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Abstract
In the present study, a hybrid deep learning reduced-order model (ROM) is applied for the prediction of wing buffet pressure 
distributions on a civil aircraft configuration. The hybrid model is compound of a convolutional variational neural network 
autoencoder (CNN-VAR-AE) and a long short-term memory (LSTM) neural network. The CNN-VAR-AE is used for the 
reduction of the high-dimensional flow field data, whereas the LSTM is applied to predict the temporal evolution of the 
pressure distributions. For training the neural network, experimental buffet data obtained by unsteady pressure sensitive 
paint measurement (iPSP), is applied. As a test case, the Airbus XRF-1 configuration is selected, considering two different 
experimental setups. The first setup is defined by a wind tunnel model with a clean wing, whereas the second setup includes 
an ultra high bypass ratio engine nacelle on each wing. Both configurations have been tested in the European Transonic 
Windtunnel, considering several transonic buffet conditions. Finalizing the training of the hybrid neural networks, the trained 
models are applied for the prediction of buffet flow conditions which are not included in the training data set. A comparison 
of the experimental results and the pressure distributions predicted by the hybrid ROMs indicate a precise prediction per-
formance. Considering both aircraft configurations, the main buffet flow features are captured by the hybrid ROMs.

Keywords Deep learning · Convolutional autoencoder · Long short-term memory neural network · Wing buffet 
aerodynamics · Airbus XRF-1 configuration

List of symbols
b  Bias vector
C  Channel dimension
Cin  Input channel
Cout  Output channel
cp  Pressure coefficient
c  Cell state vector of LSTM cell
f   Forget gate vector of LSTM cell
H  Height
h  Hidden state vector of LSTM cell
i  Input gate vector of LSTM cell
k  Time step

m  Timesteps predicted ahead
Ma∞  Freestream Mach number
Nin  Number of input time steps
n  Previous timesteps
o  Output gate vector of LSTM cell
Re  Reynolds number
s  Stride parameter
W  Width
W  Weight matrix
x  Model input vector
y  Model output vector
�  Angle of attack
�  Sigmoid activation

1  Introduction and motivation

Transonic wing buffet, also referred to as wing shock buf-
fet, represents an unsteady aerodynamic phenomenon 
which occurs during certain flow conditions in the tran-
sonic regime. The self-sustained instability of the buffet 
phenomenon is characterized by shock-wave oscillations 
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and intermittent boundary layer separation, which leads to 
undesired vibrations of the aircraft structure. Therefore, the 
determination of buffet loads is of paramount importance for 
the safety and efficiency of a civil aircraft.

Nowadays, a variety of computational methods for the 
prediction of unsteady aerodynamic loads is available. For 
the investigation of transonic buffet flows, which are domi-
nated by non-linear flow features, high-fidelity Computa-
tional Fluid Dynamics (CFD) methods such as Unsteady 
Reynolds-Averaged Navier–Stokes (URANS) or Detached-
Eddy Simulation (DES) are commonly applied [1, 2]. Fur-
ther, experimental investigations have been used to some 
extend for the determination of unsteady buffet loads [3, 
4]. However, although high-performance computing and 
experimental facilities are available, the accurate computa-
tion of unsteady buffet loads is challenging due to the high 
computational costs and time, especially if realistic aircraft 
configurations are considered.

An alternative to the application of high-fidelity solutions 
is given by system identification methods. These methods 
are characterized by the representation of an unknown aero-
dynamic system, defined by a certain number of inputs and 
outputs. In unsteady aerodynamic modeling, the inputs are 
usually defined by the motion of the body, whereas the out-
put denotes the corresponding, integrated and local aero-
dynamic loads [5]. The unknown aerodynamic system can 
be treated as a black-box with a reduced number of degrees 
of freedom compared to the full-order method. Therefore, 
these methods are commonly referred to as Reduced-Order 
Models (ROMs).

With focus on unsteady aerodynamic modeling, various 
ROM techniques such as Wiener models [6], Volterra series 
[7] and Kriging models [8] have been successfully applied. 
Further, recurrent neural networks (RNN) have been used by 
Mannarino and Mantegazza [9] for the prediction of limit 
cycle oscillations. Further, radial basis function neural net-
works (RBF-NN) have been employed by Zhang et al. [10] 
and Winter and Breitsamter [11] for flutter analysis and air-
foil load prediction, respectively. In addition, Winter and 
Breitsamter [12] proposed a non-linear ROM based on a 
series connection of a recurrent neuro-fuzzy model (NFM) 
and a multilayer perceptron (MLP) neural network for non-
linear time series prediction.

