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Abstract
Generating turbulent inflow data is a challenging task in zonal large eddy simulation (zLES) and often relies on predefined 
DNS data to generate synthetic turbulence with the correct statistics. The more accurate, but more involved alternative is to 
use instantaneous data from a precursor simulation. Using instantaneous data as an inflow condition allows to conduct high 
fidelity simulations of subdomains of, e.g. an aircraft including all non-stationary or rare events. In this paper, we introduce 
a toolchain that is capable of interchanging highly resolved spatial and temporal data between flow solvers with different 
discretization schemes. To accomplish this, we use interpolation algorithms suitable for scattered data in order to interpolate 
spatially. In time, we use one-dimensional interpolation schemes for each degree of freedom. The results show that we can 
get stable simulations that map all flow features from the source data into a new target domain. Thus, the coupling is capable 
of mapping arbitrary data distributions and formats into a new domain while also recovering and conserving turbulent struc-
tures and scales. The necessary time and space resolution requirements can be defined knowing the resolution requirements 
of the used numerical scheme in the target domain.

Keywords DGSEM · Instantaneous inflow condition · Coupling · Zonal LES

1 Introduction

In modern computational fluid dynamics (CFD) research, 
large eddy simulation (LES) is becoming more popular due 
to increased computation performance [1]. However, many 
practical applications still are out of range for a detailed 
investigation using this technique. Therefore, many simula-
tions run today are based on so-called zonal approaches that 
often depend on predefined DNS data to generate synthetic 
turbulence with the correct statistics. By zonal, we mean 
that only a small subset of a domain is simulated with the 
LES method in order to decrease computational cost, while 
the majority of the domain is for example solved by a much 

cheaper Reynolds-averaged Navier–Stokes (RANS) method, 
or the subset is equipped with suitable boundary conditions, 
in particular scale-resolving inflow data. This can be of spe-
cial interest in the simulation of turbulent boundary layers, 
where we do not want to simulate the initial transition pro-
cess but are just interested in the fully developed boundary 
layer as a starting point. To achieve this, many approaches 
have been developed, such as the synthetic eddy method [2, 
3] or the recycling–rescaling approach [4, 5] which allow 
for significantly smaller domains. A practical example is the 
simulation of acoustic noise at the trailing edge of an airfoil 
where a detailed simulation of only a part of the airfoil is 
needed [6]. One similarity of the applications just described 
is their dependency on boundary layer properties and, there-
fore, reference data from the literature.

Another slightly different example is the investigation 
of the interaction of the turbulent wake from the wing of 
an aircraft with the boundary layer of a horizontal tail 
plane (HTP) of the same aircraft (cf. Fig. 1). The described 
scenario poses a challenge, since fully scale-resolving 
codes often cannot afford to compute the whole aircraft 
and codes that are capable of running a simulation of a 
whole aircraft are often not able to run high fidelity simu-
lation of parts of it. Therefore, there is the need to map 
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the results in a time-accurate manner from one simulation 
to a boundary/initial condition on a detailed simulation 
with a smaller domain. In this work, the main focus lies 
on imposing inflow boundary conditions from mapped 
data. The use of mapped data at the outflow of the smaller 
domain is in principle possible but was not investigated.

Using the described method allows for refined simu-
lation of areas of special interest. In addition, such a 
coupling between these codes enables a way to further 
investigate the interaction between turbulence of different 
physical scales very efficiently. Therefore, zonal simula-
tions of high Reynolds number flow become feasible.

When trying to couple different numerical codes, we 
encounter several problems on how to approach this: 

1. Is a two-way coupling necessary or is one-way suffi-
cient?

2. Do we couple the codes during runtime?
3. Are the underlying numerics compatible?

The first question is—in context of the scenario described 
above—easy to answer. Since we only are interested in 
the effects of an incoming flow to the target domain, a 
one-way coupling is sufficient. We note that, depending 
on the equation system, a one-way coupling via a pre-
scribed Dirichlet boundary is prone to errors, since infor-
mation transport is limited to one direction. However, we 
can justify this simplification by assuming that we e.g. 
extract the flow in a wake region with no proximity to a 
wall in case of the compressible Navier–Stokes equations. 
In addition, the simplification removes a lot of complexity 
and thus enables efficient coupling of different solvers and 

experiments which would not be possible in a two-way 
coupled way.

Thus, we can directly answer the second question. Having 
both codes run separately allows us to perform the mapping 
in a preprocessing step for the zonal simulation and thus 
removes a bottleneck during runtime. In addition, it avoids 
the complexities of having to solve the high-performance 
computing (HPC) problem of having to run two possibly 
very heterogeneous codes synchronously and establish effi-
cient parallel communication patterns. As mentioned before 
the coupling is designed to perform detailed simulations of a 
subdomain, meaning that the area of special interest is also 
contained in the full domain simulation and, therefore, is 
assumed to be represented in a sufficient way to capture all 
the necessary physics. In addition, we have to consider that 
the incoming physics can be truncated. We thus investigate 
the influence of different resolution combinations in order 
to quantify this error.

The third question is harder to answer since we not only 
have to take the spatial discretization such as finite-volume, 
finite-difference and finite-element methods into account, 
but also take care of the temporal discretization, which in 
most applications is either implicit or explicit. In general, 
two choices for mapping the solutions between two hetero-
geneous representations are possible: a projection approach 
and an interpolation method. While the former is (approxi-
mately) conservative, ensuring this property on arbitrary 
meshes in space and time is cumbersome, expensive (as it 
requires non-local operations) and not very flexible. The 
interpolation approach relaxes this condition, yielding a 
very general mapping process and allowing for extending the 
algorithms to work with arbitrary (x, y, z) data as an input 
and map it to a compatible data format. The mapping algo-
rithms thus have to be able to capture resolution differences 
from both grid spacing and numerical efficiency per DOF, 
arbitrary points and inconsistent time steps. Hence, inter-
polation algorithms seem to be a good choice for achieving 
these properties in space and time.

Another problem we have to tackle is how to deal with 
large data sets. Although we opt for an offline coupling 
which avoids having to transfer the data in  situ, time-
resolved surface or volume data is very memory intensive. 
Thus, memory management algorithms have to be taken into 
account, including parallelization, load balancing and data 
reduction in order to keep compute costs low.

In this paper, we want to show that mapping instantane-
ous data from the DLR finite-volume code TAU to the high-
order spectral element code FLEXI is possible and allows for 
detailed simulation of subdomains. Thus, we want to answer 
the following research questions: 

1. Is it possible to get a mapping for the data which allows 
for a numerically stable coupled simulation?

TAU

FLEXI

w

−80 −40 0 40 80
vertical velocity w

Fig. 1  Visualization of the w-component of the velocity in the tan-
dem wing configuration showing the wing wake interacting with 
the HTP. The simulation was run using TAU. Region of interest for 
detailed simulation in FLEXI is highlighted
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2. Which temporal resolution is needed?
3. How does the difference in spatial resolution (mesh and 

numerical efficiency per DOF) affect the mapping error?

2  Numerical methods

An important aspect for the mapping algorithm is the knowl-
edge of the underlying numerics and the associated scale-
resolving properties which we are going to assess in more 
detail in the following section.

2.1  Code frameworks

The target numerical scheme for which the data has to be 
prepared is the open-source discontinuous Galerkin frame-
work FLEXI, developed at the University of Stuttgart [7]. 
In this scheme, the domain is partitioned into non-over-
lapping unstructured hexahedral elements. We can choose 
an arbitrary polynomial degree for the elements. This also 
means that the solution in each element is represented as a 
polynomial.

