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Abstract
Airlines’ fleet assignment heavily affects the economic and ecological performance of the global air transportation  
system (ATS). Consequently, it is inevitable to include potential changes of the fleet assignment when modeling and assessing 
future global ATS scenarios. Therefore, this article presents a novel explanatory approach to modeling the fleet assignment 
in the global ATS. The presented approach is based on formulating and solving an optimization problem, which describes 
the fleet assignment in the ATS through a suitable combination of objective function and constraints. While the objective 
function combines both the airline and the passenger perspective on the fleet assignment, the constraints include additional 
operational and technological aspects. In comparison to the available global fleet assignment models in the literature, which 
rely on statistical approaches, the advantages of the presented approach via an optimization problem lie in the overall scenario 
capability and the consideration of explicit aircraft types instead of simplifying seat categories. To calibrate and validate our 
model, we use 10 years of historic flight schedule data. The results underline the strengths and weaknesses of the presented 
approach and indicate potential for future improvement.

Keywords  Air transportation system · Fleet assignment · Global air traffic model · Aircraft size · Explanatory modeling

1  Introduction

Despite the currently ongoing COVID-19 pandemic, the 
aviation industry is expecting long-term growth of passen-
ger air traffic. Different industry forecasts anticipate reaching 
pre-pandemic revenue passenger kilometers (RPKs) between 
2023 and 2027. For the time span of 2018–2050, the average 
annual RPK growth rate is estimated to lie between 2.9% and 
4.2%; only marginally below pre-pandemic growth estima-
tions. [1–5]

Contrastingly, the aviation industry and political institu-
tions are aiming to reduce emissions and climate impact 
of air traffic to accomplish the objectives set by the Paris 
Agreement [6–8]. Hence, the scientific community discusses 
a plethora of technological, operational, and market-based 
mitigation measures to reduce the climate impact of avia-
tion. These potential mitigation measures include, among 
others, alternative jet fuels [9], hybrid-electric aircraft [10], 
formation flight [11], climate optimized trajectories [12], 
climate-charged areas [13], and carbon offsetting [14].

However, as with all changes to the ATS, airlines are 
expected to adopt their operations to defend and strengthen 
their market positioning, when facing potential mitigation 
measures. One way of adopting an airline’s operations is by 
updating the fleet and the fleet assignment, deciding which 
aircraft type is operated on which route. Together with the 
finite number of airlines operating in the ATS, these individ-
ual airline fleet assignment decisions aggregate into changes 
of the overall fleet assignment in the global ATS. Because 
these changes of the overall fleet assignment affect the eco-
nomic and ecological performance of the global ATS, e.g., 
by changing the location and quantity of emissions or by 
changing the number of departures and arrivals at airports, 
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it is, thus, inevitable to include potential changes of the fleet 
assignment when modeling and assessing future global ATS 
scenarios.

Available literature on modeling airlines’ fleet assign-
ments can broadly be categorized into approaches for indi-
vidual airlines, for multiple competing airlines and for the 
global fleet assignment. Fleet assignment models for indi-
vidual airlines strive, e.g., for minimal operating cost or 
maximal operating profit, while considering operational 
constraints like limited fleet sizes and airport slot restric-
tions. Methodically, mathematical optimization approaches 
like linear programming or mixed-integer programming are 
used. The early work of Abara [15] and Hane et al. [16] 
focused on optimizing the short-haul fleet assignments of an 
individual airline given a daily or weekly fixed flight sched-
ule and only a few different aircraft types (up to four and 
eleven, respectively). More recent work covers larger scale 
problems as well as additional constraints and interactions. 
This includes for example integrated flight scheduling and 
fleet assignment as well as passenger behavior and prefer-
ences via supply-demand interactions [17–19].

Fleet assignment models for multiple competing airlines 
focus on capturing the competitive nature of flight schedul-
ing, fleet assignment and flight frequencies when multiple 
airlines operate within the same market. Methodically, game 
theory approaches are applied, in which the competition 
is portrayed as a non-cooperative game between multiple 
airlines, each trying to maximize its operational profit or 
market share. While the early work of Hansen [20] as well 
as Dobson and Lederer [21] concentrates primarily on the 
effects of flight scheduling and flight frequency, more recent 
studies, e.g., by Adler [22], Wei and Hansen [23] as well as 
Doyme et al. [24], also include the assignment of different 
aircraft sizes, either by seat categories or explicit aircraft 
types.