However, considering the non-linear ROM methods 
mentioned above, the prediction of spatio-temporal char-
acteristics, such as unsteady pressure distributions, is not 
feasible due to the large number of output variables [13]. To 
solve this issue, several studies dealt with the application of 
dimensionality reduction techniques, such as Proper Orthog-
onal Decomposition (POD) and Dynamic Mode Decomposi-
tion (DMD). Park et al. [14] applied POD in combination 

with a neural network for wing design optimization tasks. 
Considering buffet aerodynamics, Timme [15] and Ohmichi 
et al. [16] used POD and DMD in order to identify instability 
mechanisms and dominant flow modes of three-dimensional 
wing buffet. Further, a study by Candon et al. [17] investi-
gated DMD for dynamic bending and torsion load spectra 
prediction resulting from transonic buffet on a high-agility 
aircraft configuration.

Besides the application of dimensionality reduction tech-
niques, deep learning methods such as convolutional neu-
ral networks (CNN) have been applied for the prediction 
of spatio-temporal characteristics of high-dimensional flow 
field data. Afshar et al. [18] applied a CNN for the prediction 
of the velocity and pressure field around an airfoil, depend-
ing on the shape of the airfoil and flow parameters. Sekar 
et al. [19] used a CNN for feature extraction of an airfoil and 
further processed them as an input for a MLP neural network 
to predict steady flow fields. To enable a better and faster 
prediction of temporal characteristics of flow field data, sev-
eral studies proposed hybrid deep learning models based on 
CNN and RNN. Li et al. [20] applied a convolutional long 
short-term memory (ConvLSTM) neural network for the 
prediction of supersonic cascaded channel flow. Hasegawa 
et al. [21] proposed a series connected ROM based on a con-
volutional autoencoder (CNN-AE) and a LSTM for the pre-
diction of unsteady-flow characteristics around bluff bodies 
with different shapes. Further, Nakamura et al. [22] applied 
the proposed CNN-AE/LSTM model for the prediction of 
turbulent channel flow.

Following the studies mentioned above, the present study 
focuses on the application of the hybrid CNN-AE/LSTM 
neural network as proposed by [21] for the prediction of 
wing buffet pressure loads. In addition, instead of using a 
standard CNN-AE, a convolutional variational autoencoder 
(CNN-VAR-AE) is applied. Compared to previous studies, 
which used numerical data sets, experimental buffet data 
are applied for the training of the hybrid neural network. In 
particular, surface pressure data originated from unsteady 
pressure sensitive paint (iPSP) measurements, which are 
conducted by the German Aerospace Center (DLR), are 
used. The experimental data are obtained during a wind 
tunnel test campaign in the European Transonic Wind tun-
nel (ETW), as part of the research project FOR2895. As a 
test case, the Airbus XRF-1 configuration is selected. Dur-
ing the test campaigns, a clean wing as well as a configura-
tion including ultra high bypass ratio (UHBR) nacelles, are 
considered. Each configuration has been tested at different 
buffet conditions. Based on the available experimental data, 
two independent deep learning models are trained. For per-
formance evaluation, the trained ROMs are applied for the 
prediction of flow conditions which are not included in the 
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data set used for training. A comparison of the experimental 
data and the results predicted by the hybrid ROMs, a precise 
agreement is indicated. For both configurations the trained 
ROMs are able to capture the main buffet characteristics.

2  Deep learning approaches

In the following section, the applied hybrid deep learning 
model is introduced. The first subsection covers a brief intro-
duction of convolutional neural networks (CNN) as well as 
the working principle of autoencoders (AE). In the second 
part of the section, the LSTM neural network applied for 
time-series prediction, is discussed in detail.

2.1  Convolutional neural network (CNN)

The convolutional neural network (CNN) [23] is a type of 
neural network mainly developed for processing data rep-
resented by a grid-like topology [24]. Although CNNs are 
applicable to time-series data, they are commonly used 
for image data, containing spatial information. In general, 
a CNN is composed of three main layers: a convolutional 
layer, a pooling layer and a fully connected (FC) layer. The 
convolutional layer represents the main building block of 
each CNN architecture. Assuming a three-dimensional 
matrix of data, the position of each data point can be defined 
by an index (i, j, o). Following the nomenclature of Goodfel-
low et al. [24] and Rosov and Breitsamter [13], the convolu-
tion can be defined as follows:

with x denoting the input at each index and W defining the 
weights of the filter, also referred to as kernel. The size of 
the input data is defined by its height H and width W as well 
as the number of input channels Cin (Cin × H ×W). The cor-
responding kernel size is defined by Cin × Hk ×Wk × Cout 
and includes an additional dimension, referred to as out-
put channel Cout [13]. The kernel slides stepwise over the 
input data, performing element-wise multiplications with 
the elements of the input matrix. At each step, the results 
are summed up and written as a new output.