In contrast to the spectral element code FLEXI, the 
source data are typically point-wise data resulting from an 
experiment or finite volume code. The presented mapping 
algorithms are designed and implemented to be generally 
applicable but are optimized to work with the DLR finite-
volume code TAU. In Fig. 1, a typical application of TAU is 
visualized. TAU uses hybrid RANS/LES methods, e.g. for 
cases with separated flows, where attached boundary layers 
are treated in RANS mode and detached wake regions are 
resolved in LES mode. Thus, the effect of the wing wake on 
the boundary layer of the HTP is hard to investigate within 
TAU. FLEXI on the other hand resolves the boundary layer 
and thus is capable of quantifying the influence of the wing 
wake. Thus, the region of interest that can be simulated 
within FLEXI is marked in Fig. 1. TAU will also be used to 
validate the results in Sect. 4.

2.1.1  TAU 

The finite-volume solver TAU is developed by the Ger-
man Aerospace Center (DLR) and widely used among the 
aviation industry [8] and universities. It solves the Euler or 
RANS equations both on structured and unstructured grids. 
Several one- and two-equation models and Reynolds stress 
models are implemented for turbulence modeling. In addi-
tion, LES or hybrid RANS/LES simulations can also be 
performed. Hexahedra, tetrahedra, triangular prisms and 
pyramids are supported elements for the cells of the primary 
grid. TAU uses the so-called dual mesh approach. Control 
volumes are constructed around the nodes of the primary 
mesh, which are used for the spatial discretization. For the 

computation of the numerical fluxes at the cell bounda-
ries of the dual mesh cells, different upwind schemes and 
central approximations are available. Both explicit and 
implicit schemes can be chosen for the integration in time. 
The resulting linear system is solved with SGS or LUSGS 
schemes. For convergence acceleration, local time stepping, 
residual smoothing and multigrid methods are used. Paral-
lelization is achieved by domain decomposition, with com-
munication through the message passing interface (MPI).

2.1.2  FLEXI

FLEXI is a high-performance open-source CFD solver 
based on the discontinuous Galerkin spectral element 
method (DGSEM). It utilizes hexahedral tensor product 
elements with an arbitrary polynomial degree in each ele-
ment. Since DG methods are hybrid schemes combining 
finite-element and finite-volume methods, we use a Roe 
Riemann solver with minimum dissipation for the fluxes 
between the elements [9]. In addition, we represent the 
polynomial solution on a non-equispaced Legendre–Gauss 
or Legendre–Gauss–Lobatto point set. We advance the 
resulting equations in time by applying an explicit-in-time 
Runge–Kutta method. Since FLEXI acts as a framework 
there are multiple equation systems implemented. In this 
paper, we mainly use the compressible Navier–Stokes equa-
tions. For validation, the linear scalar advection system 
is used. The results in the application section are created 
using the compressible Navier–Stokes equations, which are 
implemented as skew-symmetric split form approximations 
to minimize aliasing instabilities [10]. The boundary condi-
tions generally are imposed weakly. This means that we do 
not prescribe the state at the corresponding solution point in 
the element, but rather prescribe the numerical flux. FLEXI 
is parallelized using MPI and was successfully tested on up 
to O(105) cores [11].

2.1.3  Comparison of the code frameworks

Discontinuous Galerkin methods are commonly used high-
order schemes. Finite-volume methods in contrast are for 
unstructured meshes often limited to second order. It is well 
known that for the same number of degrees of freedom high-
order methods can achieve lower error and need fewer solu-
tion points to resolve the same structures. This is known as 
numbers per wavelength nPPW criteria [1, 12]. High-order 
methods can achieve nPPW > 4 , while second-order finite-
volume method is often limited to nPPW ≈ 20 . This means 
that for resolving a structure of a given wavelength, high-
order methods would need up to a factor of 5 fewer reso-
lution points. However, this property heavily depends on 
the used polynomial degree N as shown in Fig. 2. Gassner 
et al. [12] provide reference values for nPPW depending on 
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the polynomial degree. In this paper, we use N ∈ (1, 3, 5, 7) 
and thus need nPPW(N = 1) ≈ 20 ,  nPPW(N = 3) ≈ 9 , 
nPPW(N = 5) ≈ 7 and nPPW(N = 7) ≈ 6.

Thus, on the same mesh, the simulation with FLEXI 
N = 5 not only has a faster decreasing error but also has 
the smaller error for a given number of degrees of freedom. 
This becomes obvious since FLEXI N = 1 or TAU on the 
h = 102.4 grid correspond in terms of amount of degree of 
freedom with FLEXI N = 5 at h = 101.6 . The Shu-vortex 
test case [13] is utilized to conduct this study. All simula-
tions are run independently and thus without mapping.

The results denoted as “TAU RANS mode” are obtained 
with numerical settings commonly used for the RANS 
zones of hybrid RANS/LES simulations in TAU. A sec-
ond-order central flux approximation stabilized by artificial 
dissipation is used, derived from the scheme after Jame-
son, Schmidt and Turkel [14]. Applying a skew-symmetric 
scheme with matrix dissipation [15] already reduces the 
dissipation level compared to the TAU-default average 
of flux scheme with scalar dissipation. The simulations 
denoted with “TAU LES mode” additionally utilize a 
reconstruction of the convective fluxes using a linear gra-
dient extrapolation at the cell faces, in a way to reduce 
the numerical dispersion of the skew-symmetric scheme 
[16]. Moreover, the coefficient of artificial dissipation is 
lowered by a factor of 16. These settings are suitable for 
the LES zones of a hybrid simulation. In the FLEXI runs, a 
Roe Riemann solver is used [9]. The FLEXI simulation for 
N = 1 shows a result similar to the TAU runs with the same 

order of convergence. However, N = 1 is typically not used 
in practical application, since the advantages of high-order 
schemes are not visible for such low polynomial degree. 
The runs with N = 5 represent a more realistic scenario and 
show the advantage of high-order polynomials.

2.2  Workflow

Before presenting the mapping routines, we first discuss 
the general workflow of how to run a simulation with time-
resolved input data. The general workflow is visualized in 
Fig. 3.

First, the source data have to be provided. Generally, this 
can be in the form of point-wise scattered data. Since in this 
paper we focus on the procedure for mapping TAU data to 
FLEXI, we assume to get either volume snapshots or surface 
data from TAU.

Second, we process the data by choosing an appropriate 
spatial mapping mechanism. In addition, we have to decide 
if we only want to map surface data for an instantaneous 
boundary condition, or if we also want to get the volume 
information to e.g. generate a restart file for FLEXI. The tool 
creates an interpolated file for each input file. The results are 
saved in a  HDF5® format that uses a polynomial structure 
closely related to FLEXI. Thus, it contains an array with 
the interpolated values stored as coefficients of a two- or 
three-dimensional polynomial for each element depend-
ing on whether surface or volume interpolation is used. To 
ensure compatibility with FLEXI, the output polynomial 
degree is identical to the degree of the simulation we want 
to run afterwards.

Higher order representations are prone to aliasing and 
oscillations in general and the quality of the results heavily 
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Fig. 2  Comparison of the convergence behavior of TAU and FLEXI 
for different settings and meshes

Fig. 3  Workflow of imposing a time-resolved boundary condition
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relies on the used point set and polynomial degree we per-
form the interpolation on. Since the output degree and point 
set is defined by the simulation we want to perform eventu-
ally, we cannot use these parameters for mitigating errors. 
Thus, we super-sample the target point representation which 
helps avoiding errors due to oscillations resulting from the 
non-polynomial character of the source points. We then 
map the source data to the super-sampled target data points. 
The super-sampled points are constructed using the same 
set of points (e.g. Legendre–Gauss–Lobatto) as the original 
target point set. We found that using M ≈ [1.5, 2] ⋅ (N + 1) 
points for super-sampling yields good agreement and miti-
gates oscillations significantly. This is in line with the lit-
erature values for overintegration of turbulent data, which 
is commonly used in the DG community for dealiasing [17]. 
After interpolating the source data to super-sampled target 
points, we project the solution to the original basis N < M 
which removes the high modal information that is especially 
affected by aliasing.