Global fleet assignment models are sparsely available 
in the literature and mainly focus on statistic modeling 
approaches.

The Aviation Integrated Model (AIM) [25–27] utilizes a 
multinomial logit model calibrated with historic flight sched-
ule data to model which size of aircraft is used by airlines on 
which route. The model variables include route-specific vari-
ables like the distance between origin and destination air-
port, the number of passengers and the passenger load factor 
on the segment. Additionally, airport-specific variables are 
included, e.g., the maximum runway length of the origin 
and destination airport and whether one of these airports is 
a major hub airport. Nine different aircraft seat categories 
are used to represent the available aircraft fleet with one 
representative aircraft type for each category.

Kölker et al. [28] also use seat categories to represent 
different aircraft types in an aggregated way. Yet, their mod-
eling approach focuses on representing the proportion of 

flights within a distance and passenger volume band with 
Gaussian functions for each seat category.

The dependency between aircraft size, flight distance, and 
passenger volume on a route is also employed by the Future 
Air Traffic Estimator (FATE) model [29]. Unfortunately, a 
more detailed description of the model methodology is not 
published.

Similarly, the publications about how the fleet assignment 
in the global ATS is modeled within the Aviation environ-
mental Portfolio Management Tool (APMT) [30, 31] and 
the Aviation Emissions and evaluation of Reduction Options 
Modeling System (AERO-MS) [32, 33] are sparse. For the 
APMT only aims and conceptual model architectures are 
published, stating the model shall be able to describe impli-
cations of technological and operational changes for the fleet 
assignment. In AERO-MS, the mix of aircraft to operate on 
a route is supposed to be determined in dependency of the 
operating cost of different aircraft sizes and range categories. 
Though, no methodology is given on how this is achieved.

In this article, we present a new explanatory approach to 
modeling the fleet assignment in the global ATS. Similar to 
the previously discussed approaches for modeling the fleet 
assignment of an individual airline, our approach is based 
on formulating and solving an optimization problem. How-
ever, rather than optimizing the fleet assignment and flight 
scheduling of an individual airline, we focus on capturing 
the dynamics of the global, cross-airline fleet assignment 
in the ATS. Therefore, we apply a different objective func-
tion and a different set of constraints. Our objective function 
includes the airlines’ and passengers’ perspectives, via direct 
operating cost (DOC), schedule delay and travel time. Our 
constraints represent logical, operational, and technologi-
cal aspects of the fleet assignment, like limited fleet avail-
ability, airport capacities, and payload-range capabilities of 
the different aircraft types. Effects of flight scheduling and 
airline competition, which are key elements in fleet assign-
ment models for individual airlines and multiple competing 
airlines, are substitutionally included into our optimization 
problem via a utilization model and market concentration 
constraints. In doing so, we achieve a suitable level of detail 
for modeling the global ATS and ease the computational 
requirements of our optimization model; leading to com-
putation times of less than ten minutes for the yearly fleet 
assignment of the global ATS. To calibrate and validate the 
overall model, we use ten years of historic flight schedule 
data. In contrast to the statistical modeling approaches for 
the global fleet assignment, which are available in the lit-
erature, our new explanatory approach via an optimization 
problem has the two main advantages of allowing diverse 
scenario analyses and including explicit aircraft types 
instead of aircraft seat categories.

The remainder of this article is arranged as follows: 
Section 2 describes in detail the methodology of this new 



257An explanatory approach to modeling the fleet assignment in the global air transportation system﻿	

1 3

explanatory approach to modeling the fleet assignment in the 
global ATS. Section 3 presents exemplary results achieved 
with this new methodology. In Sect. 4, these results are dis-
cussed. Section 5 concludes this article and gives an outlook 
on future research.

2 � Methodology

This section presents first the data sets used for this study; 
second, the developed overall model architecture; and third, 
the underlying submodels. Last, the mathematical formula-
tion of the model as an optimization problem is introduced.

2.1 � Data sets

The Sabre Market Intelligence database provides global his-
toric flight schedule data for the years 2010–2019 [34]. This 
historic flight schedule data yield information on the global 
route network, on flight frequencies and seat capacities for 
each origin-destination pair as well as information on air-
craft utilization and available seats per aircraft type.

