU box (to position)
–	 2 generator boxes (to position)

The first degree of freedom of each box is the positioning
inside of the chambers (numbered from 0 to 88) in the wing
structure as shown in Fig. 8. The second degree of freedom
is the height along the wing’s z-axis as a discrete variable
that can assume the values shown in Fig. 9:

–	 “bottom” (bottom edge of wing structure + 0.25 ⋅ struc-
ture height)

–	 “middle” (bottom edge of wing structure + 0.5 ⋅ structure
height)

–	 “top” (bottom edge of wing structure + 0.75 ⋅ structure
height)

Boundary conditions taken into account are the collision
avoidance between the boxes and the packing space as well
as the collision avoidance among each other. If a collision is
detected, the solution is evaluated as not valid, and the over-
all software stack optimization loop is interrupted to save on
computationally intensive routing and piping procedures.
Subsequently, the next optimization loop with new variable
values is executed.

598	 J. Dinkelacker et al.

1 3

When a packing procedure is successfully performed, the
calculated positions are stored as instances (nodes) in the
design graph and the final packing geometry is exported as
STEP file, which serves as input for the following piping and
routing operations.

3.4 � Piping

The developed piping algorithm can be used to generate
pipes in arbitrarily complex installation spaces. A more
detailed description of the piping algorithm can be found
in [24]. Due to manufacturing constraints every pipe consists
of a sequence of bends and straights in alternating order.
Since the pipes are manufactured on bending machines, the
bends have a machine-dependent bending radius. The fol-
lowing manufacturing constraints are recognized:

–	 minimal straight length between bends
–	 minimal straight length at beginning and end
–	 minimal opening angle per bend
–	 maximal opening angle per bend
–	 number of bend jaws

The core of the piping algorithm is a stochastic simulated
annealing optimization algorithm. For the optimization, an
evaluation of the pipes is necessary. Therefore, an evaluation
function was developed. This evaluation function considers
the following criteria:

–	 number of bends
–	 sum of the opening angles of all bends
–	 distance to an estimated path through the geometry
–	 distance to a path in the center of the obstacle landscape
–	 straight length so no bending jaw is needed
–	 length of the pipe
–	 straight length at start/end, if a given length should be

reached if possible
–	 distance to other pipes
–	 boundary violation (if allowed)

These optimization criteria can be weighted by the user. As
a result, the user can influence the path of a pipe. In this part
of the algorithm, additional design rules can be implemented
to match given design rules of the industry.

The hydraulic pipe connections are defined in the Mod-
elica system model and are extracted from there into the
design graph. These pipe connections are routed in the wing.
Three different pipe types are used, one for the slats, one for
the spoilers and one for the flaps. The definition of these
types is shown in Table 1.

The pipes are attached to the wing geometry with fixings.
For each pipe type a fitting fixing type is used. The position-
ing of the fixings is rule-based, the decision for the number
of fixings, necessary for each pipe, is executed by the design
language. The order of the pipes is also determined by the
design language. In Fig. 10, an overview of the resulting
pipes is shown, while Fig. 11 shows a more detailed section,
where the pipes are bypassing a positioned obstacle.

The pipe generation is a task with more constraints than
the harness generation. There are more manufacturing con-
straints for pipes, e.g., sequences of discrete straights and
bends with fixed radii and given minimal distances, while
the harness must only ensure a given minimal bending
radius. Also the electrical quality, the resistance of cables
depends (for a given diameter) mainly on the length whereas
the hydrodynamic quality of a pipe, e.g., pressure drop or
flow uniformity, depends on the length and the number and

Fig. 8   Chamber numbering of the wing structure

Fig. 9   Electronic boxes. From left to right: 1st generator box, ACU
box, 2nd generator box

Table 1   Pipe types for slats,
spoilers and flaps

Pipe type Diam-
eter
(mm)

Bending
radius
(mm)

Slats 30 45
Spoilers 20 30
Flaps 40 60

599System integration based on packing, piping and harness routing automation using graph‑based…

1 3

kinds of bends. As a result of this, the pipe generation is
preferably done in advance of the harness generation.

