
Vol.:(0123456789)1 3

CEAS Aeronautical Journal (2024) 15:105–123
https://doi.org/10.1007/s13272-023-00638-1

ORIGINAL PAPER

A time‑accurate inflow coupling for zonal LES

Marcel P. Blind1  · Johannes Kleinert1  · Thorsten Lutz1 · Andrea Beck1 

Received: 20 September 2022 / Revised: 2 January 2023 / Accepted: 11 January 2023 / Published online: 9 March 2023
© The Author(s) 2023

Abstract
Generating turbulent inflow data is a challenging task in zonal large eddy simulation (zLES) and often relies on predefined
DNS data to generate synthetic turbulence with the correct statistics. The more accurate, but more involved alternative is to
use instantaneous data from a precursor simulation. Using instantaneous data as an inflow condition allows to conduct high
fidelity simulations of subdomains of, e.g. an aircraft including all non-stationary or rare events. In this paper, we introduce
a toolchain that is capable of interchanging highly resolved spatial and temporal data between flow solvers with different
discretization schemes. To accomplish this, we use interpolation algorithms suitable for scattered data in order to interpolate
spatially. In time, we use one-dimensional interpolation schemes for each degree of freedom. The results show that we can
get stable simulations that map all flow features from the source data into a new target domain. Thus, the coupling is capable
of mapping arbitrary data distributions and formats into a new domain while also recovering and conserving turbulent struc-
tures and scales. The necessary time and space resolution requirements can be defined knowing the resolution requirements
of the used numerical scheme in the target domain.

Keywords  DGSEM · Instantaneous inflow condition · Coupling · Zonal LES

1  Introduction

In modern computational fluid dynamics (CFD) research,
large eddy simulation (LES) is becoming more popular due
to increased computation performance [1]. However, many
practical applications still are out of range for a detailed
investigation using this technique. Therefore, many simula-
tions run today are based on so-called zonal approaches that
often depend on predefined DNS data to generate synthetic
turbulence with the correct statistics. By zonal, we mean
that only a small subset of a domain is simulated with the
LES method in order to decrease computational cost, while
the majority of the domain is for example solved by a much

cheaper Reynolds-averaged Navier–Stokes (RANS) method,
or the subset is equipped with suitable boundary conditions,
in particular scale-resolving inflow data. This can be of spe-
cial interest in the simulation of turbulent boundary layers,
where we do not want to simulate the initial transition pro-
cess but are just interested in the fully developed boundary
layer as a starting point. To achieve this, many approaches
have been developed, such as the synthetic eddy method [2,
3] or the recycling–rescaling approach [4, 5] which allow
for significantly smaller domains. A practical example is the
simulation of acoustic noise at the trailing edge of an airfoil
where a detailed simulation of only a part of the airfoil is
needed [6]. One similarity of the applications just described
is their dependency on boundary layer properties and, there-
fore, reference data from the literature.

Another slightly different example is the investigation
of the interaction of the turbulent wake from the wing of
an aircraft with the boundary layer of a horizontal tail
plane (HTP) of the same aircraft (cf. Fig. 1). The described
scenario poses a challenge, since fully scale-resolving
codes often cannot afford to compute the whole aircraft
and codes that are capable of running a simulation of a
whole aircraft are often not able to run high fidelity simu-
lation of parts of it. Therefore, there is the need to map

 *	 Marcel P. Blind
	 blind@iag.uni-stuttgart.de

	 Johannes Kleinert
	 kleinert@iag.uni-stuttgart.de

	 Thorsten Lutz
	 lutz@iag.uni-stuttgart.de

	 Andrea Beck
	 beck@iag.uni-stuttgart.de

1	 Institute of Aerodynamics and Gas Dynamics, University
of Stuttgart, Pfaffenwaldring 21, 70569 Stuttgart, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s13272-023-00638-1&domain=pdf
http://orcid.org/0000-0002-4737-9359
http://orcid.org/0000-0003-0235-9271
http://orcid.org/0000-0003-3634-7447

106	 M. Blind et al.

1 3

the results in a time-accurate manner from one simulation
to a boundary/initial condition on a detailed simulation
with a smaller domain. In this work, the main focus lies
on imposing inflow boundary conditions from mapped
data. The use of mapped data at the outflow of the smaller
domain is in principle possible but was not investigated.

Using the described method allows for refined simu-
lation of areas of special interest. In addition, such a
coupling between these codes enables a way to further
investigate the interaction between turbulence of different
physical scales very efficiently. Therefore, zonal simula-
tions of high Reynolds number flow become feasible.

When trying to couple different numerical codes, we
encounter several problems on how to approach this:

1.	 Is a two-way coupling necessary or is one-way suffi-
cient?

2.	 Do we couple the codes during runtime?
3.	 Are the underlying numerics compatible?

The first question is—in context of the scenario described
above—easy to answer. Since we only are interested in
the effects of an incoming flow to the target domain, a
one-way coupling is sufficient. We note that, depending
on the equation system, a one-way coupling via a pre-
scribed Dirichlet boundary is prone to errors, since infor-
mation transport is limited to one direction. However, we
can justify this simplification by assuming that we e.g.
extract the flow in a wake region with no proximity to a
wall in case of the compressible Navier–Stokes equations.
In addition, the simplification removes a lot of complexity
and thus enables efficient coupling of different solvers and

experiments which would not be possible in a two-way
coupled way.

Thus, we can directly answer the second question. Having
both codes run separately allows us to perform the mapping
in a preprocessing step for the zonal simulation and thus
removes a bottleneck during runtime. In addition, it avoids
the complexities of having to solve the high-performance
computing (HPC) problem of having to run two possibly
very heterogeneous codes synchronously and establish effi-
cient parallel communication patterns. As mentioned before
the coupling is designed to perform detailed simulations of a
subdomain, meaning that the area of special interest is also
contained in the full domain simulation and, therefore, is
assumed to be represented in a sufficient way to capture all
the necessary physics. In addition, we have to consider that
the incoming physics can be truncated. We thus investigate
the influence of different resolution combinations in order
to quantify this error.

The third question is harder to answer since we not only
have to take the spatial discretization such as finite-volume,
finite-difference and finite-element methods into account,
but also take care of the temporal discretization, which in
most applications is either implicit or explicit. In general,
two choices for mapping the solutions between two hetero-
geneous representations are possible: a projection approach
and an interpolation method. While the former is (approxi-
mately) conservative, ensuring this property on arbitrary
meshes in space and time is cumbersome, expensive (as it
requires non-local operations) and not very flexible. The
interpolation approach relaxes this condition, yielding a
very general mapping process and allowing for extending the
algorithms to work with arbitrary (x, y, z) data as an input
and map it to a compatible data format. The mapping algo-
rithms thus have to be able to capture resolution differences
from both grid spacing and numerical efficiency per DOF,
arbitrary points and inconsistent time steps. Hence, inter-
polation algorithms seem to be a good choice for achieving
these properties in space and time.

Another problem we have to tackle is how to deal with
large data sets. Although we opt for an offline coupling
which avoids having to transfer the data in situ, time-
resolved surface or volume data is very memory intensive.
Thus, memory management algorithms have to be taken into
account, including parallelization, load balancing and data
reduction in order to keep compute costs low.

In this paper, we want to show that mapping instantane-
ous data from the DLR finite-volume code TAU to the high-
order spectral element code FLEXI is possible and allows for
detailed simulation of subdomains. Thus, we want to answer
the following research questions:

1.	 Is it possible to get a mapping for the data which allows
for a numerically stable coupled simulation?

TAU

FLEXI

w

−80 −40 0 40 80
vertical velocity w

Fig. 1   Visualization of the w-component of the velocity in the tan-
dem wing configuration showing the wing wake interacting with
the HTP. The simulation was run using TAU. Region of interest for
detailed simulation in FLEXI is highlighted

107A time‑accurate inflow coupling for zonal LES﻿	

1 3

2.	 Which temporal resolution is needed?
3.	 How does the difference in spatial resolution (mesh and

numerical efficiency per DOF) affect the mapping error?

2 � Numerical methods

An important aspect for the mapping algorithm is the knowl-
edge of the underlying numerics and the associated scale-
resolving properties which we are going to assess in more
detail in the following section.

2.1 � Code frameworks

The target numerical scheme for which the data has to be
prepared is the open-source discontinuous Galerkin frame-
work FLEXI, developed at the University of Stuttgart [7].
In this scheme, the domain is partitioned into non-over-
lapping unstructured hexahedral elements. We can choose
an arbitrary polynomial degree for the elements. This also
means that the solution in each element is represented as a
polynomial.

In contrast to the spectral element code FLEXI, the
source data are typically point-wise data resulting from an
experiment or finite volume code. The presented mapping
algorithms are designed and implemented to be generally
applicable but are optimized to work with the DLR finite-
volume code TAU. In Fig. 1, a typical application of TAU is
visualized. TAU uses hybrid RANS/LES methods, e.g. for
cases with separated flows, where attached boundary layers
are treated in RANS mode and detached wake regions are
resolved in LES mode. Thus, the effect of the wing wake on
the boundary layer of the HTP is hard to investigate within
TAU. FLEXI on the other hand resolves the boundary layer
and thus is capable of quantifying the influence of the wing
wake. Thus, the region of interest that can be simulated
within FLEXI is marked in Fig. 1. TAU will also be used to
validate the results in Sect. 4.

2.1.1 � TAU​

The finite-volume solver TAU is developed by the Ger-
man Aerospace Center (DLR) and widely used among the
aviation industry [8] and universities. It solves the Euler or
RANS equations both on structured and unstructured grids.
Several one- and two-equation models and Reynolds stress
models are implemented for turbulence modeling. In addi-
tion, LES or hybrid RANS/LES simulations can also be
performed. Hexahedra, tetrahedra, triangular prisms and
pyramids are supported elements for the cells of the primary
grid. TAU uses the so-called dual mesh approach. Control
volumes are constructed around the nodes of the primary
mesh, which are used for the spatial discretization. For the

computation of the numerical fluxes at the cell bounda-
ries of the dual mesh cells, different upwind schemes and
central approximations are available. Both explicit and
implicit schemes can be chosen for the integration in time.
The resulting linear system is solved with SGS or LUSGS
schemes. For convergence acceleration, local time stepping,
residual smoothing and multigrid methods are used. Paral-
lelization is achieved by domain decomposition, with com-
munication through the message passing interface (MPI).