Further, a parameter referred to as stride s is introduced in 
Eq. 1, which defines the number of elements the filter selects 
at each step. By applying the striding technique, the output 
size can be reduced compared to the input size. Choosing a 
stride of one, slides are picked an entry apart, resulting in 
an output size equal to the input size. If the stride is defined 
as two, the size of the input data is reduced by a factor of 
two and so on.

(1)yi,j,o =

Cin−1
∑

l=0

Hk−1
∑

m=0

Wk−1
∑

n=0

xl,i×s+m,j×s+nWo,l,m,n + bo

Within the present work, the CNN architecture is used 
within an autoencoder structure, which is commonly referred 
to as a convolutional autoencoder (CNN-AE). The application 
of a CNN-AE aims for encoding a given input and reconstruct-
ing the input to a given output [24]. The network structure 
is composed of three parts, the encoder, decoder and latent 
space. The encoder maps the high-dimensional data into a low-
dimensional latent space and the decoder extends the data back 
into its original resolution. To learn the representation of the 
input data, the network is trained in an unsupervised way.

To enable a better training process, a convolutional vari-
ational AE (CNN-VAR-AE) is applied. Compared to a nor-
mal CNN-AE, the input is encoded as a normal distribution 
over the latent space, rather than a single point. From this 
distribution, a random point is selected, which is fed into 
the decoder. Based on the sampled point, the reconstruc-
tion error is computed and backpropagated through the 
CNN-VAR-AE.

2.2  Long short‑term memory (LSTM)

The LSTM architecture has been proposed by Hochreiter 
and Schmidhuber [25] and represents a type of recurrent 
neural network (RNN), which is capable of predicting both 
long- and short-term dependencies in time-series data. In 
contrast to a basic RNN, the application of the LSTM solves 
for a problem known as vanishing gradient problem [26], 
where the training performance of the network saturates 
after a certain number of training iterations. Further, the 
representation of time-delayed effects, which are important 
for unsteady aerodynamic modeling, are incorporated in 
the LSTM architecture [5]. The LSTM cell processes the 
incoming information through three gates, namely the for-
get gate f  , the input gate i and the output gate o . In Fig. 1, 
the architecture of a LSTM cell including the characteristic 
gates, is illustrated.

The forget gate f  processes the input of the current time 
step xt as well as the vector representing the output from 
the previous time step ht−1 , which is also referred to as the 
hidden state of the LSTM cell:

Both inputs of the forget gate are multiplied with a set of 
weights Wf  and a bias bf  is added. By applying a sigmoid 
(�) activation, parts of the incoming information is discarded 
from the cell.

Equal to the forget gate, the input gate processes the cur-
rent time step xt as well as the hidden state from the previous 
time step ht−1 by means of a sigmoid activation function:

(2)f t = �(Wf xt +Wfht−1 + bf ).

(3)it = �(Wixt +Wiht−1 + bi)
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with Wi and bi defining the weights and bias of the input 
gate, respectively. In the second step, both inputs are pro-
cessed by an hyperbolic tangent (tanh) activation, which cre-
ates a new cell state vector c̃t:

Based on the new cell state c̃t , the old information in the 
cell is updated. Therefore, the cell state from the previous 
time step ct−1 is multiplied with the forget gate vector f t and 
the current cell state is updated with the input gate vector it:

After passing the input gate, the data of the current input xt , 
the previous hidden state ht−1 as well as the current cell state 
ct are processed by a sigmoid and tanh activation:

The prediction, which are defined by the updated hidden 
state ht , are transferred to the next hidden layer or the output 
layer.

2.3  Hybrid model architecture

To enable an accurate prediction of wing buffet pressure 
loads, the CNN-VAR-AE and the LSTM as introduced in 
Sects. 2.1 and 2.2 are combined to form a hybrid deep learn-
ing model. In Fig. 2, the architecture of the hybrid model is 
visualized.