3.5 � Harness routing

The routing algorithm has been developed to be applicable
to various routing problems in complex geometrical environ-
ments. It can take the following constraints into account:

–	 physical properties of cables such as minimum bending
radius,

–	 placement and mounting restrictions,
–	 compliance to electro-magnetic interference and
–	 clearance to hazardous areas

The routing design language itself uses several graph algo-
rithms for pathfinding and collision detection. It already has
a high level of maturity and has been applied and tested
in research and industrial projects for multiple engineering
domains [25–27]. The wire harness routing process can be
divided into the following steps [27]:

–	 data import of the master data of all electrical and non-
electrical components that interact with the wire harness,
geometrical components and electrical schematics,

–	 definition of a pathfinding sequence for the wire harness
topology

–	 application of a modified A ⋆-algorithm to find the opti-
mal individual paths in sequence

–	 accumulation of the resulting paths into one combined
network topology.

–	 routing of the individual wires from the harness topol-
ogy by minimizing cable length between the component
connectors

–	 a multi-body simulation to adapt the rectangular path
segments to rounded paths, that takes the stiffness and
radii of the segments into account

–	 storing of the results in the design graph and export of
3-D-CAD and XML files

In this application, the previously referenced geometries of
the wing, the packaged component geometry and the pipes
are all read from the design graph and used as obstacles
for the harness routing process. Analogous to the piping,
the connection list of the connected electrical components,
originally defined in the Modelica system file, is read from
the design graph. The aforementioned routing process is
performed to find the shortest path between the electrical
connectors through the assembly space and generate the cor-
responding wire harness.

The harness is divided into two independent units, a
power and a data unit. The power harness connecting all
power connections is depicted in dark purple and the data
harness connecting all data connections is depicted in yel-
low. Figure 12 shows an overview of the routed power and
data harness added to the view of Fig. 10. Figure 13 shows
the detailed view of the installation space section with the
power and data harness. Figures 14 and 15 show the whole
wing with a feasible design solution of the packaged geom-
etries, the routed pipes and the harness as an example.

Fig. 10   Overview of the routed pipes (red) in the installation space

Fig. 11   Detailed section view of the routed pipes (red) around the
obstacle ACU unit (teal)

Fig. 12   Overview of the routed data (yellow) and power (dark purple)
harnesses in the installation space

600	 J. Dinkelacker et al.

1 3

3.6 � Optimization

At this point the new software platform has created a feasi-
ble result for the wing section architecture packing, piping
and routing problem. As Fig. 1 shows in step (11) and (12),
the software platform embeds the algorithms in a global
optimization loop, shown in more detail in Fig. 16. This is
achieved by combining the software platforms of the Design
Compiler 43® and OPTIMUS® into the so-called PHAROS
software stack.

OPTIMUS® specializes in optimizing product design
solutions by managing a parametric design space explora-
tion. Through an intelligent design parameter modification
strategy to the input parameters of the individual algorithms,
the system can be optimized globally. OPTIMUS® manages
the execution of the presented design languages in Design
Compiler 43®.

3.6.1 � System optimization

The software stack is designed based on a multi-domain prob-
lem, where each domain has its own target values. For the rout-
ing problem, the optimal design solution has the shortest total
wire harness length and for the piping problem, the optimal
solution has the shortest total pipe length or the lowest number
of bends. For the applied packing problem, each valid packing
solution is rated equally. Because the solution of the packing
also defines starting and end points for both wire harness and
piping, it represents the biggest influencing factor for the over-
all system. To allow the software stack to cover a large part of
the design space and give a broad understanding of the design
problem and system sensitivities, the global optimization strat-
egy of the software stack, is chosen to be a design variation
and design space exploration. The optimization parameters
have been reduced to packing control parameters detailed in

Fig. 13   Detailed section view of the routed data (yellow) and power
(dark purple) harness around the obstacles ACU unit (teal) and piping
(red)