2.1.2 � FLEXI

FLEXI is a high-performance open-source CFD solver
based on the discontinuous Galerkin spectral element
method (DGSEM). It utilizes hexahedral tensor product
elements with an arbitrary polynomial degree in each ele-
ment. Since DG methods are hybrid schemes combining
finite-element and finite-volume methods, we use a Roe
Riemann solver with minimum dissipation for the fluxes
between the elements [9]. In addition, we represent the
polynomial solution on a non-equispaced Legendre–Gauss
or Legendre–Gauss–Lobatto point set. We advance the
resulting equations in time by applying an explicit-in-time
Runge–Kutta method. Since FLEXI acts as a framework
there are multiple equation systems implemented. In this
paper, we mainly use the compressible Navier–Stokes equa-
tions. For validation, the linear scalar advection system
is used. The results in the application section are created
using the compressible Navier–Stokes equations, which are
implemented as skew-symmetric split form approximations
to minimize aliasing instabilities [10]. The boundary condi-
tions generally are imposed weakly. This means that we do
not prescribe the state at the corresponding solution point in
the element, but rather prescribe the numerical flux. FLEXI
is parallelized using MPI and was successfully tested on up
to O(105) cores [11].

2.1.3 � Comparison of the code frameworks

Discontinuous Galerkin methods are commonly used high-
order schemes. Finite-volume methods in contrast are for
unstructured meshes often limited to second order. It is well
known that for the same number of degrees of freedom high-
order methods can achieve lower error and need fewer solu-
tion points to resolve the same structures. This is known as
numbers per wavelength nPPW criteria [1, 12]. High-order
methods can achieve nPPW > 4 , while second-order finite-
volume method is often limited to nPPW ≈ 20 . This means
that for resolving a structure of a given wavelength, high-
order methods would need up to a factor of 5 fewer reso-
lution points. However, this property heavily depends on
the used polynomial degree N as shown in Fig. 2. Gassner
et al. [12] provide reference values for nPPW depending on

108	 M. Blind et al.

1 3

the polynomial degree. In this paper, we use N ∈ (1, 3, 5, 7)
and thus need nPPW(N = 1) ≈ 20 , nPPW(N = 3) ≈ 9 ,
nPPW(N = 5) ≈ 7 and nPPW(N = 7) ≈ 6.

Thus, on the same mesh, the simulation with FLEXI
N = 5 not only has a faster decreasing error but also has
the smaller error for a given number of degrees of freedom.
This becomes obvious since FLEXI N = 1 or TAU on the
h = 102.4 grid correspond in terms of amount of degree of
freedom with FLEXI N = 5 at h = 101.6 . The Shu-vortex
test case [13] is utilized to conduct this study. All simula-
tions are run independently and thus without mapping.

The results denoted as “TAU RANS mode” are obtained
with numerical settings commonly used for the RANS
zones of hybrid RANS/LES simulations in TAU. A sec-
ond-order central flux approximation stabilized by artificial
dissipation is used, derived from the scheme after Jame-
son, Schmidt and Turkel [14]. Applying a skew-symmetric
scheme with matrix dissipation [15] already reduces the
dissipation level compared to the TAU-default average
of flux scheme with scalar dissipation. The simulations
denoted with “TAU LES mode” additionally utilize a
reconstruction of the convective fluxes using a linear gra-
dient extrapolation at the cell faces, in a way to reduce
the numerical dispersion of the skew-symmetric scheme
[16]. Moreover, the coefficient of artificial dissipation is
lowered by a factor of 16. These settings are suitable for
the LES zones of a hybrid simulation. In the FLEXI runs, a
Roe Riemann solver is used [9]. The FLEXI simulation for
N = 1 shows a result similar to the TAU runs with the same

order of convergence. However, N = 1 is typically not used
in practical application, since the advantages of high-order
schemes are not visible for such low polynomial degree.
The runs with N = 5 represent a more realistic scenario and
show the advantage of high-order polynomials.

2.2 � Workflow

Before presenting the mapping routines, we first discuss
the general workflow of how to run a simulation with time-
resolved input data. The general workflow is visualized in
Fig. 3.

First, the source data have to be provided. Generally, this
can be in the form of point-wise scattered data. Since in this
paper we focus on the procedure for mapping TAU data to
FLEXI, we assume to get either volume snapshots or surface
data from TAU.

Second, we process the data by choosing an appropriate
spatial mapping mechanism. In addition, we have to decide
if we only want to map surface data for an instantaneous
boundary condition, or if we also want to get the volume
information to e.g. generate a restart file for FLEXI. The tool
creates an interpolated file for each input file. The results are
saved in a HDF5® format that uses a polynomial structure
closely related to FLEXI. Thus, it contains an array with
the interpolated values stored as coefficients of a two- or
three-dimensional polynomial for each element depend-
ing on whether surface or volume interpolation is used. To
ensure compatibility with FLEXI, the output polynomial
degree is identical to the degree of the simulation we want
to run afterwards.

Higher order representations are prone to aliasing and
oscillations in general and the quality of the results heavily

101.6 101.8 102 102.2 102.4
10−11

10−9

10−7

10−5

10−3

10−1 1
-2

1

-6

h

L
2
-e
rr
or

of
ρ

TAU RANS mode TAU LES mode
FLEXI N = 1 FLEXI N = 5

Fig. 2   Comparison of the convergence behavior of TAU and FLEXI
for different settings and meshes

Fig. 3   Workflow of imposing a time-resolved boundary condition

109A time‑accurate inflow coupling for zonal LES﻿	

1 3

relies on the used point set and polynomial degree we per-
form the interpolation on. Since the output degree and point
set is defined by the simulation we want to perform eventu-
ally, we cannot use these parameters for mitigating errors.
Thus, we super-sample the target point representation which
helps avoiding errors due to oscillations resulting from the
non-polynomial character of the source points. We then
map the source data to the super-sampled target data points.
The super-sampled points are constructed using the same
set of points (e.g. Legendre–Gauss–Lobatto) as the original
target point set. We found that using M ≈ [1.5, 2] ⋅ (N + 1)
points for super-sampling yields good agreement and miti-
gates oscillations significantly. This is in line with the lit-
erature values for overintegration of turbulent data, which
is commonly used in the DG community for dealiasing [17].
After interpolating the source data to super-sampled target
points, we project the solution to the original basis N < M
which removes the high modal information that is especially
affected by aliasing.

Third, we interpolate the results from the second step
temporally. The mapped volume or surface files created in
the second step are converted into a dataset containing the
temporal interpolator for each solution point. The interpola-
tor consists of the coefficients of the polynomial, which are
dependent on the evaluation time. In addition, we partition
the data into a user-defined number of subsets to limit the
amount of data of each interpolator and avoid memory over-
flow during FLEXI runtime.

Fourth, we provide FLEXI with the resulting file. FLEXI
then evaluates the interpolant in each time step and sets the
according boundary condition to the interpolated values.

2.2.1 � Some remarks on surface data

The mapping algorithms we present can be applied to vol-
ume as well as surface data. Depending on the provided data,
the spatial mapping algorithms will either use the volume
solution to extract the target boundary or use the provided
surface plane directly.

TAU is able to write 2D data from a user-defined plane,
onto which the flow variables are interpolated internally
using algorithms of the chimera technique [18]. This inter-
polation will also of course introduce an error that leads to a
mismatch between the volume solution of TAU and the 2D
data on the plane. The resulting chimera plane can be read
in separately. Hence, there can be made significant simplifi-
cations in term of area reduction which reduces the overall
cost of the mapping algorithms.

2.3 � Spatial interpolation

An important step to achieve the coupling of TAU with
FLEXI is the spatial mapping. Since ultimately we want to

create an instantaneous boundary condition, we have to map
surface data only. To keep the interpolation more general,
we implement a three-dimensional method to also allow vol-
ume interpolation and arbitrary-oriented surface planes in
the source domain.

A major challenge in creating a mapping between TAU
and FLEXI is the difference in spatial discretization. Indus-
trial finite-volume codes rely often on tetrahedral meshes.
Therefore, a direct interpolation is difficult since mesh
data structures for hexahedral only codes are dissimilar.
In contrast to FLEXI, TAU stores its solution as low-order
point-wise data. This results in arrays containing the coor-
dinates (x, y, z) and the flow solution in primitive variables
U⃗ = (𝜌, u, v,w, p) [19]. FLEXI, however, stores its solution
as polynomial data for each element [7, 20]. The difficulty
now is to consistently map the point-wise TAU data to the
polynomial coefficients needed for the solution polynomials
in FLEXI. Since FLEXI only uses unstructured hexahedral
elements and TAU is in contrast also based on tetrahedrals,
we cannot use the TAU mesh information natively. An exam-
ple of this incompatibility including a schematic of the inter-
polated solution is visualized in Fig. 4.

The interpolation algorithms thus have to work with scat-
tered data. This means we have a cloud of points with a
submerged target mesh. Therefore, interpolation from the
TAU source data to the FLEXI target data has to be done
using unstructured interpolation algorithms. There are sev-
eral algorithms available that are suitable for such tasks.

Scattered data interpolation generally can achieve good
accuracy and performance but is highly dependent on the
distribution of the source points [21]. On the other hand,
implementing scattered data interpolation routines enable
us to gain a more universal interface, since other codes and
solution formats can be implemented easily. In Sect. 2.3.1,
we provide an overview over the scattered data interpolation
methods used for spatial mapping.