The hybrid ROM is applied for the prediction of buffet 
pressure distributions at time step k + m based on several 
previous cp-snapshots of the pressure distribution at time 
steps k − n + 1 to k. Here, n denotes the number of pressure 
samples applied for the prediction, whereas m defines the 
number of time steps ahead which should be predicted by 
the trained model.

(4)c̃t = tanh(Whxt +Whht−1 + bh).

(5)ct = f tct−1 + itc̃t.

(6)
ot = �(Woxt +Woht−1 + bo)

ht = ot ⋅ tanh(ct).

As already outlined in Sect. 2.1, the CNN-VAR-AE is 
composed of an encoder, decoder and latent space vec-
tor. Both the encoder and decoder of the CNN-VAR-AE 
are divided into several levels. At each level, a number of 
operations is performed on the input data, which is fed into 
the encoder. Defining the input of the CNN-VAR-AE, snap-
shots of pressure distribution cp(�, x, y) at each measured 
time step � are combined into an array along the channel 
dimension Cin . Therefore, the size of the input is defined as 
Nin × Cin × H ×W  , with Nin defining the number of input 
time steps. H and W denote the height and width of each cp
-snapshot, which are defined by powers of two.

As a first step, a convolution with a kernel size of 2 × 2 
and stride s = 2 is performed. Following the convolution, the 
input is normalized based on the mean and variance of each 
training batch, which is referred to as batch normalization 
(BN) [27]. In the last step, an activation function is applied 
to each element of the incoming array. Within the scope of 
this work, a rectified linear unit (ReLU) is used.

The sequence of operations described above is applied at 
each level of the encoder. Therefore, the output has twice as 
many channels as the input. However, the first convolution 
applied to the input array increases the number of channels 
from x to C. In addition, the size of the spatial dimensions 
(H, W) is reduced by a factor of two at each level of the 
encoder. As the last encoder processing step, the data are fed 
into a FC layer to reduce the channel dimension. In addition, 
a tanh activation is applied. The resulting reduced latent fea-
tures are then sampled from a normal distribution.

After the input data have been processed by the encoder, 
the data are reshaped and fed into the LSTM neural net-
work. The LSTM is used for the prediction of buffet pressure 
distributions at time step k + m based on several previous 
snapshots of the pressure distribution at time steps k − n + 1 
to k. In Fig. 3, the schematic of the multiple time steps ahead 
prediction obtained by the LSTM model, is depicted.

After finalizing the prediction of the LSTM, the output 
is fed into the decoder. Therefore, the low-dimensional data 
are reconstructed to the original high-dimensional flow field. 

Fig. 1  Architecture of the 
LSTM cell including the char-
acteristic gate structure
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At each level of the decoder, a transposed convolution is 
applied to upscale the spatial dimension. The corresponding 
kernel size and stride values are chosen equally to those of 
the encoder. In addition, BN is applied at each level of the 
decoder. To obtain the final prediction, an activation func-
tion is applied to the output of the last decoder level. There-
fore, a hyperbolic tangent tanh is chosen, which reshapes all 
predicted elements to [−1, 1].

3  Test case: Airbus XRF‑1

The experimental buffet data used for training and validation 
of the hybrid ROM have been obtained during two consecu-
tive wind tunnel test campaigns in the European Transonic 
Wind Tunnel (ETW). To provide a modern and realistic test 
case, the Airbus XRF-1 research configuration has been 
selected. During the test campaigns, two different configu-
rations were considered for buffet investigation. Both models 
include a fixed vertical (VTP) and horizontal tailplane (HTP) 
as well as adjustable ailerons. In addition to the stabilizers 

and the ailerons, one model is additionally equipped with 
Ultra High Bypass Ratio (UHBR) engine nacelles. The 
nacelles represent through flow nacelles (TFNs), which are 
connected to the wing with engine pylons. In Fig. 4a, b, 
both XRF-1 wind tunnel models with clean wing and UHBR 
engine nacelles, are visualized, respectively.

The experimental investigations, which have been con-
ducted by the ETW and the German Aerospace Center 
(DLR), included unsteady pressure sensitive paint [28, 29] 
measurements, which are referred to as iPSP in the fol-
lowing. With the iPSP setup, upper wing surface buffet 
data acquisition was possible with a sampling frequency 
of 1000 Hz. All iPSP measurements were conducted in a 
pitch/pause mode, enabling a fixed incidence angle at each 
run. The measured flow conditions were defined to enable 
the analysis of isolated effects due to changes in Mach 
and Reynolds number as well as the angle of attack. The 
Mach number was varied between Ma∞ = [0.84, 0.87, 0.9], 
whereas the Reynolds number was defined by Re = [3.3 M
io., 12.9 Mio., 25 Mio.]. For each flow condition, several 
angles of attack were considered.