Fig. 14   Top view of the wing with packed geometries (actuators in
green, electronic boxes in teal), pipes (red) and data (yellow) and
power (dark purple) harness

Fig. 15   Front view of the wing with packed geometries (actuators
in green, electronic boxes in teal), pipes (red) and data (yellow) and
power (dark purple) harness

Fig. 16   Visualization of the integrated software stack of Design Com-
piler 43® and OPTIMUS®

601System integration based on packing, piping and harness routing automation using graph‑based…

1 3

Sect. 3.3 optimization problem. Still, each run contains the
individual sub-system optimizations of the packing, piping
and routing algorithms. Because of the natural integration
capability of design languages, changes in the input of one
algorithm encoded in one design language may be smoothly
propagated through the complete algorithm chain encoded into
other design languages, and finally results in a design solution
with a consistent model in all different domains.

In a more target-oriented design approach for industrial
design solutions, the optimization strategy can be easily
adapted to optimize towards specific target functions. OPTI-
MUS® offers many different optimization strategies and tools
for a more targeted optimization strategy [28]. For reference,
another example of the optimization capabilities of OPTI-
MUS® applied to a multi-disciplinary analysis and optimiza-
tion (MDAO) problem can be found in [29].

3.6.2 � Harness optimization

Because of the considerably shorter run time of the routing
design language than of the piping design language, a separate
optimization of the harness without the piping is performed
in another configuration of the software stack. For the harness
optimization, the two power harnesses and the data harness
can be regarded independently. Since the power harness is
divided into two separate parts for the leading and the trailing
edge of the wing, they are optimized independently as well.

The data harness connects components of the leading
and the trailing edge of the wing. As an additional optimi-
zation parameter different variations for wing passages are
introduced. The seven different passage variants are shown
in Fig. 17. The colored lines show the permitted passages
(meaning routing space) for the routing algorithm for each
variant. They along with the variable ACU positions, defined
in Sect. 3.3, lead to a total of 623 possible combinations.

To reduce computing time, the optimizations are per-
formed without respecting the obstacle geometries.

However, the passage configuration is still adhered to by
activating different routing paths.

4 � Results

The results for two separate software stack configurations
are presented. First, the pre-optimizations of the routing
without the piping, described in Sect. 3.6.2, are performed.

4.1 � Harness optimization results

Power harness. In Fig. 18, the length of the leading edge
power harness based on different positions for the corre-
sponding generator is shown. This separate harness algo-
rithm is performed without obstacles, shown in purple, and
with all obstacles of the wing geometry, shown in teal. The
results indicate the shortest and therefore, optimal harness
length is achieved at the positions in the middle of the
wing (positions 15–25, see Fig. 8).

The results for the trailing edge of the wing in Fig. 19
show a similar optimal position for the trailing edge gen-
erator at middle positions (positions 58–68), with a clearer
optimum in the middle positions.

Both optimizations show that the results with and without
respecting the obstacle geometries do not differ substantially.
This is because the two power harnesses have sufficient
space in their surrounding geometry not to be diverted from
the shortest path by obstacles. This motivated the decision,
to optimize the majority of the data harness variants without
obstacles.

Fig. 17   Harness passage configurations of the wing compare view to
Fig. 14

60

80

100

120

140

160

0510152025303540

w
ire

 h
ar

ne
ss

 le
ng

th
 [m

]

generator position

without obstacles
with obstacles

Fig. 18   Power harness leading edge

602	 J. Dinkelacker et al.

1 3

Data harness. To reduce computing time, the optimiza-
tions are performed without respecting the obstacle geom-
etries. However, the passage configuration, shown in Fig. 17,
is still adhered to by activating different routing paths.

The results for the placement of the ACU in the leading
edge are shown in Fig. 20 and the results for a placement
in the trailing edge are shown in Fig. 21. In both cases, the
colors of the data points correspond to the applied passage
configuration colors in Fig. 17.

The data indicate a high sensitivity of the wire harness
length to the ACU position. However, the degree of the
sensitivity, represented by the gradient of the connecting
curve of the data points, differs for the passage configura-
tion variants.