Since the solution data of the source solver is provided
beforehand, we do not have to map the data during run
time, which saves a lot of computation time. In addition, the
meshes used by both codes are known a priori (and remain
constant during the computation). Still, good performance
is crucial. Therefore, we implement the interface framework
with MPI parallelization.

This is done by reading in the mesh and distributing the
elements equally between each processor using MPI. The
elements are sorted along a Hilbert curve [20] which mini-
mizes the communication interfaces between the individual
processors cf. red curve in Fig. 5a. This approach, however,
can only be done for the target FLEXI mesh because we
need the mesh information to distribute the data directly. For
the source data, we only read in data points. Hence, a simpli-
fication and distribution of the load between the processors
is not possible in a first step. Thus, we read in the source data

110	 M. Blind et al.

1 3

into shared memory [11, 22]. Each processor then accesses
the shared memory source data and simplifies it by only
selecting the data which is necessary to spatially interpolate
in its individual domain. With this method, we can save a lot
of computational time and decrease our memory footprint
without sacrificing accuracy.

If we use surface data as an input to the spatial interpola-
tion algorithms, we have to consider load balancing in more
detail. The distribution of volume elements that has just been
described does not take surfaces into account. Thus, for the
surface mapping, we cannot ensure that every part of the
decomposed domain contains surface elements that have to be
mapped (cf. Fig. 5a). Therefore, especially for small domains
with many processors, it is possible that not all processors
are working on the task resulting in an inefficient mapping.
Hence, we have to redistribute the load between the proces-
sors according to the number of surface elements (cf. Fig. 5b).
This can be done by assigning each surface element a high
weight for domain decomposition. This weight is chosen by
counting the number of boundary sides that have to be mapped
per element and it generally reduces the computational load
on MPI ranks that contain such a coupling interface. To do
so, we first have to read in the mesh file normally, then apply
the surface weighting and finally reinitialize the mesh reading
process [23]. With this approach, we can gain performance
improvements while sacrificing a few seconds in the initializa-
tion process due to the necessary reinitialization of the mesh.
The overall cost of surface interpolation will be lower than
using volume data. The difference between volume and surface
distribution is visualized in Fig. 5.

In addition, we have to ensure to provide a buffer region
around every individual MPI domain in order to establish
the interpolation stencils for each point. The buffer area is

estimated by taking the size of the largest element in the
complete domain of the source points into account. Since the
largest element is not known directly, we take the distances
between the scattered points into account and use the largest
distance for that matter.

2.3.1 � Nearest neighbor interpolation

The nearest neighbor interpolation checks the source data
coordinates and finds the closest point to the desired FLEXI
target point by point-wise comparison. The values U of the
source data are then directly stored as a nodal coefficient in
FLEXI. This type of interpolation is piece-wise constant
between source data points. Another requirement is an
evenly distributed source mesh. If these requirements can-
not be met, there is risk of bad results. This does not auto-
matically mean that the results are not physical, but rather
that the resulting interpolation polynomial inside a DG cell
is ill-conditioned and can, due to the massive jumps, result
in an unnaturally oscillating mapped solution. Another phe-
nomenon one can observe is the possibility to get jumps on
the element boundaries of the target mesh, if the boundary
nodes are not included. On the other hand, this interpola-
tion technique yields fast and good results if the source and
target data are well aligned or if the meshes coincide at the
interface.

2.3.2 � Inverse distance weighting

A more general approach is available using inverse distance
weighting [24]. The target solution is calculated using a
weighted average of the source value

with Nsource denoting the number of source points in the
whole domain. In contrast to the nearest neighbor approach,
we not only take one point into account, but all in the source
area. The weights 𝜔(x⃗) are depending on the distance
between the source points and the target solution point

and a weighting exponent p. For p ⇒ ∞ , the inverse distance
weighting approach resembles the nearest neighbor method.
A modification to the general inverse distance weighting was
introduced by Shepard, who proposed to only take the source
points into account that are within a predefined radius R
around the target point [25]. This reads as

(1)u(x⃗)target =

∑Nsource

i=1
𝜔i(x⃗)ui,source∑Nsource

i=1
𝜔i(x⃗)

(2)
𝜔i =

1(‖‖x⃗ − x⃗i
‖‖L2

)p

Fig. 4   Visualization of the TAU-FLEXI interface including differ-
ent point sets. Light green curve shows an approximate solution after
interpolating the TAU solution to the FLEXI point set

111A time‑accurate inflow coupling for zonal LES﻿	

1 3

with R denoting a predefined search radius.

2.3.3 � Radial basis functions

A third option to consider for unstructured interpolation are
radial basis functions � [26, 27]. These methods allow for
high-order accurate interpolants s of unstructured data. The
interpolant consists of the weighted sum of radial basis func-
tions. In contrast to the other methods introduced earlier, we
have to solve a linear equation system to invert the Vander-
monde and to determine the weights � satisfying

and, therefore,

with rji =
‖‖‖x⃗j − x⃗i

‖‖‖L2 . We rewrite the interpolation condition

in matrix notation

This can be rewritten in matrix form as �ij𝜔⃗i = u⃗j,source using
index notation. Since we have to invert the matrix � for
interpolation, the radial basis approach is the most expensive
of the introduced methods. To solve the equation system,

(3)𝜔i =

(
max(0,R − ‖‖x⃗ − x⃗i

‖‖L2)
R‖‖x⃗ − x⃗i

‖‖2

)2

(4)s(x⃗) =

Nsource∑
i=1

𝜔i𝜑(
‖‖x⃗ − x⃗i

‖‖L2)

(5)uj,source =

Nsource∑
i=1

�i�(rji)

(6)

⎡⎢⎢⎢⎣

�(r11) �(r12) ⋯ �(r1N)

�(r21) �(r22) ⋯ �(r2N)

⋮ ⋮ ⋱ ⋮

�(rN1) �(rN2) ⋯ �(rNN)

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

�1

�2

⋮

�N

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

u1,source
u2,source

⋮

uN,source

⎤⎥⎥⎥⎦
.

one can use algebraic approaches or iterative equation sys-
tem solvers. The size of the equation system can be limited
by introducing a limit to the support radius (cf. Eq. (3)) and
thus not taking all source points into account.

We evaluate the interpolant

and get the value at an arbitrary point in the computational
domain.

Typical radial basis functions for interpolation are multi-
quadr ic �(r) =

√
1 + (�r)2  , inverse mult iquadr ic

�(r) =
1√

1+(�r)2
 , Gaussian �(r) = e−(�r)

2 and thin plate spline

�(r) = r2 ln(r) functions with r = ‖‖‖x⃗j − x⃗i
‖‖‖L2 . The parameter

� defines the shape of the function and is used for scaling.
The multiquadric and the thin plate spline have shown to be
the most reliable radial basis functions for this use case.
Since the thin plate spline does not require any additional
user parameter � , we use this function for all further
investigations.

During implementation of the algorithms above some
observations were made. First, none of the scattered inter-
polation method is designed in a way to be conservative.
Thus, we interpolate the primitive variables and, for con-
sistency reasons, convert to conservative variables after
mapping.

2.3.4 � Comparison of the spatial interpolation methods

Before assessing the performance of the spatial interpolation
routines in context of the mapping routines, we investigate
the convergence behavior in an isolated test case. Thus, we
calculate the L2-error of a simple one-dimensional interpola-
tion of a sine function f (x) = sin(2�x).

(7)u(x⃗) ≈

Nsource∑
i=1

𝜔i𝜑(
‖‖x⃗ − x⃗i

‖‖L2)

Fig. 5   Differences between
MPI domain decomposition for
volume and surface mapping
on three MPI processors. Same
colors correspond with the same
MPI domain. Space filling curve
is visualized in red

(b)(a)

112	 M. Blind et al.

1 3

We plot the error in Fig. 6 over the sampling resolution of
the source data. We can see that radial basis function inter-
polation clearly yields the best results with lower errors and
a better convergence rate EOC = 5 than nearest neighbor and
inverse distance weighting interpolation with EOC = 2. We
assess the accuracy and the differences between the spatial
interpolation schemes in more detail in Sect. 3.

2.4 � Temporal interpolation

In addition to the spatial interpolation, we also have to inter-
polate temporally in order to account for the different time
stepping schemes in the source and target codes. FLEXI, e.g.
uses an explicit low storage Runge–Kutta method to advance
the equation systems in time. TAU on the other hand uses an
implicit time discretization to accomplish that. However, in
addition to the different time stepping schemes, the time step
and output rate of the simulation data can change between
different simulations. For using the data as an instantaneous
boundary condition, we have to ensure that we can provide
the target solver with the correct inflow data at an arbitrary
point of time. Thus, it is crucial to interpolate the results of
the spatial interpolation in time to get a continuous temporal
interpolator.

In contrast to the volume and surface mapping the tem-
poral interpolation consists of purely one-dimensional

problems. For one-dimensional data, there are vast numbers
of different interpolation techniques. In this work, we use
polynomial interpolation in combination with a Lagrange
basis and spline interpolation.

We use the Lagrange interpolation basis since coefficient
and solution values coincide [28]. The Lagrange interpola-
tion uses a uniform point set, as the time sampling is usually
regular, and multiple time steps are combined to a polyno-
mial, without constraining the time derivative at each poly-
nomial interval.

Furthermore, two different variants of spline interpo-
lation are implemented. A common open spline as well
as the Akima spline [29]. In contrast to a typical spline
an Akima spline does not take the second derivative into
account. This leads to a more evenly distributed solution
and fewer overshoots compared to the open spline. The
problem of overshoots can also be found in polynomial
interpolation of degree p ≥ 2 . This becomes especially
important if an implicit source method is paired with an
explicit target solver. In this case, the temporal interpo-
lation has to come up for a huge number of time steps
since the time step in an explicit scheme is typically much
smaller than implicit time steps. Thus, overshoots can
play a significant role for the overall mapping quality. If
the time steps of source and target method are similar,
the effect of the temporal interpolation becomes smaller.
However, it should be noted that even in this case, over-
shoots can be generated. Generally, for these reasons, it
is recommended to either use linear interpolation or the
Akima interpolation for the most reliable results. We will
show this in Sect. 3.