Fig. 2  Architecture of the 
hybrid deep learning model

Fig. 3  Prediction of time evolu-
tion of the cp-distribution as 
obtained by the LSTM
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4  Flow topology at buffet condition

In the following, a characterization of the buffet flow topol-
ogy on the Airbus XRF-1 wing based on the measured iPSP 
data, is given. In particular, distinct differences between the 
buffet flow on the clean wing and the wing with UHBR are 
identified. Due to visualization restrictions, axis notations 
are suppressed in the following figures. Further, the buffet 
pressure distributions are visualized using the mean of the 
pressure coefficient (c̄p).

Starting with the clean wing configuration, the pressure 
distribution of the upper wing surface at a flow condition 
of Ma∞ = 0.9, Re = 25 Mio and varying angles of attack 
� = [2.5◦, 4◦, 5◦, 6◦] is depicted in Fig. 5.

At each flow condition, a distinct �-shaped two-shock pat-
tern across the entire wing span is clearly visible. The main 
shock spreads over the rear part of the chord from wing root 

to wing tip, whereas a weaker shock is visible at the inboard 
part of the wing. This shock originates near the leading edge 
(LE) at the root of the wing towards the mid section of the 
wing. With increasing incidence, the inboard shock position 
slightly shifts aft, while the mid-span and outboard shock 
moves further upstream. The sweep angle of the inboard 
shock increases and the intersection of both shock patterns 
moves inboard. Further, the intensity of the shock increases 
with increasing incidence.

Shifting the focus to the surface pressure distribution 
of the wing with the UHBR nacelle installed, some differ-
ences in the surface pressure are indicated. In Fig. 6, pres-
sure distributions at Ma∞ = 0.9, Re = 25 Mio and varying 
angles of attack � = [2.5◦, 4◦, 5◦, 6◦] are visualized. Similar 
to the pressure distribution on the clean wing configura-
tion, a spanwise two-shock pattern is visible. Further, with 
increasing incidence, the shock in the mid-span region and 
close to the tip shifts towards the LE. Compared to the 

Fig. 4  a Front view of the Air-
bus XRF-1 wind tunnel model 
with clean wings. b Front view 
of the Airbus XRF-1 wind tun-
nel model with UHBR engine 
nacelles ( ©Airbus/ETW)

Fig. 5  Comparison of surface 
cp at varying angles of attack 
(clean wing, Ma∞ = 0.9, 
Re = 25 Mio.)
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shock pattern on the clean wing, a more complex shock 
variation across the span, including lateral separation, is 
observed. In addition, the movement of the inboard shock 
position is less pronounced than on the clean wing; how-
ever, at around 30% span, the shock position starts to move 
to the TE. In addition to the two-shock pattern, a third 
inboard positioned shock is indicated, originating from 
the intersection of the LE with the engine pylon inboard 
towards the wing root. Further, an intersection between 
both inboard shocks is indicated.

As shown in the previous figures, characteristic buffet 
flow features are captured by the optical iPSP measure-
ments. Further, clear differences between both wind tun-
nel models are indicated. Therefore, the hybrid ROM is 
applied for the prediction of a highly non-dimensional flow 
field, representing characteristic buffet features.

5  Application of the hybrid deep learning 
model

In the following section, the application process and the 
results of the hybrid ROM are discussed. In the first part of 
the section, the preprocessing steps of the experimental data 
are briefly described. In the second subsection, the selection 
of hyperparameters and the training procedure is outlined. 
In the last subsection, the result of the trained ROMs are 
presented and discussed in detail.

5.1  Data preprocessing

To feed the experimental data as obtained by iPSP meas-
urements into the deep learning model, the data need to 
be preprocessed accordingly. All preprocessing steps are 

Fig. 6  Comparison of surface 
cp at varying angles of attack 
(UHBR wing, Ma∞ = 0.9, 
Re = 25 Mio.)