The data points of the diagrams 20 and 21 are combined
in the box plots in Fig. 22 for legibility and an overview of
the sensitivities of each passage configuration. The colors
of the box plot correspond to the applied passage configura-
tion colors in Fig. 17. Each box plot represents all optimiza-
tion results of the respectively colored passage configura-
tion. The box height comprises the values of the middle 50
percent, divided into the upper and lower quartile, with the
median line in between. The whiskers comprise the whole
range of values, excluding the outliers, which are depicted
as points.

The best median values are achieved with passage con-
figurations 5, 6 and 7, which have at least one additional
passage in combination with the passage in the middle of the
wing. Only a singular passage at the fuselage or the wing tip
(configuration 2 and 3) lead to the longest harness lengths.

This is likely caused by the actuator distribution closer to
the fuselage. The divergence of the values decreases with
increasing number of passages.

Possible weight reductions for the harness. From the
three individual harness optimizations it is evident that
choosing an optimal configuration can lead to a significant
reduction in wire length, and therefore harness weight. For
the power harness at the leading edge, the length reduction

60

80

100

120

140

160

455055606570758085

w
ire

 h
ar

ne
ss

 le
ng

th
 [m

]

generator position

without obstacles
with obstacles

Fig. 19   Power harness trailing edge

800

1000

1200

1400

1600

1800

2000

2200

2400

0510152025303540

w
ire

 h
ar

ne
ss

 le
ng

th
 [m

]

ACU position

Fig. 20   Data harness leading edge

800

1000

1200

1400

1600

1800

2000

2200

2400

455055606570758085

w
ire

 h
ar

ne
ss

 le
ng

th
 [m

]

ACU position

Fig. 21   Data harness trailing edge

603System integration based on packing, piping and harness routing automation using graph‑based…

1 3

from the worst to the best generator position is around 40 %
while the harness of the trailing edge offers the possibility
for a 60 % reduction.

For the data harness, the possible savings including all
passage configurations are around 65 % while the savings for
a specific passage configuration vary between 40 and 60 %.

4.2 � Harness and pipe optimization results

The overall optimization of piping and routing was done
with all passages open (configuration 7). The run time of
the average optimization run inside the PHAROS software
stack is about 80 min on a desktop computer with an AMD
Ryzen 7 3700x processor and 64 GB RAM. A total of 135
successful runs were done.

The results of all successful runs are shown in Figs. 23
and 25 at the leading edge as well as Figs. 24 and 26 at the
trailing edge. The data are presented in a diagram of the
varied ACU position over the wire harness length, while the
color represents the total pipe length and the circle diameter
represents the number of bends of the pipes.

The diagrams show that a trade off between the harness
length, the total pipe length and the number of bends can
be done. The farther the ACU box is moved to the wing tip,
the shorter the pipes get and the fewer number of bends are
necessary. On the other hand, if the box is placed near the
wingtip the wire length increases.

In Figs. 25 and 26, the influence of the two generator
box positions is shown. As there is no pattern visible in the
diagrams, it can be concluded that the generator positions
are no major design drivers. This is caused by the fact that
when assessing the total harness length, the power harness
has a smaller effect, as it is about an order of magnitude
shorter than the data harness. A separate optimization of

the power harness could show optimal generator positions,
but would have little impact on total harness weight in this
model application.

For Table 2, the results with the shortest total pipe length,
the smallest number of bends and the shortest wire length are
selected. For all three results, the ACU box is placed on the
trailing edge in a range between the middle of the wing and
the wing tip.