Hence, the resulting quality of the interpolation depends
on multiple factors. First, on the chosen interpolation
method. Second, on the sample rate of the provided state or
boundary source files. Thus, a general prediction of the error
resulting from temporal interpolation is difficult.

In Fig. 7, a schematic overview of the temporal inter-
polation methods is visualized. The vertical dashed lines
mark the sampling positions of the black reference data.
For polynomial interpolation, the polynomials of degree P
are constructed using P + 1 points, resulting in a piece wise
polynomial representation of the reference data. For spline
and Akima interpolation, we use the whole one-dimensional
time series to build up the spline or Akima representation,
respectively.

The interpolation is done in a separate tool and is not only
limited to surface data but can also be done with restart files
of any FLEXI simulation. The result is processed and saved
in an HDF5® file which includes the coefficients for every
polynomial at every temporal sample point.

The resulting files of the temporal interpolation routine
can either be directly used in FLEXI for evaluation of the

Fig. 6   Convergence of the L
2
-error of an interpolated one-dimen-

sional sine function for different interpolation methods

113A time‑accurate inflow coupling for zonal LES﻿	

1 3

interpolant or even be used to generate a restart file to con-
tinue a simulation at an arbitrary point of time.

The temporal interpolator generated contains the resulting
polynomial or spline at each degree of freedom. Thus, the
overall size of the interpolator array has two more dimen-
sions (polynomial coefficients and time) than the solution
array. With increasing dimensionality, the memory require-
ments of the array also increase. Depending on the amount
of source data available, it might be necessary to partition
the resulting temporal interpolant in order to avoid memory
overflow during simulation of the target domain. Therefore,
a maximal size for the interpolant array has to be provided
by the user. The interpolation algorithm will then partition
the data into equally sized datasets, each containing a period
of time which results from the user parameter. FLEXI then
only reads in the dataset that contains the temporal infor-
mation of the current FLEXI time step. Thus, the read in
interpolant allows for obtaining an interpolated solution at
an arbitrary point of time within its temporal partition. Dur-
ing runtime of FLEXI, the interpolant is evaluated in every
Runge–Kutta stage of the timestep.

3 � Validation of the interface

In this section, we start validating the mapping algorithms.
We chose a gradual approach and start by showing a proof of
concept, followed by the temporal algorithms and in the end
assess the convergence behavior of the spatial interpolation
algorithms of the interface.

We start to evaluate the algorithms by applying them
to very simple test cases. Thus, we chose the linear scalar
advection equation

due to its simplicity and a priori known exact solution for
given initial conditions. The transport velocity is set to
a⃗ = (1, 0, 0)T . We vary the initial conditions between the
tested scenarios and describe them in the corresponding
sections in more detail. The source domain Ω ∈ [−1, 1]3
and the target domain Ω ∈ [1, 3] × [−1, 1]2 are designed to
have a shared interface at x = 1 . The source data as well
as target data for these test cases are fully generated using
FLEXI. Triple-periodic boundary conditions are used for
the source mesh and the target mesh is designed to have
periodic boundary conditions in y and z. In x-direction, we
have the instantaneous interface condition at x = 1 and a
outflow at x = 3.

3.1 � Proof of concept

We start the validation of the interface by applying it to a
very basic sine test case with

The initial conditions are set to u0(x⃗, t = 0) . The exact
solution u(x⃗, t) is purely x dependent and thus the values
at the interface plane u(x = 1, t) do not vary in y and z.
The target domain is initialized with a constant solution
u
0
= const. = 0.

For this first test, we match the surface elements at the
interface and thus can use nearest neighbor interpolation
without sacrificing accuracy (source and target points coin-
cide). In this case, the nearest neighbor algorithm will just
copy the data from the source to the target domain. Source
and target mesh are only offset in x-direction by the length of
the domain. In Fig. 8, the initial condition is depicted in light
green. One can also see the solution of Eq. (8) after t = 0.8
and t = 1.6 . The vertical gray dashed grid lines depict the
mesh of the simulation grid and the red dotted line visual-
izes the interface between source and target domain. The
graphs are extracted from the center line in x-direction of the
equispaced Cartesian cubes, which each have a resolution
of 16 × 16 × 16 using N = 4 polynomials in each element.
Legendre–Gauss–Lobatto points are used for the source
and target simulation. In addition, we avoid temporal inter-
polation by sampling the interface data at every physical
time step dt ≈ 0.0125 . However, due to the utilized explicit
Runge–Kutta scheme, we note that we still have to use inter-
polation in order to recover the boundary values in each
Runge–Kutta stage.

In Fig. 8, we can see that the general workflow presented
performs as expected and the information gets propagated
over the interface with a = 1 . Since we do not interpolate the

(8)
ut + a⃗ ⋅ ∇u = 0 with a⃗ = (a1, a2, a3)

T ∈ ℝ

and x⃗ = (x, y, z)T

(9)u(x⃗, t) = sin(𝜋(x⃗ − a⃗t)).

Fig. 7   Overview over the temporal interpolation methods on a one-
dimensional time series of an arbitrary variable u 

114	 M. Blind et al.

1 3

data in any way in this test case, we expect the overall errors
between source sine and target sine wave to be comparable.
In the source domain, we have an L2-error of 9.6506E−07
after t = 2 . The L2-error in the target domain after t = 2 is
evaluated in the same way and is 9.6859E−07. This suc-
cessfully proves that the workflow is capable of mapping
the data without any information loss. We stress that the full
framework is working as if we were coupling between two
heterogeneous solvers, with the exception that the source and
target points coincide.

Note that we used continuous initial conditions between
source and target domain. We found that one should avoid
having jumps or large discrepancies of the initial conditions
between the source and target domain due to nonphysical
disturbances created at the inlet of the target domain which
are further propagated. This, however, is not due to the inter-
face mapping algorithms but rather due to the nature of the
high-order scheme. In practical applications, especially for
transient simulations, this does not pose a problem since all
structures starting from free stream will be mapped into the
target domain.

3.2 � Assessing the temporal interpolation
and sampling

Next, we evaluate the effect of temporal interpolation/sam-
pling on the interface mapping process. Thus, we investigate
the effects of different temporal interpolation schemes and
sampling rates on the incoming solution, which we map via
the instantaneous boundary condition. For this test case, we
chose different exact solution and initial conditions for the
linear advection equation (8). To evaluate the effect of the
sampling, we chose an initial condition that includes a dis-
continuity in order to visualize the information loss. Thus,
we use

We use Legendre–Gauss–Lobatto nodes with N = 4 on a
256 × 1 × 1 source and target domain. The surface elements

(10)u(x, t) =

{
1. if − 0.5 < x − a1t < 0.5

0. else
.

at the interface are again matched. Thus, we can use near-
est neighbor interpolation to interpolate the surface data in
space, without sacrificing accuracy (copy values from source
to target). Figure 11a depicts the simulation at two discrete
points in time evaluated with different Δt-interpolants. The
interface is located at x = 1 and the discontinuities travel
into the target domain on the right side of the red dotted
interface with a = 1.

Already in the overview graph in Fig. 11a, we can see
substantial differences between the two interpolated jumps.
For this test, we chose in total three sampling rates. A fine
sampling rate at Δt ≈ 10dt which is approximately ten times
the explicit FLEXI time step dt ≈ 0.01 and two coarser sam-
pling rates at Δt ≈ 50dt and Δt ≈ 100dt . In Fig. 11a, only
the finest and the coarsest sampling rate are visualized. Fig-
ure 11b shows the jumps of all three sampling rates at the
same evaluation time t in more detail. Since the x-axis is
scaled identically, one can see that the influence of the tem-
poral mapping on the target FLEXI simulation is very high.
There are two main effects visible:

1.	 The temporal distance between two samples affects the
slope of the jump and

2.	 the temporal interpolation method has an effect on the
quality of the jump representation.

The first observation has to only result from the temporal
interpolation since the slope of the shock has been steeper
in the source domain. In addition, we see that lowering Δt
increases the slope again. Thus, Δt has to be chosen in a
way that the steepest gradient in data can be represented
sufficiently. This, however, is very much problem dependent
and requires knowledge of the data. In Sect. 4, we assess an
approach on how to determine this in the context of turbulent
eddies.

For the second point, a more general statement can be
made, since this observation is nearly independent of Δt and
only becomes more prominent if Δt becomes sufficiently
large. Higher order polynomial approximations tend to oscil-
late, especially for equispaced point distribution which is the
case for temporal sampling. Therefore, in Fig. 9, polynomial

Fig. 8   Overview of the spatial
mapping process for a traveling
sine wave

115A time‑accurate inflow coupling for zonal LES﻿	

1 3

interpolation is only shown up to second degree. In addition,
the well-known Spline interpolation tends to oscillations for
high Δt . Most favorable thus is linear or Akima interpola-
tion, which both represent the vertical jump best and recover
the steepest gradients. Higher order polynomial and spline
interpolation in this case fail mainly because the physical
time steps dt at which we sample are roughly equispaced.
Thus, we see the so-called Runge’s phenomenon for interpo-
lation using an equispaced point set in time. This is a crucial
point since the TAU output frequency is only determined by
its implicit timestep. The target solver FLEXI thus has to
recover the data in every explicit time step. However, having
a fixed source sampling rate and decreasing the target time
step, will not further increase the error since the interpolant
is only determined by the sampling rate of the source data
and is only evaluated during FLEXI runtime.

Since Akima interpolation yields slightly smoother
results in combination with steeper gradients, we use Akima
interpolation for all following test cases.

3.3 � Convergence of the spatial mapping

Another important aspect one has to consider is the conver-
gence behavior of the mapping process. To measure the effect
of the interpolation routines, we decided to calculate the error
norm of the whole mapping and simulation process. Thus,
the error includes spatial and temporal interpolation errors
as well as the error associated with imposing the instantane-
ous boundary condition in FLEXI (e.g. discretization error).