Third, we interpolate the results from the second step 
temporally. The mapped volume or surface files created in 
the second step are converted into a dataset containing the 
temporal interpolator for each solution point. The interpola-
tor consists of the coefficients of the polynomial, which are 
dependent on the evaluation time. In addition, we partition 
the data into a user-defined number of subsets to limit the 
amount of data of each interpolator and avoid memory over-
flow during FLEXI runtime.

Fourth, we provide FLEXI with the resulting file. FLEXI 
then evaluates the interpolant in each time step and sets the 
according boundary condition to the interpolated values.

2.2.1  Some remarks on surface data

The mapping algorithms we present can be applied to vol-
ume as well as surface data. Depending on the provided data, 
the spatial mapping algorithms will either use the volume 
solution to extract the target boundary or use the provided 
surface plane directly.

TAU is able to write 2D data from a user-defined plane, 
onto which the flow variables are interpolated internally 
using algorithms of the chimera technique [18]. This inter-
polation will also of course introduce an error that leads to a 
mismatch between the volume solution of TAU and the 2D 
data on the plane. The resulting chimera plane can be read 
in separately. Hence, there can be made significant simplifi-
cations in term of area reduction which reduces the overall 
cost of the mapping algorithms.

2.3  Spatial interpolation

An important step to achieve the coupling of TAU with 
FLEXI is the spatial mapping. Since ultimately we want to 

create an instantaneous boundary condition, we have to map 
surface data only. To keep the interpolation more general, 
we implement a three-dimensional method to also allow vol-
ume interpolation and arbitrary-oriented surface planes in 
the source domain.

A major challenge in creating a mapping between TAU 
and FLEXI is the difference in spatial discretization. Indus-
trial finite-volume codes rely often on tetrahedral meshes. 
Therefore, a direct interpolation is difficult since mesh 
data structures for hexahedral only codes are dissimilar. 
In contrast to FLEXI, TAU stores its solution as low-order 
point-wise data. This results in arrays containing the coor-
dinates (x, y, z) and the flow solution in primitive variables 
U⃗ = (𝜌, u, v,w, p) [19]. FLEXI, however, stores its solution 
as polynomial data for each element [7, 20]. The difficulty 
now is to consistently map the point-wise TAU data to the 
polynomial coefficients needed for the solution polynomials 
in FLEXI. Since FLEXI only uses unstructured hexahedral 
elements and TAU is in contrast also based on tetrahedrals, 
we cannot use the TAU mesh information natively. An exam-
ple of this incompatibility including a schematic of the inter-
polated solution is visualized in Fig. 4.

The interpolation algorithms thus have to work with scat-
tered data. This means we have a cloud of points with a 
submerged target mesh. Therefore, interpolation from the 
TAU source data to the FLEXI target data has to be done 
using unstructured interpolation algorithms. There are sev-
eral algorithms available that are suitable for such tasks.

Scattered data interpolation generally can achieve good 
accuracy and performance but is highly dependent on the 
distribution of the source points [21]. On the other hand, 
implementing scattered data interpolation routines enable 
us to gain a more universal interface, since other codes and 
solution formats can be implemented easily. In Sect. 2.3.1, 
we provide an overview over the scattered data interpolation 
methods used for spatial mapping.

Since the solution data of the source solver is provided 
beforehand, we do not have to map the data during run 
time, which saves a lot of computation time. In addition, the 
meshes used by both codes are known a priori (and remain 
constant during the computation). Still, good performance 
is crucial. Therefore, we implement the interface framework 
with MPI parallelization.

This is done by reading in the mesh and distributing the 
elements equally between each processor using MPI. The 
elements are sorted along a Hilbert curve [20] which mini-
mizes the communication interfaces between the individual 
processors cf. red curve in Fig. 5a. This approach, however, 
can only be done for the target FLEXI mesh because we 
need the mesh information to distribute the data directly. For 
the source data, we only read in data points. Hence, a simpli-
fication and distribution of the load between the processors 
is not possible in a first step. Thus, we read in the source data 
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into shared memory [11, 22]. Each processor then accesses 
the shared memory source data and simplifies it by only 
selecting the data which is necessary to spatially interpolate 
in its individual domain. With this method, we can save a lot 
of computational time and decrease our memory footprint 
without sacrificing accuracy.

If we use surface data as an input to the spatial interpola-
tion algorithms, we have to consider load balancing in more 
detail. The distribution of volume elements that has just been 
described does not take surfaces into account. Thus, for the 
surface mapping, we cannot ensure that every part of the 
decomposed domain contains surface elements that have to be 
mapped (cf. Fig. 5a). Therefore, especially for small domains 
with many processors, it is possible that not all processors 
are working on the task resulting in an inefficient mapping. 
Hence, we have to redistribute the load between the proces-
sors according to the number of surface elements (cf. Fig. 5b). 
This can be done by assigning each surface element a high 
weight for domain decomposition. This weight is chosen by 
counting the number of boundary sides that have to be mapped 
per element and it generally reduces the computational load 
on MPI ranks that contain such a coupling interface. To do 
so, we first have to read in the mesh file normally, then apply 
the surface weighting and finally reinitialize the mesh reading 
process [23]. With this approach, we can gain performance 
improvements while sacrificing a few seconds in the initializa-
tion process due to the necessary reinitialization of the mesh. 
The overall cost of surface interpolation will be lower than 
using volume data. The difference between volume and surface 
distribution is visualized in Fig. 5.

In addition, we have to ensure to provide a buffer region 
around every individual MPI domain in order to establish 
the interpolation stencils for each point. The buffer area is 

estimated by taking the size of the largest element in the 
complete domain of the source points into account. Since the 
largest element is not known directly, we take the distances 
between the scattered points into account and use the largest 
distance for that matter.

2.3.1  Nearest neighbor interpolation

The nearest neighbor interpolation checks the source data 
coordinates and finds the closest point to the desired FLEXI 
target point by point-wise comparison. The values U of the 
source data are then directly stored as a nodal coefficient in 
FLEXI. This type of interpolation is piece-wise constant 
between source data points. Another requirement is an 
evenly distributed source mesh. If these requirements can-
not be met, there is risk of bad results. This does not auto-
matically mean that the results are not physical, but rather 
that the resulting interpolation polynomial inside a DG cell 
is ill-conditioned and can, due to the massive jumps, result 
in an unnaturally oscillating mapped solution. Another phe-
nomenon one can observe is the possibility to get jumps on 
the element boundaries of the target mesh, if the boundary 
nodes are not included. On the other hand, this interpola-
tion technique yields fast and good results if the source and 
target data are well aligned or if the meshes coincide at the 
interface.

2.3.2  Inverse distance weighting

A more general approach is available using inverse distance 
weighting [24]. The target solution is calculated using a 
weighted average of the source value

with Nsource denoting the number of source points in the 
whole domain. In contrast to the nearest neighbor approach, 
we not only take one point into account, but all in the source 
area. The weights 𝜔(x⃗) are depending on the distance 
between the source points and the target solution point

and a weighting exponent p. For p ⇒ ∞ , the inverse distance 
weighting approach resembles the nearest neighbor method. 
A modification to the general inverse distance weighting was 
introduced by Shepard, who proposed to only take the source 
points into account that are within a predefined radius R 
around the target point [25]. This reads as

(1)u(x⃗)target =

∑Nsource

i=1
𝜔i(x⃗)ui,source∑Nsource

i=1
𝜔i(x⃗)

(2)
𝜔i =

1(‖‖x⃗ − x⃗i
‖‖L2

)p

Fig. 4  Visualization of the TAU-FLEXI interface including differ-
ent point sets. Light green curve shows an approximate solution after 
interpolating the TAU solution to the FLEXI point set
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with R denoting a predefined search radius.