800

1000

1200

1400

1600

1800

2000

2200

2400
w

ire
 h

ar
ne

ss
 le

ng
th

 [m
]

Fig. 22   Data harness box plot for passage configurations
7, 5, 4, 6, 3, 1, 2 from left to right

1200

1400

1600

1800

2000

0510152025303540

w
ire

 h
ar

ne
ss

 le
ng

th
 [m

]

ACU position

343.2

343.4

343.6

343.8

344

344.2

344.4

344.6

to
ta

l p
ip

e
le

ng
th

 [m
]

Fig. 23   Harness and piping for varied ACU position
(leading edge)

1200

1400

1600

1800

2000

455055606570758085

w
ire

 h
ar

ne
ss

 le
ng

th
 [m

]

ACU position

343.2

343.4

343.6

343.8

344

344.2

344.4

344.6

to
ta

l p
ip

e
le

ng
th

 [m
]

Fig. 24   Harness and piping for varied ACU position
(trailing edge)

604	 J. Dinkelacker et al.

1 3

5 � Discussion

The presented software stack formalizes and implements the
linking of different engineering domains of an aircraft flight
control system into one model. This ensures data consist-
ency between the different domain models and allows for
computational exploration and analysis of the integrated
design space.

The initial formalization of specific design vocabulary
and rules has to be done manually by domain experts and
can be resource intensive, as it drives the quality of the
model, and therefore the validity of the results. However,
once general rules are formulated, they can be reused and
built upon in future work. General tasks like the packing,
piping and routing algorithms, are, therefore, encapsulated
into independent plug-ins to be applied to various problems.
Specific design languages are easily adapted to different
design tasks, as long as they do not require a fundamental
change of the problem type. This initial front loading of
creating a design language that models the relevant design
problem sufficiently well, can pay off quickly by the enor-
mous potential of the following automated design, simula-
tion and optimization.

The results of the software stack show great potential for
optimization of a design, with possible wire harness weight
reduction of up to 60 percent. In the posed problem, the
total piping length cannot be reduced significantly, but the
number of bends by up to 34 percent. Concrete optimization
results highly depend on the specific problem.

The application of the presented model and optimizations
are based on a simplified academic data set and problem
definition. This may obfuscate difficulties, arising only in the
application of realistic, more complex use cases, unknown to
the authors. Such a use case would most likely include some
of the following characteristics:

–	 Larger system model with more and more different com-
ponents.

–	 More complex CAD geometry model.
–	 More constraints on the system, i.e. smaller installation

space, consideration of the accessibility and maintain-
ability.

–	 Consideration of component mounting and structural
analysis as an additional domain.

In addition, the assumed problem definition, leaves room
for improvement for the optimization of a design solution,
since neither an exact target function is defined, nor a unique
continuous space of input parameters is available. The defi-
nition of a target function that weighs the criteria accord-
ing to a design target, would allow OPTIMUS® to find an

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

0510152025303540

w
ire

 h
ar

ne
ss

 le
ng

th
 [m

]

generator 2 position

343.2

343.4

343.6

343.8

344

344.2

344.4

344.6

to
ta

l p
ip

e
le

ng
th

 [m
]

Fig. 25   Harness and piping for varied generator position (leading
edge)

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

455055606570758085

w
ire

 h
ar

ne
ss

 le
ng

th
 [m

]

generator 1 position

343.2

343.4

343.6

343.8

344

344.2

344.4

344.6

to
ta

l p
ip

e
le

ng
th

 [m
]

Fig. 26   Harness and piping for varied generator position (trailing
edge)

Table 2   Selected results of the overall optimization

ACU position Total pipe length
(m)

Number of
bends

Wire har-
ness length
(m)

74 343.3 158 1350.7
72 343.5 157 1214.6
68 343.6 176 1103.3

605System integration based on packing, piping and harness routing automation using graph‑based…

1 3

optimized solution, but is highly dependent on the specific
design problem.

The application of heuristic algorithms in the multiple
domains of packing, piping and harness routing means that
the pure formalization of the problem does not provide a
mathematically unambiguously defined solution for an opti-
mal result. However, the integrated computational approach
allows for a much faster computer-aided approximation of a
satisfactory result and a much wider overview of the system
design sensitivities, by computing valid design solutions as
expressions of the design language. The formalization of
the problem into a model- and rule-based design language
simplify the extension of the design problem by any of the
stated characteristics of a more practical use case. Adap-
tion to larger and more complex input data is even possible
without changes to the software stack, by simply changing
the imported files of the 1-D system models and the cor-
responding 3-D CAD models and adjusting the design lan-
guage parameters to them.