To run the convergence test, we modify the initial condi-
tions from the one-dimensional sine in Fig. 8. We add a y
and z dependency to the exact solution u in order to have
varying u values on the interface plane. Thus, we get

For the sine wave and the linear transport, we have seen
earlier that we can recover the exact solution on the target
domain and that the information is propagated correctly via
the instantaneous boundary condition if there is no spatial
and temporal interpolation involved (just copy the values
from source to target). Thus, we want to investigate the effect
of different non-matching interfaces (point sets and resolu-
tion) on the error of the simulation and, therefore, have to
combine spatial and temporal interpolation techniques for
the first time. We again use Legendre–Gauss–Lobatto points
with N = 5 in the source and target domain. In addition, we
use super-sampling with M = 8 . For the linear transport,
this is not necessary, since in contrast to the Navier–Stokes
equations, we do not see aliasing here. However, we want
to assess the convergence as close to the later application as
possible and additionally avoid matching all the degrees of
freedom in any case ( Nsrc = 5 ≠ 8 = Mtar).

(11)u(x, y, z, t) = sin(�(x − a1t)) + sin(�y) + sin(�z).

In Fig. 10, we see two different testing scenarios. The
first in Fig. 10a shows the L2-error for increasing target
resolution and a fixed source mesh. The second scenario in
Fig. 10b depicts the error for an increasing source resolution
and a fixed target mesh. With “grid”, we mean the number
of elements in each spatial direction of the Cartesian cube.
The sampling timestep is defined by the physical timestep
dt of the source data. Thus, for, e.g. the source grid “1”, we
extract the interface data at every physical time step and use
Akima interpolation to interpolate it to the physical time step
of the “32” target grid that is 32 times smaller.

In Fig. 10a, we assess the effect of varying target mesh
resolutions on the overall error. The resolution of the
source mesh is fixed at 8 × 8 × 8 and 32 × 32 × 32 respec-
tively. We expect the overall error to converge, since the
error cannot be mitigated any further if it is dominated
by the source data. Thus, we can see the influence of the
source data on the target domain. For the 8 × 8 × 8 source
mesh, we can observe this behavior very well. Starting at
gridtar ≈ 4 , we see that for all interpolation algorithms,
there is no further improvement. For the finer source mesh,
we can observe a similar behavior, however, the overall
error is lower and the error is converged later. Due to the
error introduced with the spatial interpolation, we cannot
see a decreasing error until the source mesh resolution.

In Fig. 10b, we investigate the effect of a varying
source mesh on a fixed target mesh. This can be inter-
preted as increased input quality for the mapping for a
given target domain. In this test case, we again assessed
the influence for two fixed target resolutions at 8 × 8 × 8
and 32 × 32 × 32 . Nearest neighbor, Shepard as well as
RBF interpolation show decreasing errors for increasing
source grid resolution. This time nearly linear decaying
errors can be seen up to the resolution of the target mesh.
However, especially for the gridtar = 8 × 8 × 8 case, we can
see that RBF interpolation is capable of recovering infor-
mation from source grids with finer resolution than the
target mesh. Shepard and nearest neighbor show clearly
weaker performance here and have changing slopes of the
error in this source grid regime.

Overall, we can rank the performance of the three tested
spatial interpolation techniques. Nearest neighbor inter-
polation shows as expected the weakest performance with
an experimental order of convergence of EOC ≈ 1.2 in
Fig. 10b. Shepard interpolation shows overall lower errors
at roughly the same order of convergence EOC ≈ 1.5 . How-
ever, Shepard interpolation is capable of retaining the error
even for source resolutions higher than the target resolu-
tion in Fig. 10b where nearest neighbor interpolation shows
inconsistent results. Finally, radial basis function interpo-
lation clearly yields the best results with an order of con-
vergence of EOC ≈ 2.8 . Thus, using RBF interpolation is
recommended. Overall, the results in Fig. 10b underline the

116	 M. Blind et al.

1 3

observations made in Fig. 6. However, the convergence rates
in Fig. 10b are lower for all interpolation methods. The qual-
itative observations, however, are identical and the losses
in EOC are equivalent for all interpolation techniques. One
should note that the test case in Fig. 10b has an increased
complexity, since it is two-dimensional and we evaluate the
error over the whole mapping process compared to an iso-
lated one-dimensional interpolation test in Fig. 6.

For large source datasets, one should keep in mind that
solving the equation system necessary to the get the inter-
polation coefficients for the radial basis functions gets very
expensive and RBF interpolation even in this simple test
case was noticeably (approx. up to an order of magnitude)
slower than nearest neighbor and Shepard interpolation.

4 � Results: cylinder flow

In this section, we investigate the flow around a cylinder at
a Reynolds number of Rec = 3900 [30, 31]. The diameter of
the cylinder is defined as c and is used as the characteristic

length in this investigation. The domain has a spanwise
extension of c. For the first time, we now map actual TAU
surface data into a FLEXI domain.

4.1 � Generating the reference data

The main reason we chose the cylinder flow as the main test
case is the fact, that we can afford to run the whole domain
in FLEXI and in TAU. Thus, we not only can compare the
mapped results against the TAU solution but also against the
reference DNS created with FLEXI. In addition, the cylinder
is a well-known geometry in the fluid mechanics community
and has been investigated in detail before.

We use the same number of degrees of freedom in the
TAU source and the appended FLEXI target mesh. Thus,
the target mesh resolution including the interface has to be
divided by a factor of eight in order to accommodate for
the higher polynomial degree of FLEXI N = 7 . With this
approach, we minimize the resulting errors (cf. Fig. 10a).
We will show later that this resolution is sufficient to map
all physical structures occurring in this test case.

Fig. 9   Overview and detailed plots of the jump test case for different Δt and temporal interpolation algorithms

117A time‑accurate inflow coupling for zonal LES﻿	

1 3

4.1.1 � Simulation setup

Next, we discuss the simulation setup of the cylinder test
case. We describe the setup for FLEXI as well as TAU.

We use the same base mesh setup for the TAU and FLEXI
DNS reference simulation. The only difference is again that
the FLEXI case is coarser by a factor of eight to consider
the high-order polynomials that are used in each element.
Thus, if FLEXI is run with N = 7 , we have the same num-
ber of degrees of freedom as TAU. We also investigate the
solution quality of lower order polynomials later. For the
simulation in FLEXI, we use N ∈ [3, 5, 7] polynomials on
the same grid.

Due to the limitation of FLEXI to hexahedral elements,
we compare the amount of DOFs in the structured bound-
ary layer area and the refined wake area since the amount
of DOFs in the free stream area differs due to the different

element types. For FLEXI with N = 7 and TAU, we solve
the governing equations at approx. 31 Mio. points. The over-
all mesh has a radius of 100c using periodic boundary condi-
tions in spanwise direction and far field boundary conditions
on the outer edge of the mesh. The cylinder itself is modeled
using an adiabatic no-slip wall.

For the FLEXI simulation, we apply the BR1 lifting pro-
cedure [32] to take the parabolic terms into account. We use
kinetic-energy-preserving skew-symmetric splitting of the
advective terms of the compressible Navier–Stokes equa-
tions according to Pirozzoli [33] to mitigate aliasing insta-
bilities. The Roe numerical flux is used to solve the Riemann
problems at the cell interfaces [9]. We use the Vreman model
for explicit sub grid scale modeling [34] with C = 0.11 . The
resulting semi-discrete system is advanced in time by apply-
ing an explicit-in-time low storage Runge–Kutta method
with optimized stability region [35].

Fig. 10   Comparison of the convergence behavior of the entire mapping procedure including spatial, temporal mapping and the instantaneous
boundary condition

118	 M. Blind et al.

1 3

We also performed a hybrid RANS/LES simulation with
TAU using the zonal AZDES (automated zonal detached
eddy simulation) method, which was developed at the Insti-
tute of Aerodynamics and Gas Dynamics (IAG) [36, 37].
Within this method, an integral turbulent length scale in the
flow field is calculated from a precursor unsteady RANS
simulation based on the modeled turbulent quantities, which
reaches high values in the areas of separated flow. All areas
where this turbulent length scale is greater than a cutoff
value chosen by the user, which is based on the mesh resolu-
tion, are then marked as DDES [38] zones for the following
actual hybrid simulation, as the mesh is fine enough here
to resolve the larger turbulent scales. The rest of the flow
field is marked for (unsteady) RANS computation, which
includes attached boundary layers. In addition, the shielding
of the boundary layer can be fine-tuned by enforcing RANS
for all positions closer to the airfoil or body surface than a
chosen distance. Similarly, LES mode can be forced for all
distances greater than a set limit. We use a second-order
central flux computation for the convective terms of the
RANS equations, stabilized by artificial dissipation (matrix
dissipation), applying a low-dissipative skew-symmetric
scheme according to Kok [39]. For the turbulence model
equations, a second-order upwind scheme according to Roe
is employed. For the temporal discretization, a second-order
dual time stepping method [40] is used which is based on the
implicit BDF2 (backward differentiation formula) scheme.
The final physical time step is chosen to 1/150 of the con-
vective time scale, which leads to a CFL number of one in
the wake area of the cylinder to reach sufficient temporal
resolution for LES. The turbulence is modeled by the SSG/

LRR-� Reynolds stress model [41], which acts as sub grid
scale model in the LES zones.

4.1.2 � Sensitivity on resolution

First, we assess the sensitivity of the test case on the resolu-
tion. We conduct this study in FLEXI since we are interested
if the chosen resolution is sufficient for a DNS. This test case
was specifically chosen since it allows to conduct a fully
resolved simulation in FLEXI and in TAU. For typical appli-
cations of the inflow condition, this will not be possible.

In Fig. 11, the spectra of the turbulent kinetic energy
are shown at three discrete points in the wake of the cyl-
inder. Each figure contains the spectrum for three simula-
tions using different polynomial degrees on the same grid.