Fig. 7  Original (left) and 
interpolated (right) number 
of data points representing 
the buffet pressure distribu-
tion on the upper wing surface 
of the XRF-1 configuration 
(clean wing, Ma∞ = 0.9 , 
Re = 25 Mio., � = 4◦)
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accomplished using the Python library flowTorch [30]. 
Based on the geometry of the XRF-1 wind tunnel model 

and the iPSP measurement technique, the pressure 

Fig. 8  Convergence trends of 
training and validation losses of 
the individually trained CNN-
VAR-AEs (left: clean wing, 
right: UHBR wing)

Fig. 9  Comparison of an 
original validation cp-snapshot 
and a cp-snapshot obtained 
by the trained CNN-VAR-
AE (clean wing, Ma∞ = 0.9 , 
Re = 25 Mio., � = 4◦)

Fig. 10  Comparison of an 
original validation cp-snapshot 
and a cp-snapshot obtained 
by the trained CNN-VAR-AE 
(UHBR wing, Ma∞ = 0.9 , 
Re = 25 Mio., � = 4◦)
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distribution on the upper wing surface is discretized by 
465 × 159 data points.

Due to measurement errors during the wind tunnel meas-
urement campaign, the data set includes a small amount of 
non physical cp values. Therefore, in the first preprocessing 
step, the experimental data are cleaned by applying a weight 
mask, which defines values of cp ≥ 1.5 as 1 and values of 
cp ≤ −1.5 as 0.

In the second step, the number of data points represent-
ing the pressure distribution is downscaled by linear inter-
polation from 465 × 159 to 256 × 128 (28 × 27). In Fig. 7, a 
comparison of the wing pressure distribution represented by 
the original amount of data points (left) and the interpolated 
data points (right), is visualized. As shown in Fig. 7, the 
reduced resolution still maintains a high level of detail of 
the spatial resolution. Further, rescaling the surface resolu-
tion to an input array size of powers of two enables faster 
processing of the neural network.

In the final step, the data set is normalized based on 
the minimum and maximum pressure values in the data 
set (cp,min, cp,max). Therefore, the resulting value range is 
rescaled to [−1, 1].

5.2  Training of the hybrid model

The training procedure of the hybrid deep learning model 
includes two consecutive steps. In the first step, the CNN-
VAR-AE is trained independently, using cp-snapshots repre-
senting on or more flow conditions. In the second step, the 
LSTM is trained using the reduced cp-snapshots as obtained 
by the trained encoder of the CNN-VAR-AE.

Since the application of the trained ROM aims for the 
prediction of surface pressure distributions at unknown 
buffet conditions, cp-snapshots representing several buffet 
conditions are applied for ROM training. Therefore, flow 
conditions must be selected in order to allow an interpola-
tion for the flow condition of interest. In the following, the 
focus will be on a prediction of buffet flow considering a 
variation of the angle of attack. Further, two hybrid models 
are individually trained using the data originated from the 
clean wing and the UHBR wing configuration, respectively.

As a first step, the CNN-VAR-AE is trained using snap-
shots representing two different flow conditions, defined by 
Ma∞ = 0.9, Re = 25 Mio. and � = [4◦, 6◦]. The CNN-VAR-
AE is trained using 2000 cp-snapshots, with 1000 snapshots 

Fig. 11  Comparison of an 
original cp-snapshot and a cp
-snapshot predicted by the 
trained CNN-VAR-AE (clean 
wing, Ma∞ = 0.9 , Re = 25 
Mio., � = 5◦)

Fig. 12  Comparison of an 
original cp-snapshot and a cp
-snapshot predicted by the 
trained CNN-VAR-AE (UHBR 
wing, Ma∞ = 0.9 , Re = 25 
Mio., � = 5◦)
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representing each flow condition. For hyperparameter tuning 
and validation, in total 400 snapshots are used. During the 
training, the snapshots are fed into the encoder in batches, 
including 128 time steps each. For both the encoder and 
decoder five convolution levels are applied, which reduces 
the input array size of 64 × 256 × 128 to 512 × 32 × 16 . By 
passing the FC layer, the latent channel size is downscaled 
from 512 to 256 features. The initial learning rate is set to 
10−4 and the training of the CNN-VAR-AE is terminated 
after 1000 epochs. To achieve an appropriate model perfor-
mance, the mean squared error (MSE) between the reference 

experimental data and the predictions, is minimized. In 
Fig. 8, training and validation losses of the individually 
trained CNN-VAR-AEs, are visualized.