The achieved run time performance of on average 1 h
20 min on an AMD Ryzen 7 3700x processor and 64 GB
RAM for one complete run, suggest that there is still a large
margin to computational limits, when scaling up the process
to industrial-sized problems.

6 � Summary and outlook

Summary The developed software platform for an auto-
mated model-based system engineering design process was
demonstrated on the optimal, integrated packing, piping
and routing of a flight control system inside of an aircraft
wing. Figure 1 shows the internal interactions and execution
sequence among the algorithms which has been reproduced
from the grant application [1]. The geometry results of a
run of the software platform are shown in Figs. 14 and 15.

Overall the project results of the packing, piping and rout-
ing algorithms in its implementation inside the global opti-
mization show great potential for generating and analyzing
a far greater number of possible design variants compared
to the time and cost of the manual design process. Through
the connected algorithmic approach a conformity with the
design specifications as well as a consistency between the
different model domains is ensured within the model.

The upfront effort of formalizing the design specifica-
tions and steps into a design language paid off, by speeding
up the design process by several orders of magnitude to a
run time performance of hours compared to weeks for the
manual process.

Through the utilization of such automation solutions, like
the presented software stack, the design process is lifted to
a higher level. This means that the costly manual engineer-
ing work can be focused on top level design choices, while

laborious routine tasks are performed automatically. This
enables the engineers to have significant simulation-based
knowledge about the product in early design phases, which
can lead to improvements to the design. This was demon-
strated here with a optimal physical wing architecture for
significant piping and harness weight reductions.

Outlook Since industrial CAD models typically come
along with publication restrictions in the form of a non-dis-
closure agreement (NDA), the PHAROS software stack for
the reason of confidentiality uses self-made academic data of
an aircraft wing section. Naturally, the degree of complexity
is much less than for a real industrial model, for both CAD
geometry and Modelica system data. However, the function-
ality and effectiveness of the algorithms can already be very
well tested. Switching from the academic to the industrial
CAD-model as the design space raises the question of the
scalability of the algorithms to industrial problem size.

The project partner AIRBUS also provided a more com-
plex model of an aircraft main landing gear bay for this rea-
son. The piping algorithm is applied to the piping of the
enclosed hydraulics and other piping problems. Although
this problem is currently confined to a part aspect of the
presented software platform, these data are used to mature
the algorithm in order to deal with the arising problem of
scaling in both size and detail.

It represents currently the next step towards the demon-
stration of the industrial applicability of the shown informa-
tion processing of graph-based design languages for auto-
mated system installation. The publication of this industrial
project result appeared in [24].

Acknowledgements  This project has received funding from the Clean
Sky 2 Joint Undertaking (JU) under grant agreement No 865044. The
JU receives support from the European Union’s Horizon 2020 research
and innovation program and the Clean Sky 2 JU members other than
the Union.

The PHAROS consortium members also want to express their grati-
tude towards the topic manager Ana Garcia Garriga from UTRC, Ire-
land, and the JU CS2 project administration officer Jaime Perez-de-
Diego, Brussels, for their smooth management and continuous support
throughout our project. The authors thank our ERASMUS exchange
students Fergus Hall, Scott Bell, Gregor Cunningham and Ross O’Hare
from Strathclyde University, UK, for their joint effort and contributions
to all the parts and the assembly of the academic CAD-model in the
PHAROS project.

Funding  Open Access funding enabled and organized by Projekt
DEAL.