The N = 3 spectrum in Fig. 11 shows a deviation from the
N = 5 and N = 7 curves at all evaluation locations. Thus, we
can assume that the resolution for N = 3 is not sufficient for
a DNS and does not yield enough dissipation. Since the tur-
bulent kinetic energy spectra for N = 5 and N = 7 coincide,
we can assume that we are converged at this resolution and
thus N = 5 is sufficient for running a DNS. The expected
Strouhal frequency of the cylinder is clearly visible as a dis-
tinct peak in the spectrum [31] for all polynomial degrees.

The simulation with N = 7 (same number of degrees of
freedom as TAU mesh) is too fine for a typical LES/DNS
since the mesh was originally created to be suitable for a
hybrid RANS/LES and a FV code. Evaluating the viscous
wall spacing in FLEXI yields y+ ≈ 0.01 which is more than
sufficient, even for a DNS. This, however, underlines the
benefits of a high-order scheme when resolving turbulent
eddies.

Fig. 11   Comparison of the turbulent kinetic energy of different polynomial degrees N. Taken from the FLEXI simulation of the full domain

119A time‑accurate inflow coupling for zonal LES﻿	

1 3

As already shown in Fig. 2 using the same amount of
DOFs in FLEXI and in TAU with a high polynomial degree
in FLEXI shows the strength of the high-order scheme, since
this resolution is sufficient in FLEXI to run a DNS.

4.2 � Coupled simulation

We now continue assessing the FLEXI simulation using the
TAU data as an inflow condition. The target mesh in this
case is a simple box that has the same y and z dimensions as
the interface and a sufficiently long x extension for the turbu-
lent wake to develop and travel. In ±y , the mesh has periodic
and in ±z Euler wall boundary conditions. The inflow is real-
ized using the mapped TAU data. At +x , a subsonic outflow
condition is used. The computational domain of the target
FLEXI mesh has an extension of

In Fig. 12, the simulation setup is depicted. Note that the size
of the interface planes in Fig. 12 at xI does not match the size
in the actual simulation. In the setup, the interface planes are

Δx = 10c, Δy = c and Δz = 4c.

designed in a way that all the turbulent wake structures are
captured by the planes and all vortical structures of the wake
are fully contained in the interface planes.

The most important aspects for assessing the performance
of the interface is to define the interface locations and to
define record points (also known as probe points). We decide
to place two interface planes at position xI ∈ [1.5c, 4c] in the
wake as well as two record points xP ∈ [4.75c, 5.25c].

4.3 � Interpolation error

Next, we assess the interpolation error resulting from inter-
polating a wake plane ( gridsrc = 573 × 64 ) as defined in
Fig. 12 onto the FLEXI boundary condition ( gridtar = 32 × 8
with N = 7 ) using the modified Shepard method. We inves-
tigate the error for plane xI1 , which is the one that is located
closest to the cylinder. The error is assessed using the TAU
source data as reference data. To get the same point set
for TAU and FLEXI, we evaluate the polynomials of the
mapped FLEXI solution on the TAU solution points. The
results are visualized in Fig. 13.

Qulitatively, the results in Fig. 13 look very convincing.
The structures of the source data are all represented in the
mapped solution. Taking a closer look, one can see small
overshoots of the mapped solution at the element bounda-
ries. This effect has already been mitigated using a super-
sampling as dealiasing technique. To quantify the error, we
look at the difference between the source and the mapped
data visualized in Fig. 14.

Thus, we evaluate the error of the x-momentum
for three resolutions gridtar = 32 × 8 , gridtar = 16 × 4
and gridtar = 8 × 2 . The plots show the relative devia-
tion of the interpolated target data based on the source
data. The x-momentum plot confirms the observa-
tions we made in Fig. 13 and shows a very small error
in the whole domain. The error increases as expected
for coarser resolutions. Calculating the L2-errors for all

u∞

x0
xP1 xP2

xI1 xI2 x

z

0 7 14 21 28 35 42 49 56

Fig. 12   Cylinder at Re
c
= 3900 test case definition containing inter-

face planes x
I
 for the coupled simulation and probe points for evalu-

ation x
P

Fig. 13   Comparison of the
instantaneous flow fields of
a cylinder wake state at the
interface plane x

I1
= 1.5c . Left

source data (TAU) on 573 × 64
points and right target grid of
32 × 8 elements of degree N = 7

−0.8−0.6−0.4−0.2

−1

0

1

y/c

z
/c

Source

−0.8−0.6−0.4−0.2

−1

0

1

y/c

z
/c

Mapped

1.99

2

2.01

·10−3
de
ns
ity

ρ

120	 M. Blind et al.

1 3

three meshes yields L2-error�u(32 × 8) = 9.65E − 08 ,
L2-error�u(16 × 4) = 3.03E − 07 and L

2
-error�u(8 × 2) yield-

ing an convergence rate of EOC = 1.31 which is in line with
our findings from Fig. 10b for Shepard’s method. Especially
in the part containing eddies in the middle of the interface
planes, we see large errors at the eddy boundaries.

In Table 1, we can see the minimal and maximal values
of the primitive variables for source and mapped data. In
addition, the integral mean value is listed. One can note that
the mapping yields very good results for density and pres-
sure. In contrast, especially for the velocities, we see small
deviations from source data. This error is based on the fact
that the interpolation is not conservative and on the mag-
nitude of the variations in the instantaneous source fields.
This gets especially pronounced for the velocity components
due to changing signs and the fact that velocity variations
are much larger compared to their mean in contrast to den-
sity and pressure. However, by applying the conversion of
primitive to conservative variables after interpolation, we
ensure that—despite the interpolation itself not guaranteeing
conservativity—we get consistent conservative variables.

Hence, due to flexibility of the scheme and the generally
very small effect on the mapped results, we can neglect the
effects of the non-conservativity (cf. Table 1) and directly
use the mapped plane as an inflow condition.

4.4 � Influence of the sampling rate

Now, we assess the effect of the sampling rate in time of
the source data on the quality of the solution in the target
domain, which is a very important user parameter that has
to be considered when creating a coupled simulation. We
do so by investigating the effect on the contribution of
the incoming turbulence on the turbulent kinetic energy.

In Fig. 15, the turbulent kinetic energy spectra at two dis-
tinct probe points are visualized. The different colors depict
different temporal sampling. With NSkip , we mean how many
TAU snapshots are skipped in time. NSkip = 1 means that
every temporal snapshot is used. The physical TAU sam-
pling rate is ∼ 150 snapshots per characteristic time. The
characteristic time is defined as the time it takes the fluid
to cover the distance of the diameter of the cylinder. For
NSkip = 2 , we only use every second snapshot. The lighter
the color gets the fewer snapshots are used to recover the
TAU solution in FLEXI.

Figure 15 shows that the results are heavily dependent
on the sampling rate. This seems reasonable since the sam-
pling rate determines which structures are mapped via the
instantaneous boundary condition. According to the Nyquist
criterion, there is a value for NSkip for which the solution is
not represented anymore. In this case for NSkip ≥ 512 , we

Fig. 14   Relative errors in
instantaneous x-momentum in
the cylinder wake at x

I1
= 1.5c

plane, for different target grid
sizes

−0.8 −0.5 −0.2

−1

0

1

y/c

z
/
c

grid tar = 32× 8

−0.8 −0.5 −0.2

−1

0

1

y/c

grid tar = 16× 4

−0.8 −0.5 −0.2

−1

0

1

y/c

grid tar = 8× 2

0

0.2

0.4

0.6

0.8

1
·10−3

|∆
ρ
u
|/
ρ
u
sr
c

Table 1   Minimum, maximum
and integral mean values of the
primitive variables resulting
from mapping the TAU source
data ( gridsrc = 573 × 64 ) onto
interface plane x

I1 = 1.5c
( gridtar = 16 × 4 , N = 7)

� u v w p

Mean
 Source 2.014E−03 2.806E+01 2.001E−01 − 6.915E−01 1.578E+02
 Mapped 2.014E−03 2.803E+01 2.013E−01 − 6.888E−01 1.578E+02

Min.
 Source 1.986E−03 − 2.975E+01 − 3.402E+01 − 2.510E+01 1.553E+02
 Mapped 1.986E−03 − 2.978E+01 − 3.333E+01 − 2.508E+01 1.553E+02

Max.
 Source 2.020E−03 4.800E+01 3.178E+01 2.967E+01 1.583E+02
 Mapped 2.020E−03 4.787E+01 3.153E+01 2.932E+01 1.583E+02

121A time‑accurate inflow coupling for zonal LES﻿	

1 3

no longer see agreement with the reference solution. For
smaller NSkip , there is better agreement with the black refer-
ence solution (FLEXI N = 7 DNS). Hence, two major obser-
vations can be made. First, for high NSkip , the major flow
structures cannot be recovered and even the Strouhal fre-
quency is not represented correctly. In addition, after some
development in the target domain at x = 5.25c , we can see
that there is a lot of disagreement even for low k. Second,
we can observe that the energy does not adapt and we lose
energy in high modes for large NSkip.

From these observations, we can conclude that the
sampling frequency is dependent on the structures that
have to be mapped to the new domain. Thus, we define a
measure to quantify the “eddy size - sampling rate” rela-
tion which is closely related to the underlying spatial dis-
cretization scheme. From the literature (e.g. [1, 10]), we
know that there is a similar criterion for spatial discretiza-
tion, which uses the parameter numbers per wavelength
nPPW to quantify the property of a spatial discretization
scheme in resolving multi-scale structures. For DGSEM,
it is known that nPPW,DGSEM ⪆ 6 for the polynomial degrees
used in this paper.