Besides the evaluation of the corresponding conver-
gence trends, the training performance of each CNN-
VAR-AE is assessed based on a visual comparison of an 
experimental cp-snapshot of the validation data set and 
the corresponding cp-snapshot as obtained by the CNN-
VAR-AE. Therefore, one original cp-snapshot (left) and the 
corresponding cp-snapshot predicted by the CNN-VAR-AE 
(middle) are exemplary visualized in Figs. 9 and 10 for the 

Fig. 13  Power Spectra of 
the first six POD modes of 
the buffet cycle (clean wing, 
Ma∞ = 0.9 , Re = 25 Mio., 
� = 5◦ ). The experimental 
results are compared to the 
results predicted by the CNN-
VAR-AE
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clean wing and UHBR wing configuration, respectively. 
The deviation between both snapshots is represented by 
the MSE on the wing surface, as depicted on the wing 
surface on the right. It has to be noted that the legend 
only refers to the MSE distribution on the right wing sur-
face. For both test cases, an angle of attack of � = 4◦ is 
considered.

Equal to the training of the CNN-VAR-AE, 2000 snap-
shots are used for training the LSTM. The overall amount 

of training snapshots is divided in sequences of 128 snap-
shots, while the batch size is defined as one. For the train-
ing, a stacked LSTM with two layers is applied, with each 
layer including 256 neurons. Analog to the training of the 
CNN-VAR-AE, the initial learning rate is defined as 10−4 . 
The LSTM is trained for 5000 epochs, until a sufficient 
convergence is reached.

Fig. 14  Power Spectra of the 
first six POD modes of the 
buffet cycle (UHBR wing, 
Ma∞ = 0.9 , Re = 25 Mio., 
� = 5◦ ). The experimental 
results are compared to the 
results predicted by the CNN-
VAR-AE
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Fig. 15  Comparison of an origi-
nal cp-snapshot and a cp-snap-
shot predicted by the trained 
hybrid ROM at timestep t = 150 
(clean wing, Ma∞ = 0.9 , 
Re = 25 Mio., � = 5◦)

Fig. 16  Comparison of an origi-
nal cp-snapshot and a cp-snap-
shot predicted by the trained 
hybrid ROM at timestep t = 200 
(clean wing, Ma∞ = 0.9 , 
Re = 25 Mio., � = 5◦)

Fig. 17  Comparison of an origi-
nal cp-snapshot and a cp-snap-
shot predicted by the trained 
hybrid ROM at timestep t = 150 
(UHBR wing, Ma∞ = 0.9 , 
Re = 25 Mio., � = 5◦)
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5.3  Performance evaluation

To evaluate the performance of the individually trained 
ROMs, both ROMs are applied for the prediction of buf-
fet pressure distributions at flow conditions which are not 
included in the training data set. Since for both test cases, 
angles of attack of � = [4◦, 6◦] are used, the test flow condi-
tion is defined by � = 5◦ (with Ma∞ = 0.9 , Re = 25 Mio.).

As a first step, the trained CNN-VAR-AEs are applied 
for the prediction of the unknown buffet condition. In 
Figs.  11 and 12, a comparison between an original cp
-snapshot and interpolated cp-snapshot of the clean wing 
and UHBR wing configuration, is visualized, respectively.

Examining the cp-distribution as predicted by the trained 
CNN-VAR-AEs, an overall good agreement is indicated. 
The characteristic shock patterns as discussed in Sect. 4 
are correctly captured by the CNN-VAR-AE for both con-
figurations. Although the chord- and spanwise position of 
the shock is in good agreement with the experimental data, 
larger MSE values yield slight deviations along the posi-
tion of the shock, in particular in spanwise direction, for 
both test cases. However, it has to be emphasized that the 
application of the ROM focuses on an accurate representa-
tion of the characteristic buffet flow physics, such as the 
shock movement in chord- and spanwise direction, rather 
than a correct visual representation of the shock position.

To identify if the trained CNN-VAR-AEs are able to 
correctly reproduce the buffet flow physics, both experi-
mental and predicted cp-snapshots are compared by apply-
ing modal analysis, in particular proper orthogonal decom-
position (POD). By applying POD, important modes of 
the buffet flow are extracted, with the order of the modes 
determining the contribution to the buffet instability.

In Figs. 13 and 14, power spectra of the first six POD 
modes of the experimental and corresponding predicted 
data of the clean wing and UHBR wing, are visualized, 
respectively. Higher modes are neglected, since they do 

not indicate a good agreement. At first sight, the cover-
age of the first six modes does not seem to be very high; 
however, it has to be considered that the ROM is applied 
to experimental data, including a high amount of noise and 
representing non-linear, transonic flow data.