The Cirium Fleets Analyzer database provides 
information about the global aircraft fleet for the years 
2010–2019 [35]. The fleet data includes, among others, the 
number of available units per aircraft type as well as weight 
and utilization information for each aircraft unit. For each 
year, the fleet is assumed to be constant; with the fleet on 
June 30 being representative for the whole year.

The available overall data sets regarding route networks 
and aircraft fleets are split into two subsets. The first, span-
ning the years 2010–2016, is used for model calibration and 
submodel development. The second one, spanning the years 
2017–2019, is used for model validation.

Aircraft type performance data are taken from the Air-
craft Characteristic Manuals (ACMs) provided by the air-
craft manufacturers [36, 37] and from the type certificate 

data sheets [38]. These performance data include payload-
range diagrams, maximum seating capacities as well as 
required takeoff and landing field length information.

Data regarding aircraft-type-specific fuel consumption 
is derived from EUROCONTROL’s Base of Aircraft Data 
(BADA) data sets [39].

The required airport-specific information consists of 
IATA codes, geographic coordinates, number of runways, 
maximum runway lengths, and the runway configurations. 
The information is collected and aggregated from various 
publicly available data sources, e.g., Wikipedia and Google’s 
satellite imagery.

While most of the data mentioned above would be avail-
able for a wide variety of different aircraft types, this study 
focuses on a selected group of relevant passenger aircraft 
types, which are considered to be representative for the 
global ATS. The selected 35 Airbus and Boeing aircraft 
types cover 63% of global departures and 91% of the global 
available seat kilometers (ASKs) in the historic flight sched-
ule data. A complete list of the selected aircraft types is 
given on the abscissae of Figs. 2 and 3.

2.2 � Overall model structure

The overall model structure is displayed in Fig.  1. The 
required input data include the route network, the aircraft 
fleet and the aircraft performance data. The route network 
consists of all origin–destination pairs and the offered seat 
capacity for each pair. The aircraft fleet is characterized by 
the number of available units per aircraft type. The aircraft 
performance data, which is required to correctly model the 
individual operational characteristics of each aircraft type, 
includes, among others, engine, mass, range, and cabin data.

The fleet assignment model for the global ATS is based 
on the formulation and solving of an optimization problem. 
The aim of this optimization problem is to determine which 

Fig. 1   Schematic representation of the overall model architecture



258	 M. Kühlen et al.

1 3

proportion of the offered seat capacity on each route is pro-
vided by which aircraft type.

The objective function of the optimization problem 
includes both the airline and the passenger perspective, 
representing the cost and revenue side of aircraft opera-
tion, respectively. The costs are included into the objective 
function via the DOC per ASK. The revenues are modeled 
indirectly via the schedule delay and the travel time, both 
affecting the passenger acceptance of a fleet assignment and 
therefore the revenue on a route. The weighting between 
the different aspects of the objective function is determined 
during the model calibration process, minimizing the differ-
ences between calibration data and model results.

The constraints of the optimization problem consist of 
logical, operational and technological constraints. Valid 
solutions of the optimization problem are required to cover 
the entire seat capacity of each route. Additionally, the lim-
ited availability of each aircraft type in the overall aircraft 
fleet must be considered. Furthermore, the individual rela-
tion between payload and range must be met for each air-
craft type. From an infrastructure perspective, the available 
runway length and runway capacity at each airport must be 
considered. An additional market concentration constraint 
takes account of the existence of different airlines with indi-
vidual fleets and route networks.

The solution of the optimization problem results in the 
primary output of the model: the fleet assignment in the 
global ATS, answering which aircraft type is used to offer 
which proportion of the seat capacity on which route. This 
primary output then leads to additional outputs like the 
route-specific aircraft mix, the route network of each indi-
vidual aircraft type and the flight frequency on each route.

2.3 � Submodels

Several submodels are used as part of the overall model 
structure. In the following these submodels are introduced 
and briefly described.