606	 J. Dinkelacker et al.

1 3

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Rudolph, S.: System, physical architecture optimization. (PHA-
ROS). Submitted,: H2020 CS2 Grant Proposal. I (Confidential,
Unpublished), Part B (2019)

	 2.	 CleanSky2 Website. Physical Architecture Optimi-zation System
(PHAROS). Project Description, https://​cordis.​europa.​eu/​proje​ct/​
id/​865044, Last Access February 27, (2022)

	 3.	 CleanAviation Media. Physical Architecture Optimization System
(PHAROS). PHAROS Project Article, https://​www.​clean-​aviat​
ion.​eu/​media/​news/​simpl​ifying-​the-​3d-​packa​ging-​3d-​piping-​
and-​3d-​routi​ng-​seque​nce-​for-​physi​cal-​system-​archi​tectu​re, Last
Access February 27, (2022)

	 4.	 Groß, J., Rudolph, S.: Modeling graph-based satellite design lan-
guages. Aerosp. Sci. Technol. 49, 11 (2015). https://​doi.​org/​10.​
1016/j.​ast.​2015.​11.​026

	 5.	 Walter, B., Kaiser, D., Rudolph, S.: From manual to machine-
executable model-based systems engineering via graph-based
design languages. In MODELSWARD, pages 201–208, (2019)

	 6.	 Riestenpatt, M., Richter, G., Rudolph, S.: A scientific discourse
on creativity and innovation in the formal context of graph-based
design languages. In Proceedings of the 13th Anniversary Heron
Island Conference Workshop on Computational and Cognitive
Models of Creative Design (HI ’19), Heron Island, QLD, Aus-
tralia, pages 15–18, (2019)

	 7.	 Kroo, I., Altus, S., Braun, R., Gage, P., Sobieski, I.: Multidiscipli-
nary optimization methods for aircraft preliminary design. In 5th
symposium on multidisciplinary analysis and optimization, page
4325, (1994)

	 8.	 Perez, R., Liu, H., Behdinan, K.: Evaluation of multidisciplinary
optimization approaches for aircraft conceptual design. In 10th
AIAA/ISSMO multidisciplinary analysis and optimization confer-
ence, page 4537, (2004)

	 9.	 Raymer, D.: Enhancing aircraft conceptual design using multi-
disciplinary optimization. PhD thesis, Institutionen för flygteknik,
(2002)

	10.	 Tfaily, A., Liscouet-Hanke, S., Esdras, G.: Parametric 3d modeling
for integration of aircraft systems in conceptual design. In Canadian
Aeronautics and Space Institute Conference, pages 1–10, (2015)

	11.	 Coffman, E.G., Csirik, János, J., David, S., Woeginger, G.J.: An
introduction to bin packing. Bibliographie. Siehe www. inf. u-sze-
ged. hu/‘ csirik, (2004)

	12.	 Venter, G., Sobieszczanski-Sobieski, J.: Multidisciplinary optimi-
zation of a transport aircraft wing using particle swarm optimiza-
tion. Struct. Multidiscip. Optim. 26(1), 121–131 (2004)

	13.	 Peddada, S.R.T., James, K.A., Allison, J.T.: A novel two-stage
design framework for two-dimensional spatial packing of inter-
connected components. J Mech Des 143, 3 (2021)

	14.	 Jessee, A., Peddada, S.R.T., Lohan, D.J., Allison, J.T., James,
K.A.: Simultaneous packing and routing optimization using geo-
metric projection. J. Mech. Des. 142(11), 111702 (2020)

	15.	 Wang, H., Zhao, C., Yan, W., Feng, X.: Three-dimensional multi-
pipe route optimization based on genetic algorithms. In Interna-
tional Conference on Programming Languages for Manufactur-
ing, pages 177–183. Springer, (2006)

	16.	 Liu, Q., Tang, Z., Liu, H., Yu, J., Ma, H., Yang, Y.: Integrated
optimization of pipe routing and clamp layout for aeroengine
using improved moalo. Int. J. Aerosp. Eng. 2, 2 (2021)

	17.	 Alex Jessee, P., Satya, R.T., Lohan, D.J., Allison, J.T., James,
K.A.: Simultaneous packing and routing optimization using geo-
metric projection. J. Mech. Des. 142(11), 111702 (2020)

	18.	 Thantulage, G.I.F.: Ant colony optimization based simulation of
3d automatic hose/pipe routing. Phd thesis, School of Engineering
and Design, Brunel University, UK, March (2009)