2.3.3  Radial basis functions

A third option to consider for unstructured interpolation are 
radial basis functions � [26, 27]. These methods allow for 
high-order accurate interpolants s of unstructured data. The 
interpolant consists of the weighted sum of radial basis func-
tions. In contrast to the other methods introduced earlier, we 
have to solve a linear equation system to invert the Vander-
monde and to determine the weights � satisfying

and, therefore,

with rji =
‖‖‖x⃗j − x⃗i

‖‖‖L2 . We rewrite the interpolation condition 

in matrix notation

This can be rewritten in matrix form as �ij�⃗�i = u⃗j,source using 
index notation. Since we have to invert the matrix � for 
interpolation, the radial basis approach is the most expensive 
of the introduced methods. To solve the equation system, 

(3)𝜔i =

(
max(0,R − ‖‖x⃗ − x⃗i

‖‖L2)
R‖‖x⃗ − x⃗i

‖‖2

)2

(4)s(x⃗) =

Nsource∑
i=1

𝜔i𝜑(
‖‖x⃗ − x⃗i

‖‖L2)

(5)uj,source =

Nsource∑
i=1

�i�(rji)

(6)

⎡⎢⎢⎢⎣

�(r11) �(r12) ⋯ �(r1N)

�(r21) �(r22) ⋯ �(r2N)

⋮ ⋮ ⋱ ⋮

�(rN1) �(rN2) ⋯ �(rNN)

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

�1

�2

⋮

�N

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

u1,source
u2,source

⋮

uN,source

⎤⎥⎥⎥⎦
.

one can use algebraic approaches or iterative equation sys-
tem solvers. The size of the equation system can be limited 
by introducing a limit to the support radius (cf. Eq. (3)) and 
thus not taking all source points into account.

We evaluate the interpolant

and get the value at an arbitrary point in the computational 
domain.

Typical radial basis functions for interpolation are multi-
quadr ic  �(r) =

√
1 + (�r)2  ,  inverse mult iquadr ic 

�(r) =
1√

1+(�r)2
 , Gaussian �(r) = e−(�r)

2 and thin plate spline 

�(r) = r2 ln(r) functions with r = ‖‖‖x⃗j − x⃗i
‖‖‖L2 . The parameter 

� defines the shape of the function and is used for scaling. 
The multiquadric and the thin plate spline have shown to be 
the most reliable radial basis functions for this use case. 
Since the thin plate spline does not require any additional 
user parameter � , we use this function for all further 
investigations.

During implementation of the algorithms above some 
observations were made. First, none of the scattered inter-
polation method is designed in a way to be conservative. 
Thus, we interpolate the primitive variables and, for con-
sistency reasons, convert to conservative variables after 
mapping.

2.3.4  Comparison of the spatial interpolation methods

Before assessing the performance of the spatial interpolation 
routines in context of the mapping routines, we investigate 
the convergence behavior in an isolated test case. Thus, we 
calculate the L2-error of a simple one-dimensional interpola-
tion of a sine function f (x) = sin(2�x).

(7)u(x⃗) ≈

Nsource∑
i=1

𝜔i𝜑(
‖‖x⃗ − x⃗i

‖‖L2)

Fig. 5  Differences between 
MPI domain decomposition for 
volume and surface mapping 
on three MPI processors. Same 
colors correspond with the same 
MPI domain. Space filling curve 
is visualized in red

(b)(a)
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We plot the error in Fig. 6 over the sampling resolution of 
the source data. We can see that radial basis function inter-
polation clearly yields the best results with lower errors and 
a better convergence rate EOC = 5 than nearest neighbor and 
inverse distance weighting interpolation with EOC = 2. We 
assess the accuracy and the differences between the spatial 
interpolation schemes in more detail in Sect. 3.

2.4  Temporal interpolation

In addition to the spatial interpolation, we also have to inter-
polate temporally in order to account for the different time 
stepping schemes in the source and target codes. FLEXI, e.g. 
uses an explicit low storage Runge–Kutta method to advance 
the equation systems in time. TAU on the other hand uses an 
implicit time discretization to accomplish that. However, in 
addition to the different time stepping schemes, the time step 
and output rate of the simulation data can change between 
different simulations. For using the data as an instantaneous 
boundary condition, we have to ensure that we can provide 
the target solver with the correct inflow data at an arbitrary 
point of time. Thus, it is crucial to interpolate the results of 
the spatial interpolation in time to get a continuous temporal 
interpolator.

In contrast to the volume and surface mapping the tem-
poral interpolation consists of purely one-dimensional 

problems. For one-dimensional data, there are vast numbers 
of different interpolation techniques. In this work, we use 
polynomial interpolation in combination with a Lagrange 
basis and spline interpolation.

We use the Lagrange interpolation basis since coefficient 
and solution values coincide [28]. The Lagrange interpola-
tion uses a uniform point set, as the time sampling is usually 
regular, and multiple time steps are combined to a polyno-
mial, without constraining the time derivative at each poly-
nomial interval.

Furthermore, two different variants of spline interpo-
lation are implemented. A common open spline as well 
as the Akima spline [29]. In contrast to a typical spline 
an Akima spline does not take the second derivative into 
account. This leads to a more evenly distributed solution 
and fewer overshoots compared to the open spline. The 
problem of overshoots can also be found in polynomial 
interpolation of degree p ≥ 2 . This becomes especially 
important if an implicit source method is paired with an 
explicit target solver. In this case, the temporal interpo-
lation has to come up for a huge number of time steps 
since the time step in an explicit scheme is typically much 
smaller than implicit time steps. Thus, overshoots can 
play a significant role for the overall mapping quality. If 
the time steps of source and target method are similar, 
the effect of the temporal interpolation becomes smaller. 
However, it should be noted that even in this case, over-
shoots can be generated. Generally, for these reasons, it 
is recommended to either use linear interpolation or the 
Akima interpolation for the most reliable results. We will 
show this in Sect. 3.

Hence, the resulting quality of the interpolation depends 
on multiple factors. First, on the chosen interpolation 
method. Second, on the sample rate of the provided state or 
boundary source files. Thus, a general prediction of the error 
resulting from temporal interpolation is difficult.

In Fig. 7, a schematic overview of the temporal inter-
polation methods is visualized. The vertical dashed lines 
mark the sampling positions of the black reference data. 
For polynomial interpolation, the polynomials of degree P 
are constructed using P + 1 points, resulting in a piece wise 
polynomial representation of the reference data. For spline 
and Akima interpolation, we use the whole one-dimensional 
time series to build up the spline or Akima representation, 
respectively.

The interpolation is done in a separate tool and is not only 
limited to surface data but can also be done with restart files 
of any FLEXI simulation. The result is processed and saved 
in an  HDF5® file which includes the coefficients for every 
polynomial at every temporal sample point.

The resulting files of the temporal interpolation routine 
can either be directly used in FLEXI for evaluation of the 

Fig. 6  Convergence of the L
2
-error of an interpolated one-dimen-

sional sine function for different interpolation methods
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interpolant or even be used to generate a restart file to con-
tinue a simulation at an arbitrary point of time.