In this case, we take two sizes as reference. First, accord-
ing to [42], the large structures are of the size of the cylinder
which corresponds to L = 1c . From the simulation setup and
the properties of the DG scheme, we estimate the smallest
structures according to

with Ldomain denoting the size of the domain and #DOF the
number of DOFs used to discretize the domain. Taking
u∞ into account, we get an approximation for how long
it takes an eddy to be advected over the interface plane,
assuming Taylor’s hypothesis [43]. Taking the sampling
frequency into account, we can estimate that for the small-
est structures, we need NSkip ≈ 4 and for the large struc-
tures NSkip ≈ 64 is sufficient. This behavior for L = c is
also underlined in Fig. 15. Only using every 64th sample
NSkip = 64 still provides us with the main structures and
correct amplitudes, while NSkip > 64 shows signs of under-
resolution. Using this information, we can approximate a
criterion on how many points we need per structure/eddy
that has to be transported over the interface. It turns out
that for both large and small eddies we need approximately
2.3 samples per eddy. As one would expect, we can con-
clude that spatial and temporal discretization requirements
are similar for the interface.

We repeated this evaluation for both interface planes xI1
and xI2 . Both showed qualitatively identical results.

(12)l =
L
domain

#DOF ⋅ n
PPW,DGSEM

≈ 0.06c.

5 � Summary

In this work, we introduced a method to generate an instanta-
neous boundary condition relying on a precursor simulation.
We presented the numerical methods necessary to handle
differences in spatial and temporal discretization via inter-
polation. The scheme is validated for simple test cases and
a more complex cylinder wake.

Fig. 15   Turbulent kinetic energy spectra at two distinct probe points,
taken from the FLEXI target domain at two distinct probe points x

P1

and x
P2

 in the wake with varying sampling rate of the TAU inflow
data. The black reference is generated calculating the energy spec-
trum from the FLEXI N = 7 DNS on the full mesh at the same points

122	 M. Blind et al.

1 3

We have shown how to generate numerically stable inflow
and initial conditions with the methods described in this
paper that are universally applicable also to other solvers
than TAU and even experimental data.

The requirements regarding sampling rate are similar to
those of the spatial discretization and thus need approxi-
mately four sampling points per wavelength, depending on
the temporal interpolation scheme used.

We implemented several mapping techniques and showed
the differences in interpolation quality and additionally dem-
onstrated their capabilities of reconstructing scattered source
data. In addition, we utilized super-sampling of the interpo-
lation to increase the overall accuracy and to mitigate the
errors due to aliasing and numerical incompatibilities.

In terms of spatial resolution difference at the interface,
we observed that increasing the resolution of the source data
never posed a problem. However, coarsening the data too
much can produce large aliasing errors which cause trouble
for the high-order scheme. Thus, we recommend at least
having the same amount of target sampling points and source
points on the interface.

The introduced interface now has to be applied to more
complex scenarios. In a next step, we thus plan to apply the
coupling between TAU and FLEXI to the tandem wing con-
figuration test case visualized in Fig. 1. That simulation was
done using TAU only and provides the capabilities of effi-
ciently using FLEXI for subdomain simulations. In a future
work, we hence aim to investigate the effects of the turbulent
wake onto the boundary layer of the HTP. The toolchain
introduced in this paper is already designed to handle these
kind of challenging simulations. Another future application
of the interface is the adaption of the framework to more
solvers in order to further enhance the capabilities of the
toolchain and increase the amount of use cases.

Acknowledgements  The authors gratefully acknowledge the
Deutsche Forschungsgemeinschaft DFG (German Research Foun-
dation) for funding this work in the framework of the research unit
FOR 2895 (grant BE 6100/3-1). We also thank the Gauss Centre for
Supercomputing e.V. (www.​gauss-​centre.​eu) for funding this project
(GCS-lesdg) by providing computing time on the GCS Supercomputer
HAWK at Höchstleistungsrechenzentrum Stuttgart (www.​hlrs.​de).

Funding  Open Access funding enabled and organized by Projekt
DEAL.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are

included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Flad, D., Beck, A., Guthke, P.: A large eddy simulation method for
DGSEM using non-linearly optimized relaxation filters. J. Com-
put. Phys. (2020). https://​doi.​org/​10.​1016/j.​jcp.​2020.​109303

	 2.	 Jarrin, N., Benhamadouche, S., Laurence, D., Prosser, R.: A
synthetic-eddy-method for generating inflow conditions for large-
eddy simulations. Int. J. Heat Fluid Flow 27(4), 585–593 (2006).
https://​doi.​org/​10.​1016/j.​ijhea​tflui​dflow.​2006.​02.​006

	 3.	 Jarrin, N., Prosser, R., Uribe, J.C., Benhamadouche, S., Laurence,
D.: Reconstruction of turbulent fluctuations for hybrid RANS/LES
simulations using a synthetic-eddy method. Int. J. Heat Fluid Flow
30(3), 435–442 (2009). https://​doi.​org/​10.​1016/j.​ijhea​tflui​dflow.​
2009.​02.​016

	 4.	 Lund, T.S., Wu, X.H., Squires, K.D.: Generation of turbulent
inflow data for spatially-developing boundary layer simulations.
J. Comput. Phys. 140(2), 233–258 (1998). https://​doi.​org/​10.​1006/​
jcph.​1998.​5882

	 5.	 Kuhn, T.: Quantification of Uncertainty in Aeroacoustic Cavity
Noise Simulations with a Discontinuous Galerkin Solver. Thesis
(2021). ISBN: 978-3-8439-4784-8

	 6.	 Kempf, D., Munz, C.-D.: Zonal hybrid computational aeroa-
coustics simulation of trailing edge noise using a high-order dis-
continuous Galerkin method (2022). https://​doi.​org/​10.​2514/6.​
2022-​3021

	 7.	 Krais, N., Beck, A., Bolemann, T., Frank, H., Flad, D., Gassner,
G., Hindenlang, F., Hoffmann, M., Kuhn, T., Sonntag, M., Munz,
C.-D.: FLEXI: a high order discontinuous Galerkin framework for
hyperbolic-parabolic conservation laws. Comput. Math. Appl. 81,
186–219 (2021). https://​doi.​org/​10.​1016/j.​camwa.​2020.​05.​004

	 8.	 Schwamborn, D., Gardner, A.D., von Geyr, H., Krumbein, A.,
Lüdecke, H., Stürmer, A.: Development of the TAU-code for
aerospace applications. In: 50th NAL International Conference
on Aerospace Science and Technology, Bangalore, India (2008).
https://​elib.​dlr.​de/​55519/

	 9.	 Roe, P.L.: Approximate Riemann solvers, parameter vectors, and
difference-schemes. J. Comput. Phys. 43(2), 357–372 (1981).
https://​doi.​org/​10.​1016/​0021-​9991(81)​90128-5

	10.	 Gassner, G.J., Winters, A.R., Hindenlang, F.J., Kopriva, D.A.:
The BR1 scheme is stable for the compressible Navier–Stokes
equations. J. Sci. Comput. 77(1), 154–200 (2018). https://​doi.​org/​
10.​1007/​s10915-​018-​0702-1

	11.	 Blind, M., Kopper, P., Kempf, D., Kurz, M., Schwarz, A., Beck,
A., Munz, C.-D.: Performance improvements for large scale simu-
lations using the discontinuous Galerkin framework FLEXI. In:
Accepted by High Performance Computing in Science and Engi-
neering’22. Springer, Cham (2022)

	12.	 Gassner, G., Kopriva, D.A.: A comparison of the dispersion and
dissipation errors of Gauss and Gauss–Lobatto Discontinuous
Galerkin spectral element methods. SIAM J. Sci. Comput. 33(5),
2560–2579 (2011). https://​doi.​org/​10.​1137/​10080​7211

	13.	 Spiegel, S.C., Huynh, H.T., DeBonis, J.R.: A survey of the isen-
tropic Euler vortex problem using high-order methods (2015).
https://​doi.​org/​10.​2514/6.​2015-​2444

http://www.gauss-centre.eu
http://www.hlrs.de
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.jcp.2020.109303
https://doi.org/10.1016/j.ijheatfluidflow.2006.02.006
https://doi.org/10.1016/j.ijheatfluidflow.2009.02.016
https://doi.org/10.1016/j.ijheatfluidflow.2009.02.016
https://doi.org/10.1006/jcph.1998.5882
https://doi.org/10.1006/jcph.1998.5882
https://doi.org/10.2514/6.2022-3021
https://doi.org/10.2514/6.2022-3021
https://doi.org/10.1016/j.camwa.2020.05.004
https://elib.dlr.de/55519/
https://doi.org/10.1016/0021-9991(81)90128-5
https://doi.org/10.1007/s10915-018-0702-1
https://doi.org/10.1007/s10915-018-0702-1
https://doi.org/10.1137/100807211
https://doi.org/10.2514/6.2015-2444

123A time‑accurate inflow coupling for zonal LES﻿	

1 3

	14.	 Jameson, A.: Origins and further development of the Jameson–
Schmidt–Turkel scheme. AIAA J. 55(5), 1487–1510 (2017).
https://​doi.​org/​10.​2514/1.​J0554​93

	15.	 Swanson, R.C., Turkel, E.: On central-difference and upwind
schemes. J. Comput. Phys. 101(2), 292–306 (1992). https://​doi.​
org/​10.​1016/​0021-​9991(92)​90007-L

	16.	 Löwe, J., Probst, A., Knopp, T., Kessler, R.: Low-dissipation
low-dispersion second-order scheme for unstructured finite vol-
ume flow solvers. AIAA J. 54(10), 2961–2971 (2016). https://​
doi.​org/​10.​2514/1.​J0549​56

	17.	 Flad, D., Beck, A., Munz, C.-D.: Simulation of underresolved
turbulent flows by adaptive filtering using the high order dis-
continuous Galerkin spectral element method. J. Comput. Phys.
313, 1–12 (2016). https://​doi.​org/​10.​1016/j.​jcp.​2015.​11.​064

	18.	 Spiering, F.: Development of a fully automatic chimera hole
cutting procedure in the dlr tau code. New Results in Numerical
and Experimental Fluid Mechanics X. In: Notes on Numerical
Fluid Mechanics and Multidisciplinary Design, vol. 132, pp.
585–595. Springer (2016). https://​doi.​org/​10.​1007/​978-3-​319-​
27279-5_​51