2.3.1 � Direct operating cost

The DOC submodel uses the TU Berlin method by J. Thor-
beck; also known as the CeRAS DOC model. The TU Ber-
lin method describes the DOC as the sum of the five cost 
components fuel, maintenance, fees, crew and capital. For 
each component the method provides an analytic formula for 
calculating the monetary values in 2010 euro values. [40, 41]

2.3.2 � Fuel consumption

For the calculation of flight-specific fuel consumption 
DLR’s Trajectory Calculation Module (TCM) is applied [42, 
43]. This tool performs a three-degree-of-freedom trajectory 

simulation with simplified equations of motion, also known 
as Total Energy Model, and employs the aircraft perfor-
mance models provided in the BADA (model family 4) [44]. 
With TCM, we create a database of reduced flight profiles 
by simulating aircraft trajectories for all discrete combina-
tions of flight distance (in steps of 100 NM) and load factors 
(with a higher resolution around usual load factors between 
0.75 and 0.85) for all aircraft models available in BADA 4. 
For the simulation standard climb and descent procedures 
are assumed and corresponding speed schedules are used. 
During cruise, long-range cruise speed is applied and step 
climbs are modeled to approximate operationally realistic 
cruise profiles. We compress the trajectory data (= reduc-
tion) by saving the relevant aircraft state parameters (i.e., 
flown distance, time, altitude, fuel flow) at significant pro-
file vertices only, i.e., transitions between flight phases, into 
the database, as also, e.g., done by Linke et al. [45, 46]. 
Simple functions can be used to synthesize profiles from 
the database for various purposes later assuming linearity 
of aircraft state parameters within individual flight phases. 
By integrating the fuel flow data over time, we calculate 
the amount of required mission fuel for all combinations of 
flight distance and load factor. Based on these fuel values, 
we model the fuel consumption of operating aircraft type t 
on the route (o, d) between origin airport o and destina-
tion airport d via the quadratic expression given by Eq. (1); 
with the fuel mass mfuel

o,d,t
 , the flight distance do,d , the load 

factor lf o,d,t and the aircraft-type-specific regression coeffi-
cients ai,t . To incorporate lateral ground track extensions due 
to routing inefficiencies, we use Eq. (2) for calculating the 
flight distance do,d based on the great circle distance gcdo,d 
between origin and destination airport [26].

2.3.3 � Utilization

The utilization submodel describes the yearly service and 
transport performance of an aircraft unit. The block time bto,d,t 
for servicing a route (o, d) with aircraft type t is calculated in 
dependency of the great circle distance gcdo,d between origin 
and destination airport and the typical cruise Mach number 
of the used aircraft type Macr

t
 . According to the ACMs [36, 

37] and literature studies [47, 48], the critical path for full 
service turnarounds is defined by passenger deplaning and 
boarding as well as catering and cleaning or refueling. Thus, 
the turnaround time tato,d,t between two flights when servicing 
a route (o, d) with aircraft type t is modeled in dependency of 

(1)
m

fuel

o,d,t
= a1,t ⋅ d

2

o,d
+ a2,t ⋅ do,d

+ a3,t ⋅ do,d ⋅ lf o,d,t + a4,t,

(2)do,d = 40.74 km + 1.029 ⋅ gcdo,d.
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the number of available passenger seats per flight po,d,t and the 
block time bto,d,t . The utilization rate utro,d,t , which describes 
the percentage of time used for performing flight operations 
when servicing a route (o, d) with aircraft type t, including 
both flights and turnarounds, is modeled in dependency of the 
block time BTo,d,t and the aircraft age aget.

The coefficients a5–a14 are derived from historic flight 
schedule and aircraft utilization data. Thus, the utilization 
submodel implicitly includes a variety of effects on aircraft 
utilization, which are not explicitly modeled, e.g., effects of 
flight routing on block time, schedule buffer on turn around 
time, and night curfews and airlines’ aircraft flow balance 
on utilization rate.

2.3.4 � Payload‑range relation

The payload-range relation of each aircraft type is directly 
derived from the ACMs. For each aircraft type a represent-
ative weight variant is selected and the boundaries of the 
payload-range diagram are modeled as straight lines.

2.3.5 � Required field length

The required takeoff and landing field lengths, toflreq
o,d,t,p

 
and lflreq

o,d,t,p
 when operating aircraft type t with p passengers 

on route (o, d) are modeled with the analytic formulas given 
in Eqs. (6) and (7); with the takeoff mass tomo,d,t,p , the land-
ing mass lmo,d,t,p and the origin and destination airport pres-
sure altitudes pao and pad . The aircraft-type-specific coef-
ficients a15,t through a24,t are derived from the takeoff and 
landing performance data in the ACMs.