As shown in Figs. 13 and 14, the CNN-VAR-AEs are 
able to accurately capture both low- and high-frequency 
content of each mode with a high degree of accuracy. At 
higher modes, there are some deviations in the frequency 
amplitude visible; however, the overall trend is represented 
by the ROMs.

Following the performance evaluation of the trained 
CNN-VAR-AEs, the trained hybrid model is applied for 
surface pressure prediction. Therefore, the test data sets 
are encoded and fed into the LSTM. The LSTM is applied 
in a recurrent multi-step prediction mode, with the first 32 
encoded timesteps applied for initialization. As the predic-
tion advances, the experimental cp-snapshots are succes-
sively replaced by cp-snapshots predicted by the LSTM. In 
Figs. 15 and 16, a comparison of an original and predicted 
cp-snapshot of the clean wing configuration, is depicted. 
Therefore, two timesteps t = [150, 200] are considered. In 
Figs. 17 and 18, original and predicted cp-snapshots of the 
UHBR configuration are compared considering the same 
timesteps. Equal to the performance evaluation of the trained 
CNN-VAR-AEs, the results obtained by the hybrid ROMs 
are compared to the experimental data sets using POD.

In Figs. 17 and 18, original and predicted cp-snapshots 
of the UHBR configuration are compared considering the 
same timesteps. Equal to the performance evaluation of the 
trained CNN-VAR-AEs, the results obtained by the hybrid 
ROMs are compared to the experimental data sets using 
POD. Therefore, the first six POD modes of the clean wing 
and the UHBR wing configuration are compared in Figs. 19 
and 20, respectively. Examining the resulting spectra, a good 
agreement between the reference experimental data and the 

Fig. 18  Comparison of an origi-
nal cp-snapshot and a cp-snap-
shot predicted by the trained 
hybrid ROM at timestep t = 200 
(UHBR wing, Ma∞ = 0.9 , 
Re = 25 Mio., � = 5◦)
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predicted data is shown. Both the low- and high-frequency 
content of each mode are captured by the hybrid ROM.

6  Conclusion

In the present study, a hybrid deep learning model based 
on a convolutional variational autoencoder (CNN-VAR-
AE) and a long short-term memory (LSTM) neural net-
work has been applied for the prediction of wing pres-
sure distributions originated from transonic buffet. For 

training the neural network, experimental data as obtained 
by unsteady pressure sensitive paint (iPSP) measurements 
in the European Transonic Windtunnel (ETW), has been 
selected. As a test case, the Airbus XRF-1 configuration 
has been applied. Two different experimental setups have 
been considered, defining an aircraft model with clean 
wings and wings with ultra high bypass ratio (UHBR) 
nacelle installed. For both test cases, two hybrid models 
are individually trained. After finalizing the training, the 
trained reduced-order models (ROMs) are applied for the 
prediction of buffet pressure loads at a flow condition 

Fig. 19  Power Spectra of 
the first six POD modes of 
the buffet cycle (clean wing, 
Ma∞ = 0.9 , Re = 25 Mio., 
� = 5◦ ). The experimental 
results are compared to the 
results predicted by the hybrid 
ROM
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which is not included in the training data set. The results 
obtained by the trained model are compared to experi-
mental data by means of proper orthogonal decomposi-
tion. Based on the resulting representation of the POD 
modes, an accurate prediction is indicated. For both the 
clean wing and the UHBR wing configuration, the first six 
POD modes are correctly reproduced by the hybrid ROM. 
Therefore, a good performance capability of the proposed 
ROM method for non-linear flow field prediction based on 
experimental data is shown.

For future studies, it is intended to apply the proposed 
ROM method for the reconstruction of buffet pressure 
distributions at different flow conditions, including Mach 
and Reynolds number variations. Further, to improve the 
prediction quality of the ROM, the preprocessing routine 
could be adapted by applying POD or DMD to the data to 
reduce the noise in the data. In addition, using numerical 
data or a data set including both numerical and experimen-
tal data could also result in an improved performance of 
the hybrid ROM.

Fig. 20  Power Spectra of the 
first six POD modes of the 
buffet cycle (UHBR wing, 
Ma∞ = 0.9 , Re = 25 Mio., 
� = 5◦ ). The experimental 
results are compared to the 
results predicted by the hybrid 
ROM
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