The temporal interpolator generated contains the resulting 
polynomial or spline at each degree of freedom. Thus, the 
overall size of the interpolator array has two more dimen-
sions (polynomial coefficients and time) than the solution 
array. With increasing dimensionality, the memory require-
ments of the array also increase. Depending on the amount 
of source data available, it might be necessary to partition 
the resulting temporal interpolant in order to avoid memory 
overflow during simulation of the target domain. Therefore, 
a maximal size for the interpolant array has to be provided 
by the user. The interpolation algorithm will then partition 
the data into equally sized datasets, each containing a period 
of time which results from the user parameter. FLEXI then 
only reads in the dataset that contains the temporal infor-
mation of the current FLEXI time step. Thus, the read in 
interpolant allows for obtaining an interpolated solution at 
an arbitrary point of time within its temporal partition. Dur-
ing runtime of FLEXI, the interpolant is evaluated in every 
Runge–Kutta stage of the timestep.

3  Validation of the interface

In this section, we start validating the mapping algorithms. 
We chose a gradual approach and start by showing a proof of 
concept, followed by the temporal algorithms and in the end 
assess the convergence behavior of the spatial interpolation 
algorithms of the interface.

We start to evaluate the algorithms by applying them 
to very simple test cases. Thus, we chose the linear scalar 
advection equation

due to its simplicity and a priori known exact solution for 
given initial conditions. The transport velocity is set to 
a⃗ = (1, 0, 0)T . We vary the initial conditions between the 
tested scenarios and describe them in the corresponding 
sections in more detail. The source domain Ω ∈ [−1, 1]3 
and the target domain Ω ∈ [1, 3] × [−1, 1]2 are designed to 
have a shared interface at x = 1 . The source data as well 
as target data for these test cases are fully generated using 
FLEXI. Triple-periodic boundary conditions are used for 
the source mesh and the target mesh is designed to have 
periodic boundary conditions in y and z. In x-direction, we 
have the instantaneous interface condition at x = 1 and a 
outflow at x = 3.

3.1  Proof of concept

We start the validation of the interface by applying it to a 
very basic sine test case with

The initial conditions are set to u0(x⃗, t = 0) . The exact 
solution u(x⃗, t) is purely x dependent and thus the values 
at the interface plane u(x = 1, t) do not vary in y and z. 
The target domain is initialized with a constant solution 
u
0
= const. = 0.

For this first test, we match the surface elements at the 
interface and thus can use nearest neighbor interpolation 
without sacrificing accuracy (source and target points coin-
cide). In this case, the nearest neighbor algorithm will just 
copy the data from the source to the target domain. Source 
and target mesh are only offset in x-direction by the length of 
the domain. In Fig. 8, the initial condition is depicted in light 
green. One can also see the solution of Eq. (8) after t = 0.8 
and t = 1.6 . The vertical gray dashed grid lines depict the 
mesh of the simulation grid and the red dotted line visual-
izes the interface between source and target domain. The 
graphs are extracted from the center line in x-direction of the 
equispaced Cartesian cubes, which each have a resolution 
of 16 × 16 × 16 using N = 4 polynomials in each element. 
Legendre–Gauss–Lobatto points are used for the source 
and target simulation. In addition, we avoid temporal inter-
polation by sampling the interface data at every physical 
time step dt ≈ 0.0125 . However, due to the utilized explicit 
Runge–Kutta scheme, we note that we still have to use inter-
polation in order to recover the boundary values in each 
Runge–Kutta stage.

In Fig. 8, we can see that the general workflow presented 
performs as expected and the information gets propagated 
over the interface with a = 1 . Since we do not interpolate the 

(8)
ut + a⃗ ⋅ ∇u = 0 with a⃗ = (a1, a2, a3)

T ∈ ℝ

and x⃗ = (x, y, z)T

(9)u(x⃗, t) = sin(𝜋(x⃗ − a⃗t)).

Fig. 7  Overview over the temporal interpolation methods on a one-
dimensional time series of an arbitrary variable u 
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data in any way in this test case, we expect the overall errors 
between source sine and target sine wave to be comparable. 
In the source domain, we have an L2-error of 9.6506E−07 
after t = 2 . The L2-error in the target domain after t = 2 is 
evaluated in the same way and is 9.6859E−07. This suc-
cessfully proves that the workflow is capable of mapping 
the data without any information loss. We stress that the full 
framework is working as if we were coupling between two 
heterogeneous solvers, with the exception that the source and 
target points coincide.

Note that we used continuous initial conditions between 
source and target domain. We found that one should avoid 
having jumps or large discrepancies of the initial conditions 
between the source and target domain due to nonphysical 
disturbances created at the inlet of the target domain which 
are further propagated. This, however, is not due to the inter-
face mapping algorithms but rather due to the nature of the 
high-order scheme. In practical applications, especially for 
transient simulations, this does not pose a problem since all 
structures starting from free stream will be mapped into the 
target domain.

3.2  Assessing the temporal interpolation 
and sampling

Next, we evaluate the effect of temporal interpolation/sam-
pling on the interface mapping process. Thus, we investigate 
the effects of different temporal interpolation schemes and 
sampling rates on the incoming solution, which we map via 
the instantaneous boundary condition. For this test case, we 
chose different exact solution and initial conditions for the 
linear advection equation (8). To evaluate the effect of the 
sampling, we chose an initial condition that includes a dis-
continuity in order to visualize the information loss. Thus, 
we use

We use Legendre–Gauss–Lobatto nodes with N = 4 on a 
256 × 1 × 1 source and target domain. The surface elements 

(10)u(x, t) =

{
1. if − 0.5 < x − a1t < 0.5

0. else
.

at the interface are again matched. Thus, we can use near-
est neighbor interpolation to interpolate the surface data in 
space, without sacrificing accuracy (copy values from source 
to target). Figure 11a depicts the simulation at two discrete 
points in time evaluated with different Δt-interpolants. The 
interface is located at x = 1 and the discontinuities travel 
into the target domain on the right side of the red dotted 
interface with a = 1.

Already in the overview graph in Fig. 11a, we can see 
substantial differences between the two interpolated jumps. 
For this test, we chose in total three sampling rates. A fine 
sampling rate at Δt ≈ 10dt which is approximately ten times 
the explicit FLEXI time step dt ≈ 0.01 and two coarser sam-
pling rates at Δt ≈ 50dt and Δt ≈ 100dt . In Fig. 11a, only 
the finest and the coarsest sampling rate are visualized. Fig-
ure 11b shows the jumps of all three sampling rates at the 
same evaluation time t in more detail. Since the x-axis is 
scaled identically, one can see that the influence of the tem-
poral mapping on the target FLEXI simulation is very high. 
There are two main effects visible: 

1. The temporal distance between two samples affects the 
slope of the jump and

2. the temporal interpolation method has an effect on the 
quality of the jump representation.

The first observation has to only result from the temporal 
interpolation since the slope of the shock has been steeper 
in the source domain. In addition, we see that lowering Δt 
increases the slope again. Thus, Δt has to be chosen in a 
way that the steepest gradient in data can be represented 
sufficiently. This, however, is very much problem dependent 
and requires knowledge of the data. In Sect. 4, we assess an 
approach on how to determine this in the context of turbulent 
eddies.

For the second point, a more general statement can be 
made, since this observation is nearly independent of Δt and 
only becomes more prominent if Δt becomes sufficiently 
large. Higher order polynomial approximations tend to oscil-
late, especially for equispaced point distribution which is the 
case for temporal sampling. Therefore, in Fig. 9, polynomial 

Fig. 8  Overview of the spatial 
mapping process for a traveling 
sine wave
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interpolation is only shown up to second degree. In addition, 
the well-known Spline interpolation tends to oscillations for 
high Δt . Most favorable thus is linear or Akima interpola-
tion, which both represent the vertical jump best and recover 
the steepest gradients. Higher order polynomial and spline 
interpolation in this case fail mainly because the physical 
time steps dt at which we sample are roughly equispaced. 
Thus, we see the so-called Runge’s phenomenon for interpo-
lation using an equispaced point set in time. This is a crucial 
point since the TAU output frequency is only determined by 
its implicit timestep. The target solver FLEXI thus has to 
recover the data in every explicit time step. However, having 
a fixed source sampling rate and decreasing the target time 
step, will not further increase the error since the interpolant 
is only determined by the sampling rate of the source data 
and is only evaluated during FLEXI runtime.