(3)
bto,d,t =

a5
(

Macr
t

)a6
⋅ gcdo,d

− exp
(

−a7 ⋅ gcdo,d
)

+ a8 + 1,

(4)tato,d,t = a9 ⋅ po,d,t + a10 ⋅ bto,d,t + a11,

(5)utro,d,t = 1 − exp
(

−a12 ⋅ bt
a13
o,d,t

)

− a14 ⋅ aget.

(6)

tofl
req

o,d,t,p
= a15,t ⋅ exp(a16,t ⋅ tomo,d,t,p

+ a17,t ⋅ tomo,d,t,p ⋅ pao

+ a18,t ⋅ tomo,d,t,p ⋅ pa
2
o
) + a19,t,

(7)

lfl
req

o,d,t,p
=
(

a20,t

+a21,t ⋅ lmo,d,t,p

)

⋅ exp
(

a22,t ⋅ pad
)

+ a23,t ⋅ lmo,d,t,p + a24,t ⋅ lmo,d,t,p
2.

2.3.6 � Airport capacity

The methodology for determining the airport capacities is 
adopted from Gelhausen et al. [49]. Within this methodol-
ogy, the runway capacity is assumed to be limiting for the 
airport capacity. Therefore, the historic flight schedule data 
are used for determining the 95%-runway capacity per hour 
as well as the operating hours of each airport. Then, the air-
ports are grouped based on the number of available runways 
and their configuration to determine the maximum 95%-run-
way capacity per hour of each group. Finally, the yearly run-
way capacity of each airport is calculated by multiplying the 
95%-runway capacity per hour of the airport’s group with 
the individual yearly operating hours of each airport.

To account for the fact that only a selected group of rep-
resentative aircraft types are included within this study, the 
calculated capacity of each airport is additionally scaled 
with an airport-specific factor. This scaling factor is deter-
mined by the ratio of departures and arrivals of the selected 
group of aircraft types in comparison to the total number of 
departures and arrivals at each airport.

2.3.7 � Schedule delay

In general, schedule delay is defined as the difference 
between the favored departure time of the passenger and 
the offered departure time in the flight schedule. However, 
within this study, we use the concept of schedule delay for 
quantifying the attractiveness of an offered flight frequency 
from a passenger perspective. Consequently, we apply an 
aggregated schedule delay approach, adopted from Brueck-
ner and Flores-Fillol [50], where passengers are assumed 
to care about the offered flight frequency rather than the 
departure times of individual flights. Additionally and in 
accordance with Presto et al. [51], we assume a time-wise 
constant demand and a time-wise equidistant flight schedule. 
Hence, the average schedule delay asdo,d,t of passengers on a 
route (o, d) served by fo,d,t flights of aircraft type t in a time 
interval Δto,d can be calculated with Eq. (8). For the total 
schedule delay tsdo,d,t of all offered seats on a route follows 
Eq. (9); using tsd = asd ⋅ capa and capa = f ⋅ p , with p being 
the available seats per flight. As shown by Eq. (9), the total 
schedule delay tsdo,d,t only depends on the considered time 
interval Δto,d and the available seats per flight po,d,t , but not 
on the overall available seat capacity capao,d of the route.

(8)asdo,d,t =
1

4
⋅

Δto,d

fo,d,t
,

(9)tsdo,d,t =
1

4
⋅ Δto,d ⋅ po,d,t.
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While the made assumptions may only be fully accurate for 
some passengers, e.g., business travelers with unpredict-
able travel times and flexible tickets, and some routes, e.g., 
high-frequency routes at airline hubs, the resulting Eqs. (8) 
and (9) capture the overall and general dynamics between 
aircraft size, flight frequency, and schedule delay. Thus, we 
see the approaches by Brueckner and Flores-Fillol [50] and 
Presto et al. [51] as suitable approximations, given the global 
and aggregated scope of our model. For using the calculated 
total schedule delay tsdo,d,t within the objective function of 
the optimization problem, a monetary factor, which is deter-
mined during the model calibration, is applied to transform 
the schedule delay value into a monetary value.

2.3.8 � Travel time

The travel time evaluation for the objective function is based 
on the relative comparison of block times of different feasi-
ble fleet assignments. With Eq. (10), the additional required 
block time Δbto,d,t for serving the route (o, d) with aircraft 
type t in comparison to serving it with the fastest available 
aircraft type t out of the set of feasible aircraft types To,d is 
calculated. By analogy with the schedule delay, the differ-
ence in block time Δbto,d,t is transferred into a monetary 
value by applying a monetary factor determined during the 
calibration process.