	19.	 NetCDF, Unidata: The NetCDF Classic Format Specification
(2022). https://​docs.​unida​ta.​ucar.​edu/​netcdf-​c/​curre​nt/​file_​for-
mat_​speci​ficat​ions.​html

	20.	 Hindenlang, F.: Mesh curving techniques for high order parallel
simulations on unstructured meshes. Thesis (2014). https://​doi.​
org/​10.​18419/​opus-​3957

	21.	 Laughton, E., Tabor, G., Moxey, D.: A comparison of interpo-
lation techniques for non-conformal high-order discontinuous
Galerkin methods (2020). arXiv:​2007.​15534

	22.	 Kopper, P., Copplestone, S., Pfeiffer, M., Koch, C., Fasoulas,
S., Beck, A.: Hybrid parallelization of Euler–Lagrange simula-
tions based on MPI-3 shared memory. Advances in Engineer-
ing Software. 174, 09659978 (2022). https://​doi.​org/​10.​1016/j.​
adven​gsoft.​2022.​103291

	23.	 Appel, D., Jöns, S., Keim, J., Müller, C., Zeifang, J., Munz,
C.-D.: A Narrow Band-Based Dynamic Load Balancing Scheme
for the Level-Set Ghost-Fluid Method. Springer, Cham (2022).
(In press)

	24.	 Mueller, T.G., Pusuluri, N.B., Mathias, K.K., Cornelius, P.L.,
Barnhisel, R.I., Shearer, S.A.: Map quality for ordinary Kriging
and inverse distance weighted interpolation. Soil Sci. Soc. Am. J.
68(6), 2042–2047 (2004). https://​doi.​org/​10.​2136/​sssaj​2004.​2042

	25.	 Shepard, D.: A two-dimensional interpolation function for irregu-
larly-spaced data (1968). https://​doi.​org/​10.​1145/​800186.​810616

	26.	 Hardy, R.L.: Multiquadric equations of topography and other
irregular surfaces. J. Geophys. Res. 76(8), 1905 (1971). https://​
doi.​org/​10.​1029/​JB076​i008p​01905

	27.	 Hardy, R.L.: Theory and applications of the multiquadric bihar-
monic method—20 years of discovery 1968–1988. Comput. Math.
Appl. 19(8–9), 163–208 (1990). https://​doi.​org/​10.​1016/​0898-​
1221(90)​90272-L

	28.	 Kopriva, D.A.: Implementing Spectral Methods for Partial Dif-
ferential Equations: Algorithms for Scientists and Engineers. Sci-
entific Computation. Springer, Dordrecht (2009). https://​doi.​org/​
10.​1007/​978-​90-​481-​2261-5

	29.	 Akima, H.: A new method of interpolation and smooth curve fit-
ting based on local procedures. J. ACM 17(4), 589 (1970). https://​
doi.​org/​10.​1145/​321607.​321609

	30.	 Kravchenko, A.G., Moin, P.: Numerical studies of flow over a cir-
cular cylinder at Re

D
= 3900 . Phys. Fluids 12(2), 403–417 (2000).

https://​doi.​org/​10.​1063/1.​870318
	31.	 Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Experimen-

tal and numerical studies of the flow over a circular cylinder at
Reynolds number 3900. Phys. Fluids (2008). https://​doi.​org/​10.​
1063/1.​29570​18

	32.	 Bassi, F., Rebay, S.: A high-order accurate discontinuous finite
element method for the numerical solution of the compressible
Navier–Stokes equations. J. Comput. Phys. 131(2), 267–279
(1997). https://​doi.​org/​10.​1006/​jcph.​1996.​5572

	33.	 Pirozzoli, S.: Generalized conservative approximations of split
convective derivative operators. J. Comput. Phys. 229(19), 7180–
7190 (2010). https://​doi.​org/​10.​1016/j.​jcp.​2010.​06.​006

	34.	 Vreman, A.W.: An eddy-viscosity subgrid-scale model for turbu-
lent shear flow: algebraic theory and applications. Phys. Fluids
16(10), 3670–3681 (2004). https://​doi.​org/​10.​1063/1.​17851​31

	35.	 Niegemann, J., Diehl, R., Busch, K.: Efficient low-storage Runge–
Kutta schemes with optimized stability regions. J. Comput. Phys.
231(2), 364–372 (2012). https://​doi.​org/​10.​1016/j.​jcp.​2011.​09.​003

	36.	 Ehrle, M., Waldmann, A., Lutz, T., Krämer, E.: An automated
zonal detached eddy simulation method for transonic buffet. In:
Hoarau, Y., Peng, S.-H., Schwamborn, D., Revell, A., Mockett,
C. (eds.) Progress in Hybrid RANS-LES Modelling, pp. 271–281.
Springer, Cham (2020). https://​doi.​org/​10.​1007/​978-3-​030-​27607-
2_​22

	37.	 Schulte am Hülse, S.A.: Simulation transsonischen Buffets an
Transportflugzeugen mittels hybrider RANS-/LES Verfahren.
PhD thesis, Institute of Aerodynamics and Gas Dynamics, Uni-
versity of Stuttgart (2016). ISBN: 978-3-8439-2727-7

	38.	 Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K.,
Travin, A.: A new version of detached-eddy simulation, resistant
to ambiguous grid densities. Theor. Comput. Fluid Dyn. (2006).
https://​doi.​org/​10.​1007/​s00162-​006-​0015-0

	39.	 Kok, J.C.: A high-order low-dispersion symmetry-preserving
finite-volume method for compressible flow on curvilinear grids.
J. Comput. Phys. (2009). https://​doi.​org/​10.​1016/j.​jcp.​2009.​06.​
015

	40.	 Jameson, A.: Time dependent calculations using multigrid, with
applications to unsteady flows past airfoils and wings. In: 10th
Computational Fluid Dynamics Conference, Honolulu, Hawaii
(1991). https://​doi.​org/​10.​2514/6.​1991-​1596

	41.	 Eisfeld, B., Brodersen, O.: Advanced turbulence modelling and
stress analysis for the DLR-F6 configuration. In: 23rd AIAA
Applied Aerodynamics Conference, Toronto, Canada (2005).
https://​doi.​org/​10.​2514/6.​2005-​4727

	42.	 Pope, S.B.: Turbulent Flows. Cambridge University Press, Cam-
bridge (2000). https://​doi.​org/​10.​1017/​CBO97​80511​840531

	43.	 Moin, P.: Revisiting Taylor’s hypothesis. J. Fluid Mech. 640, 1–4
(2009). https://​doi.​org/​10.​1017/​S0022​11200​99921​26

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.2514/1.J055493
https://doi.org/10.1016/0021-9991(92)90007-L
https://doi.org/10.1016/0021-9991(92)90007-L
https://doi.org/10.2514/1.J054956
https://doi.org/10.2514/1.J054956
https://doi.org/10.1016/j.jcp.2015.11.064
https://elib.dlr.de/109551/
https://elib.dlr.de/109551/
https://docs.unidata.ucar.edu/netcdf-c/current/file_format_specifications.html
https://docs.unidata.ucar.edu/netcdf-c/current/file_format_specifications.html
https://doi.org/10.18419/opus-3957
https://doi.org/10.18419/opus-3957
http://arxiv.org/abs/2007.15534
https://ui.adsabs.harvard.edu/abs/2022arXiv220313840K
https://ui.adsabs.harvard.edu/abs/2022arXiv220313840K
https://doi.org/10.2136/sssaj2004.2042
https://doi.org/10.1145/800186.810616
https://doi.org/10.1029/JB076i008p01905
https://doi.org/10.1029/JB076i008p01905
https://doi.org/10.1016/0898-1221(90)90272-L
https://doi.org/10.1016/0898-1221(90)90272-L
https://doi.org/10.1007/978-90-481-2261-5
https://doi.org/10.1007/978-90-481-2261-5
https://doi.org/10.1145/321607.321609
https://doi.org/10.1145/321607.321609
https://doi.org/10.1063/1.870318
https://doi.org/10.1063/1.2957018
https://doi.org/10.1063/1.2957018
https://doi.org/10.1006/jcph.1996.5572
https://doi.org/10.1016/j.jcp.2010.06.006
https://doi.org/10.1063/1.1785131
https://doi.org/10.1016/j.jcp.2011.09.003
https://doi.org/10.1007/978-3-030-27607-2_22
https://doi.org/10.1007/978-3-030-27607-2_22
https://doi.org/10.1007/s00162-006-0015-0
https://doi.org/10.1016/j.jcp.2009.06.015
https://doi.org/10.1016/j.jcp.2009.06.015
https://doi.org/10.2514/6.1991-1596
https://doi.org/10.2514/6.2005-4727
https://doi.org/10.1017/CBO9780511840531
https://doi.org/10.1017/S0022112009992126

	A time-accurate inflow coupling for zonal LES
	Abstract
	1 Introduction
	2 Numerical methods
	2.1 Code frameworks
	2.1.1 TAU​
	2.1.2 FLEXI
	2.1.3 Comparison of the code frameworks

	2.2 Workflow
	2.2.1 Some remarks on surface data

	2.3 Spatial interpolation
	2.3.1 Nearest neighbor interpolation
	2.3.2 Inverse distance weighting
	2.3.3 Radial basis functions
	2.3.4 Comparison of the spatial interpolation methods

	2.4 Temporal interpolation

	3 Validation of the interface
	3.1 Proof of concept
	3.2 Assessing the temporal interpolation and sampling
	3.3 Convergence of the spatial mapping

	4 Results: cylinder flow
	4.1 Generating the reference data
	4.1.1 Simulation setup
	4.1.2 Sensitivity on resolution

	4.2 Coupled simulation
	4.3 Interpolation error
	4.4 Influence of the sampling rate

	5 Summary
	Acknowledgements
	References