Since Akima interpolation yields slightly smoother 
results in combination with steeper gradients, we use Akima 
interpolation for all following test cases.

3.3  Convergence of the spatial mapping

Another important aspect one has to consider is the conver-
gence behavior of the mapping process. To measure the effect 
of the interpolation routines, we decided to calculate the error 
norm of the whole mapping and simulation process. Thus, 
the error includes spatial and temporal interpolation errors 
as well as the error associated with imposing the instantane-
ous boundary condition in FLEXI (e.g. discretization error).

To run the convergence test, we modify the initial condi-
tions from the one-dimensional sine in Fig. 8. We add a y 
and z dependency to the exact solution u in order to have 
varying u values on the interface plane. Thus, we get

For the sine wave and the linear transport, we have seen 
earlier that we can recover the exact solution on the target 
domain and that the information is propagated correctly via 
the instantaneous boundary condition if there is no spatial 
and temporal interpolation involved (just copy the values 
from source to target). Thus, we want to investigate the effect 
of different non-matching interfaces (point sets and resolu-
tion) on the error of the simulation and, therefore, have to 
combine spatial and temporal interpolation techniques for 
the first time. We again use Legendre–Gauss–Lobatto points 
with N = 5 in the source and target domain. In addition, we 
use super-sampling with M = 8 . For the linear transport, 
this is not necessary, since in contrast to the Navier–Stokes 
equations, we do not see aliasing here. However, we want 
to assess the convergence as close to the later application as 
possible and additionally avoid matching all the degrees of 
freedom in any case ( Nsrc = 5 ≠ 8 = Mtar).

(11)u(x, y, z, t) = sin(�(x − a1t)) + sin(�y) + sin(�z).

In Fig. 10, we see two different testing scenarios. The 
first in Fig. 10a shows the L2-error for increasing target 
resolution and a fixed source mesh. The second scenario in 
Fig. 10b depicts the error for an increasing source resolution 
and a fixed target mesh. With “grid”, we mean the number 
of elements in each spatial direction of the Cartesian cube. 
The sampling timestep is defined by the physical timestep 
dt of the source data. Thus, for, e.g. the source grid “1”, we 
extract the interface data at every physical time step and use 
Akima interpolation to interpolate it to the physical time step 
of the “32” target grid that is 32 times smaller.

In Fig. 10a, we assess the effect of varying target mesh 
resolutions on the overall error. The resolution of the 
source mesh is fixed at 8 × 8 × 8 and 32 × 32 × 32 respec-
tively. We expect the overall error to converge, since the 
error cannot be mitigated any further if it is dominated 
by the source data. Thus, we can see the influence of the 
source data on the target domain. For the 8 × 8 × 8 source 
mesh, we can observe this behavior very well. Starting at 
gridtar ≈ 4 , we see that for all interpolation algorithms, 
there is no further improvement. For the finer source mesh, 
we can observe a similar behavior, however, the overall 
error is lower and the error is converged later. Due to the 
error introduced with the spatial interpolation, we cannot 
see a decreasing error until the source mesh resolution.

In Fig.  10b, we investigate the effect of a varying 
source mesh on a fixed target mesh. This can be inter-
preted as increased input quality for the mapping for a 
given target domain. In this test case, we again assessed 
the influence for two fixed target resolutions at 8 × 8 × 8 
and 32 × 32 × 32 . Nearest neighbor, Shepard as well as 
RBF interpolation show decreasing errors for increasing 
source grid resolution. This time nearly linear decaying 
errors can be seen up to the resolution of the target mesh. 
However, especially for the gridtar = 8 × 8 × 8 case, we can 
see that RBF interpolation is capable of recovering infor-
mation from source grids with finer resolution than the 
target mesh. Shepard and nearest neighbor show clearly 
weaker performance here and have changing slopes of the 
error in this source grid regime.

Overall, we can rank the performance of the three tested 
spatial interpolation techniques. Nearest neighbor inter-
polation shows as expected the weakest performance with 
an experimental order of convergence of EOC ≈ 1.2 in 
Fig. 10b. Shepard interpolation shows overall lower errors 
at roughly the same order of convergence EOC ≈ 1.5 . How-
ever, Shepard interpolation is capable of retaining the error 
even for source resolutions higher than the target resolu-
tion in Fig. 10b where nearest neighbor interpolation shows 
inconsistent results. Finally, radial basis function interpo-
lation clearly yields the best results with an order of con-
vergence of EOC ≈ 2.8 . Thus, using RBF interpolation is 
recommended. Overall, the results in Fig. 10b underline the 



116 M. Blind et al.

1 3

observations made in Fig. 6. However, the convergence rates 
in Fig. 10b are lower for all interpolation methods. The qual-
itative observations, however, are identical and the losses 
in EOC are equivalent for all interpolation techniques. One 
should note that the test case in Fig. 10b has an increased 
complexity, since it is two-dimensional and we evaluate the 
error over the whole mapping process compared to an iso-
lated one-dimensional interpolation test in Fig. 6.

For large source datasets, one should keep in mind that 
solving the equation system necessary to the get the inter-
polation coefficients for the radial basis functions gets very 
expensive and RBF interpolation even in this simple test 
case was noticeably (approx. up to an order of magnitude) 
slower than nearest neighbor and Shepard interpolation.

4  Results: cylinder flow

In this section, we investigate the flow around a cylinder at 
a Reynolds number of Rec = 3900 [30, 31]. The diameter of 
the cylinder is defined as c and is used as the characteristic 

length in this investigation. The domain has a spanwise 
extension of c. For the first time, we now map actual TAU 
surface data into a FLEXI domain.

4.1  Generating the reference data

The main reason we chose the cylinder flow as the main test 
case is the fact, that we can afford to run the whole domain 
in FLEXI and in TAU. Thus, we not only can compare the 
mapped results against the TAU solution but also against the 
reference DNS created with FLEXI. In addition, the cylinder 
is a well-known geometry in the fluid mechanics community 
and has been investigated in detail before.

We use the same number of degrees of freedom in the 
TAU source and the appended FLEXI target mesh. Thus, 
the target mesh resolution including the interface has to be 
divided by a factor of eight in order to accommodate for 
the higher polynomial degree of FLEXI N = 7 . With this 
approach, we minimize the resulting errors (cf. Fig. 10a). 
We will show later that this resolution is sufficient to map 
all physical structures occurring in this test case.

Fig. 9  Overview and detailed plots of the jump test case for different Δt and temporal interpolation algorithms
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4.1.1  Simulation setup

Next, we discuss the simulation setup of the cylinder test 
case. We describe the setup for FLEXI as well as TAU.

We use the same base mesh setup for the TAU and FLEXI 
DNS reference simulation. The only difference is again that 
the FLEXI case is coarser by a factor of eight to consider 
the high-order polynomials that are used in each element. 
Thus, if FLEXI is run with N = 7 , we have the same num-
ber of degrees of freedom as TAU. We also investigate the 
solution quality of lower order polynomials later. For the 
simulation in FLEXI, we use N ∈ [3, 5, 7] polynomials on 
the same grid.