2.3.9 � Market concentration

The historic flight schedule data indicate a negative corre-
lation between the offered seat capacity on a route and the 
market concentration of the used aircraft types. This correla-
tion is assumed to be caused by the existence of different air-
lines with individual fleets and route networks in the global 
ATS. Thus, this effect is inherently not included in the pre-
sented methodology due to the used cross-airline approach. 
Therefore, the market concentration submodel calculates an 
upper limit hhit

o,d
 for the aircraft type market concentration 

of individual routes by linking the offered seat capacity on 
a route capao,d to the Herfindahl–Hirschman market concen-
tration index (HHI), see Eq. (11). The regression coefficients 
a25 and a26 are derived from the historic flight schedule data.

2.4 � Optimization problem

The modeled optimization problem is described by the 
objective function and constraints in Eqs. (12)–(16), the 

(10)Δbto,d,t = bto,d,t − min
t∈To,d

bto,d,t.

(11)hhit
o,d

= a25 + exp
(

−a26 ⋅ capao,d + ln
(

1 − a25
))

.

parameter calculations in Eqs. (17)–(21), the set defini-
tions in Eqs. (22)–(27) and the notation explanation in 
Tab. 1.

The aim of the optimization model is to determine 
a global fleet assignment, which minimizes the cost of 
serving a route and demand network with an aircraft fleet, 
Eq. (12). The fleet assignment is given by the decision 
variables xo,d,t , which describe which share of the required 
seat capacity capao,d on a route between origin airport o 
and destination airport d is operated by aircraft type t.

To describe a valid solution of the optimization prob-
lem, the fleet assignment must meet the following con-
straints: For each route in the global route network, 
given by the directed tuple of origin and destination air-
port (o, d), the fleet assignment must cover at least the 
required seat capacity, Eq. (13). For each aircraft type t, 
the fleet assignment must respect the number of available 
aircraft units in the fleet avail_ut , Eq. (14). For each air-
port a, the sum of all departures and all arrivals must be 
less than or equal to the runway capacity at the given air-
port, Eq. (15). For each route (o, d), the market concentra-
tion of the used aircraft types operated on this route, given 
by the HHI hhit

o,d
 , must be less than or equal to an upper 

HHI limit hhit
o,d

 , Eq. (16). This upper HHI limit is calcu-
lated for each route with the regression model described 
by Eq. (11) in Sect. 2.3.9 based on the required seat capac-
ity capao,d.

Equations (17) and (18) ensure that the aircraft types 
are evaluated with the most cost-efficient, yet operationally 
feasible number of offered passenger seats per flight po,d,t . 
First, the number of offered passenger seats po,d,t must be 
a strict positive integer less than or equal to the number of 
seats of an average cabin layout pmax,t of the aircraft type t. 
Second, the number of offered passenger seats per 
flight po,d,t of aircraft type t on route (o, d) must allow an 
operating range rt,p equal to or greater than the flight dis-
tance do,d of the route. Third, po,d,t must allow required 
takeoff and landing field lengths, toflreqt,p,o and lflreq

t,p,d
 , equal 

to or less than the available runway lengths at the origin 
and destination airports, rwlavail

o
 and rwlavail

d
 , respectively. 

Last, the maximum number of offered passenger seats, 
which meets the previously defined criteria, is selected for 
each combination of route and aircraft type, Eq. (18), as 
this is, given the objective function, the most cost-efficient 
operating point.

The cost for using aircraft type t to provide the required 
seat capacity capao,d for the route (o, d) is the weighted 
sum of the DOC doco,d,t , the total schedule delay tsdo,d,t 
and the additional block time Δbto,d,t of the aircraft 
type and route combination, Eq. (19). The total sched-
ule delay tsdo,d,t and the additional block time Δbto,d,t are 
calculated as previously described by Eqs. (9) and (10) 



261An explanatory approach to modeling the fleet assignment in the global air transportation system﻿	

1 3

in Sects. 2.3.7 and 2.3.8. The weighting parameters �1 
and �2 are determined during the model calibration. To 
calculate the required number of flights  fo,d,t with aircraft 
type t to provide the required seat capacity capao,d for the 
route (o, d), the required seat capacity capao,d is divided 
by the number of offered passenger seats per flight po,d,t , 
Eq. (20). The required number of units uo,d,t of aircraft 
type t to provide the required seat capacity capao,d for the 
route (o, d) is calculated by dividing the required operating 

time for the route by the available operating time per air-
craft unit, Eq. (21).