	19.	 Van der Velden, C., Bil, C.Y., Xinghuo, S.A.: An intelligent sys-
tem for routing automation. In Innovative Production Machines
and Systems, Virtual Conference, pages 2–13, (2008)

	20.	 Conru, A.B.: A genetic approach to the cable harness routing
problem. In Proceedings of the First IEEE Conference on Evolu-
tionary Computation. IEEE World Congress on Computational
Intelligence, pages 200–205 vol.1, Jun (1994)

	21.	 Park, H., Lee, S.H., Cutkosky, M.R.: Computational support for
concurrent engineering of cable harnesses. Technical report,
Center for Design Research CDR Technical Report No. 19920219,
San Francisco, CA, February . Submitted in Computers in Engi-
neering Conference (1992)

	22.	 Ng, F.M., Ritchie, J.M., Simmons, J.E.L., Dewar, R.G.: Design-
ing cable harness assemblies in virtual environments. J. Mater.
Process. Technol. 107(1), 37–43 (2000)

	23.	 Zhu, Z.: Automatic 3D Routing for the Physical Design of Electri-
cal Wiring Interconnection Systems for Aircraft. doctoral thesis,
TU Delft, (2016)

	24.	 Neumaier, M., Kranemann, S., Kazmeier, B., Rudolph, S.: Fully
automated piping in an Airbus A320 landing gear bay using
graph-based design languages. In IOP Conference Series: Mate-
rials Science and Engineering, Vol. 1226, International Confer-
ence on Innovation in Aviation & Space to the Satisfaction of the
European Citizens (11th EASN 2021) 01/09/2021 - 03/09/2021
Online, (2022)

	25.	 Weil, R.: Automatisierte Verkabelung des Kleinsatelliten Flying
Laptop. Diplomarbeit, Institut für Raumfahrtsysteme, Universität
Stuttgart, Juni (2012)

	26.	 Rudolph, S., Hess, S., Beichter, J., Motzer, M., Eheim, M.: Archi-
tectural analysis of complex systems with graph-based design lan-
guages. In 4th International Workshop on Aircraft System Tech-
nologies (AST 2013), Hamburg, April, pages 23–24, (2013)

	27.	 Eheim, M., Kaiser, D., Weil, R.: On automation along the automo-
tive wire harness value chain. Stuttgart Conference on Automotive
Production 2020, November (2020)

	28.	 Solutions, N.: Optimus 2021.1—users’s manual. Leuven, Bel-
gium, April (2021)

	29.	 Lefebvre, T., Bartoli, N., Dubreuil, S., Panzeri, M., Lombardi, R.,
Della Vecchia, P., Stingo, L., Nicolosi, F., De Marco, A., Ciampa,
P.D., et al.: Enhancing optimization capabilities using the agile
collaborative mdo framework with application to wing and nacelle
design. Progr. Aerosp. Sci. 119, 100649 (2020)

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://cordis.europa.eu/project/id/865044
https://cordis.europa.eu/project/id/865044
https://www.clean-aviation.eu/media/news/simplifying-the-3d-packaging-3d-piping-and-3d-routing-sequence-for-physical-system-architecture
https://www.clean-aviation.eu/media/news/simplifying-the-3d-packaging-3d-piping-and-3d-routing-sequence-for-physical-system-architecture
https://www.clean-aviation.eu/media/news/simplifying-the-3d-packaging-3d-piping-and-3d-routing-sequence-for-physical-system-architecture
https://doi.org/10.1016/j.ast.2015.11.026
https://doi.org/10.1016/j.ast.2015.11.026

	System integration based on packing, piping and harness routing automation using graph-based design languages
	Abstract
	1 Introduction
	2 Related work
	3 Program structure
	3.1 Modelica linkage extraction
	3.2 Geometry enrichment
	3.3 Packing
	3.4 Piping
	3.5 Harness routing
	3.6 Optimization
	3.6.1 System optimization
	3.6.2 Harness optimization

	4 Results
	4.1 Harness optimization results
	4.2 Harness and pipe optimization results

	5 Discussion
	6 Summary and outlook
	Acknowledgements
	References