Due to the limitation of FLEXI to hexahedral elements, 
we compare the amount of DOFs in the structured bound-
ary layer area and the refined wake area since the amount 
of DOFs in the free stream area differs due to the different 

element types. For FLEXI with N = 7 and TAU, we solve 
the governing equations at approx. 31 Mio. points. The over-
all mesh has a radius of 100c using periodic boundary condi-
tions in spanwise direction and far field boundary conditions 
on the outer edge of the mesh. The cylinder itself is modeled 
using an adiabatic no-slip wall.

For the FLEXI simulation, we apply the BR1 lifting pro-
cedure [32] to take the parabolic terms into account. We use 
kinetic-energy-preserving skew-symmetric splitting of the 
advective terms of the compressible Navier–Stokes equa-
tions according to Pirozzoli [33] to mitigate aliasing insta-
bilities. The Roe numerical flux is used to solve the Riemann 
problems at the cell interfaces [9]. We use the Vreman model 
for explicit sub grid scale modeling [34] with C = 0.11 . The 
resulting semi-discrete system is advanced in time by apply-
ing an explicit-in-time low storage Runge–Kutta method 
with optimized stability region [35].

Fig. 10  Comparison of the convergence behavior of the entire mapping procedure including spatial, temporal mapping and the instantaneous 
boundary condition
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We also performed a hybrid RANS/LES simulation with 
TAU using the zonal AZDES (automated zonal detached 
eddy simulation) method, which was developed at the Insti-
tute of Aerodynamics and Gas Dynamics (IAG) [36, 37]. 
Within this method, an integral turbulent length scale in the 
flow field is calculated from a precursor unsteady RANS 
simulation based on the modeled turbulent quantities, which 
reaches high values in the areas of separated flow. All areas 
where this turbulent length scale is greater than a cutoff 
value chosen by the user, which is based on the mesh resolu-
tion, are then marked as DDES [38] zones for the following 
actual hybrid simulation, as the mesh is fine enough here 
to resolve the larger turbulent scales. The rest of the flow 
field is marked for (unsteady) RANS computation, which 
includes attached boundary layers. In addition, the shielding 
of the boundary layer can be fine-tuned by enforcing RANS 
for all positions closer to the airfoil or body surface than a 
chosen distance. Similarly, LES mode can be forced for all 
distances greater than a set limit. We use a second-order 
central flux computation for the convective terms of the 
RANS equations, stabilized by artificial dissipation (matrix 
dissipation), applying a low-dissipative skew-symmetric 
scheme according to Kok [39]. For the turbulence model 
equations, a second-order upwind scheme according to Roe 
is employed. For the temporal discretization, a second-order 
dual time stepping method [40] is used which is based on the 
implicit BDF2 (backward differentiation formula) scheme. 
The final physical time step is chosen to 1/150 of the con-
vective time scale, which leads to a CFL number of one in 
the wake area of the cylinder to reach sufficient temporal 
resolution for LES. The turbulence is modeled by the SSG/

LRR-� Reynolds stress model [41], which acts as sub grid 
scale model in the LES zones.

4.1.2  Sensitivity on resolution

First, we assess the sensitivity of the test case on the resolu-
tion. We conduct this study in FLEXI since we are interested 
if the chosen resolution is sufficient for a DNS. This test case 
was specifically chosen since it allows to conduct a fully 
resolved simulation in FLEXI and in TAU. For typical appli-
cations of the inflow condition, this will not be possible.

In Fig. 11, the spectra of the turbulent kinetic energy 
are shown at three discrete points in the wake of the cyl-
inder. Each figure contains the spectrum for three simula-
tions using  different polynomial degrees on the same grid.

The N = 3 spectrum in Fig. 11 shows a deviation from the 
N = 5 and N = 7 curves at all evaluation locations. Thus, we 
can assume that the resolution for N = 3 is not sufficient for 
a DNS and does not yield enough dissipation. Since the tur-
bulent kinetic energy spectra for N = 5 and N = 7 coincide, 
we can assume that we are converged at this resolution and 
thus N = 5 is sufficient for running a DNS. The expected 
Strouhal frequency of the cylinder is clearly visible as a dis-
tinct peak in the spectrum [31] for all polynomial degrees.

The simulation with N = 7 (same number of degrees of 
freedom as TAU mesh) is too fine for a typical LES/DNS 
since the mesh was originally created to be suitable for a 
hybrid RANS/LES and a FV code. Evaluating the viscous 
wall spacing in FLEXI yields y+ ≈ 0.01 which is more than 
sufficient, even for a DNS. This, however, underlines the 
benefits of a high-order scheme when resolving turbulent 
eddies.

Fig. 11  Comparison of the turbulent kinetic energy of different polynomial degrees N. Taken from the FLEXI simulation of the full domain
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As already shown in Fig. 2 using the same amount of 
DOFs in FLEXI and in TAU with a high polynomial degree 
in FLEXI shows the strength of the high-order scheme, since 
this resolution is sufficient in FLEXI to run a DNS.

4.2  Coupled simulation

We now continue assessing the FLEXI simulation using the 
TAU data as an inflow condition. The target mesh in this 
case is a simple box that has the same y and z dimensions as 
the interface and a sufficiently long x extension for the turbu-
lent wake to develop and travel. In ±y , the mesh has periodic 
and in ±z Euler wall boundary conditions. The inflow is real-
ized using the mapped TAU data. At +x , a subsonic outflow 
condition is used. The computational domain of the target 
FLEXI mesh has an extension of

In Fig. 12, the simulation setup is depicted. Note that the size 
of the interface planes in Fig. 12 at xI does not match the size 
in the actual simulation. In the setup, the interface planes are 

Δx = 10c, Δy = c and Δz = 4c.

designed in a way that all the turbulent wake structures are 
captured by the planes and all vortical structures of the wake 
are fully contained in the interface planes.

The most important aspects for assessing the performance 
of the interface is to define the interface locations and to 
define record points (also known as probe points). We decide 
to place two interface planes at position xI ∈ [1.5c, 4c] in the 
wake as well as two record points xP ∈ [4.75c, 5.25c].

4.3  Interpolation error

Next, we assess the interpolation error resulting from inter-
polating a wake plane ( gridsrc = 573 × 64 ) as defined in 
Fig. 12 onto the FLEXI boundary condition ( gridtar = 32 × 8 
with N = 7 ) using the modified Shepard method. We inves-
tigate the error for plane xI1 , which is the one that is located 
closest to the cylinder. The error is assessed using the TAU 
source data as reference data. To get the same point set 
for TAU and FLEXI, we evaluate the polynomials of the 
mapped FLEXI solution on the TAU solution points. The 
results are visualized in Fig. 13.

Qulitatively, the results in Fig. 13 look very convincing. 
The structures of the source data are all represented in the 
mapped solution. Taking a closer look, one can see small 
overshoots of the mapped solution at the element bounda-
ries. This effect has already been mitigated using a super-
sampling as dealiasing technique. To quantify the error, we 
look at the difference between the source and the mapped 
data visualized in Fig. 14.

Thus, we evaluate the error of the x-momentum 
for three resolutions gridtar = 32 × 8 , gridtar = 16 × 4 
and gridtar = 8 × 2 . The plots show the relative devia-
tion of the interpolated target data based on the source 
data. The x-momentum plot confirms the observa-
tions we made in Fig. 13 and shows a very small error 
in the whole domain. The error increases as expected 
for coarser resolutions. Calculating the L2-errors for all 
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three meshes yields L2-error�u(32 × 8) = 9.65E − 08 , 
L2-error�u(16 × 4) = 3.03E − 07 and L

2
-error�u(8 × 2) yield-

ing an convergence rate of EOC = 1.31 which is in line with 
our findings from Fig. 10b for Shepard’s method. Especially 
in the part containing eddies in the middle of the interface 
planes, we see large errors at the eddy boundaries.

In Table 1, we can see the minimal and maximal values 
of the primitive variables for source and mapped data. In 
addition, the integral mean value is listed. One can note that 
the mapping yields very good results for density and pres-
sure. In contrast, especially for the velocities, we see small 
deviations from source data. This error is based on the fact 
that the interpolation is not conservative and on the mag-
nitude of the variations in the instantaneous source fields. 
This gets especially pronounced for the velocity components 
due to changing signs and the fact that velocity variations 
are much larger compared to their mean in contrast to den-
sity and pressure. However, by applying the conversion of 
primitive to conservative variables after interpolation, we 
ensure that—despite the interpolation itself not guaranteeing 
conservativity—we get consistent conservative variables.

Hence, due to flexibility of the scheme and the generally 
very small effect on the mapped results, we can neglect the 
effects of the non-conservativity (cf. Table 1) and directly 
use the mapped plane as an inflow condition.

4.4  Influence of the sampling rate

Now, we assess the effect of the sampling rate in time of 
the source data on the quality of the solution in the target 
domain, which is a very important user parameter that has 
to be considered when creating a coupled simulation. We 
do so by investigating the effect on the contribution of 
the incoming turbulence on the turbulent kinetic energy.

In Fig. 15, the turbulent kinetic energy spectra at two dis-
tinct probe points are visualized. The different colors depict 
different temporal sampling. With NSkip , we mean how many 
TAU snapshots are skipped in time. NSkip = 1 means that 
every temporal snapshot is used. The physical TAU sam-
pling rate is ∼ 150 snapshots per characteristic time. The 
characteristic time is defined as the time it takes the fluid 
to cover the distance of the diameter of the cylinder. For 
NSkip = 2 , we only use every second snapshot. The lighter 
the color gets the fewer snapshots are used to recover the 
TAU solution in FLEXI.

Figure 15 shows that the results are heavily dependent 
on the sampling rate. This seems reasonable since the sam-
pling rate determines which structures are mapped via the 
instantaneous boundary condition. According to the Nyquist 
criterion, there is a value for NSkip for which the solution is 
not represented anymore. In this case for NSkip ≥ 512 , we 

Fig. 14  Relative errors in 
instantaneous x-momentum in 
the cylinder wake at x

I1
= 1.5c 

plane, for different target grid 
sizes
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Table 1  Minimum, maximum 
and integral mean values of the 
primitive variables resulting 
from mapping the TAU source 
data ( gridsrc = 573 × 64 ) onto 
interface plane x

I1 = 1.5c 
( gridtar = 16 × 4 , N = 7)

� u v w p

Mean
   Source 2.014E−03 2.806E+01 2.001E−01 − 6.915E−01 1.578E+02
   Mapped 2.014E−03 2.803E+01 2.013E−01 − 6.888E−01 1.578E+02

Min.
   Source 1.986E−03 − 2.975E+01 − 3.402E+01 − 2.510E+01 1.553E+02
   Mapped 1.986E−03 − 2.978E+01 − 3.333E+01 − 2.508E+01 1.553E+02

Max.
   Source 2.020E−03 4.800E+01 3.178E+01 2.967E+01 1.583E+02
   Mapped 2.020E−03 4.787E+01 3.153E+01 2.932E+01 1.583E+02
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no longer see agreement with the reference solution. For 
smaller NSkip , there is better agreement with the black refer-
ence solution (FLEXI N = 7 DNS). Hence, two major obser-
vations can be made. First, for high NSkip , the major flow 
structures cannot be recovered and even the Strouhal fre-
quency is not represented correctly. In addition, after some 
development in the target domain at x = 5.25c , we can see 
that there is a lot of disagreement even for low k. Second, 
we can observe that the energy does not adapt and we lose 
energy in high modes for large NSkip.

From these observations, we can conclude that the 
sampling frequency is dependent on the structures that 
have to be mapped to the new domain. Thus, we define a 
measure to quantify the “eddy size - sampling rate” rela-
tion which is closely related to the underlying spatial dis-
cretization scheme. From the literature (e.g. [1, 10]), we 
know that there is a similar criterion for spatial discretiza-
tion, which uses the parameter numbers per wavelength 
nPPW to quantify the property of a spatial discretization 
scheme in resolving multi-scale structures. For DGSEM, 
it is known that nPPW,DGSEM ⪆ 6 for the polynomial degrees 
used in this paper.

In this case, we take two sizes as reference. First, accord-
ing to [42], the large structures are of the size of the cylinder 
which corresponds to L = 1c . From the simulation setup and 
the properties of the DG scheme, we estimate the smallest 
structures according to

with Ldomain denoting the size of the domain and #DOF the 
number of DOFs used to discretize the domain. Taking 
u∞ into account, we get an approximation for how long 
it takes an eddy to be advected over the interface plane, 
assuming Taylor’s hypothesis [43]. Taking the sampling 
frequency into account, we can estimate that for the small-
est structures, we need NSkip ≈ 4 and for the large struc-
tures NSkip ≈ 64 is sufficient. This behavior for L = c is 
also underlined in Fig. 15. Only using every 64th sample 
NSkip = 64 still provides us with the main structures and 
correct amplitudes, while NSkip > 64 shows signs of under-
resolution. Using this information, we can approximate a 
criterion on how many points we need per structure/eddy 
that has to be transported over the interface. It turns out 
that for both large and small eddies we need approximately 
2.3 samples per eddy. As one would expect, we can con-
clude that spatial and temporal discretization requirements 
are similar for the interface.

We repeated this evaluation for both interface planes xI1 
and xI2 . Both showed qualitatively identical results.

(12)l =
L
domain

#DOF ⋅ n
PPW,DGSEM

≈ 0.06c.

5  Summary

In this work, we introduced a method to generate an instanta-
neous boundary condition relying on a precursor simulation. 
We presented the numerical methods necessary to handle 
differences in spatial and temporal discretization via inter-
polation. The scheme is validated for simple test cases and 
a more complex cylinder wake.

Fig. 15  Turbulent kinetic energy spectra at two distinct probe points, 
taken from the FLEXI target domain at two distinct probe points x

P1
 

and x
P2

 in the wake with varying sampling rate of the TAU inflow 
data. The black reference is generated calculating the energy spec-
trum from the FLEXI N = 7 DNS on the full mesh at the same points
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We have shown how to generate numerically stable inflow 
and initial conditions with the methods described in this 
paper that are universally applicable also to other solvers 
than TAU and even experimental data.

The requirements regarding sampling rate are similar to 
those of the spatial discretization and thus need approxi-
mately four sampling points per wavelength, depending on 
the temporal interpolation scheme used.

We implemented several mapping techniques and showed 
the differences in interpolation quality and additionally dem-
onstrated their capabilities of reconstructing scattered source 
data. In addition, we utilized super-sampling of the interpo-
lation to increase the overall accuracy and to mitigate the 
errors due to aliasing and numerical incompatibilities.

In terms of spatial resolution difference at the interface, 
we observed that increasing the resolution of the source data 
never posed a problem. However, coarsening the data too 
much can produce large aliasing errors which cause trouble 
for the high-order scheme. Thus, we recommend at least 
having the same amount of target sampling points and source 
points on the interface.

The introduced interface now has to be applied to more 
complex scenarios. In a next step, we thus plan to apply the 
coupling between TAU and FLEXI to the tandem wing con-
figuration test case visualized in Fig. 1. That simulation was 
done using TAU only and provides the capabilities of effi-
ciently using FLEXI for subdomain simulations. In a future 
work, we hence aim to investigate the effects of the turbulent 
wake onto the boundary layer of the HTP. The toolchain 
introduced in this paper is already designed to handle these 
kind of challenging simulations. Another future application 
of the interface is the adaption of the framework to more 
solvers in order to further enhance the capabilities of the 
toolchain and increase the amount of use cases.
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