Objective function and constraints:

(12)min
∑

(o,d,t)∈ODT

co,d,t ⋅ xo,d,t,

(13)s.t.
∑

t∈To,d

xo,d,t ≥ 1 ∀(o, d) ∈ OD,

Table 1   Notations for the formulation of the optimization problem

Sets and parameters

A Set of airports in route network; indexed by a
OD set of routes in route network; indexed by tuple (o, d) with origin airport o and destination airport d
ODt Subset of routes, which aircraft type t can serve
T Set of aircraft types in fleet; indexed by t
To,d Subset of aircraft types, which can serve route (o, d)
ODT Set of route and aircraft type combinations; indexed by tuple (o, d, t) with origin airport o, destination airport d and 

aircraft type t
ARRa , DEPa Subsets of route and aircraft type combinations, which arrive at and departure from airport a, respectively
co,d,t Cost to provide the required seat capacity capao,d for route (o, d) when operating aircraft type t
capao,d Required seat capacity of route (o, d)
uo,d,t Required number of units of aircraft type t to provide the required seat capacity capao,d
uavail
t

Available number of units of aircraft type t in the fleet
fo,d,t Required number of flights of aircraft type t to provide the required seat capacity capao,d
f avail
a

Available number of aircraft movements at airport a; see Sect. 2.3.6
hhit

o,d
HHI of the aircraft types operated on route (o, d)

hhit
o,d

Upper limit of the HHI of the aircraft types operated on route (o, d); see Sect. 2.3.9

Po,d,t Set of the feasible number of offered passenger seats per flight with aircraft type t on route (o, d)
po,d,t Number of offered passenger seats per flight with aircraft type t on route (o, d)
pmax,t Maximum number of offered passenger seats per flight in an average cabin layout of aircraft type t
rt,p Range of aircraft type t when operating with p passengers; calculated via the payload-range diagram; see 

Sect. 2.3.4
do,d Flight distance of route (o, d)
tofl

req

o,d,t,p
 , lflreq

o,d,t,p
Required takeoff and landing field length when operating aircraft type t with p passengers on route (o, d); see 

Sect. 2.3.5
rwlavail

a
Available runway length at airport a

doco,d,t Direct operating cost to provide the required seat capacity capao,d for route (o, d) with aircraft type t; see 
Sects. 2.3.1–  2.3.3

tsdo,d,t Total schedule delay of all passengers when operating aircraft type t on route (o, d); see Sect. 2.3.7
Δbto,d,t Additional block time required to operate aircraft type t on route (o, d) in comparison to operating it with the fast-

est available aircraft type; see Sect. 2.3.8
bto,d,t , tato,d,t , utro,d,t Block time, turn around time and utilization rate when operating aircraft type t on route (o, d); see Sect. 2.3.3
Δtrn Time period of the route network (e.g., hours per year)
�1 , �2 Calibrated weighting parameters for the cost calculation

Decision variables

xo,d,t ∈ [0, 1] Share of the required seat capacity capao,d on route (o, d), which is served by aircraft type t
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Parameters:

Sets:

Equations (22)–(27) define sets and subsets of routes, air-
craft types and their respective combinations for formulating 
the optimization problem. The set of routes OD is described 
by the directed tuple (o, d) of origin airport o and desti-
nation airport d. Of all possible combinations of airports, 
only those origin and destination airport tuples (o, d) with 
strict positive flight distance and strict positive offered seat 
capacity capao,d are part of the set of routes OD, Eq. (22). 
The set ODT includes all tuples (o, d, t) of potential combi-
nations of routes and aircraft types. Only those routes and 
aircraft type combinations are considered, for which the set 
of the possible number of offered passenger seats Po,d,t is not 
empty, Eq. (23). This excludes all combinations, where the 

(14)
∑

(o,d)∈ODt

uo,d,t ⋅ xo,d,t ≤ uavail
t

∀t ∈ T ,

(15)

∑

(o,d,t)∈ARRa

fo,d,t ⋅ xo,d,t +
∑

(o,d,t)∈DEPa

fo,d,t ⋅ xo,d,t ≤ f avail
a

∀a ∈ A,

(16)
∑

t∈To,d

xo,d,t
2 = hhit

o,d
≤ hhit

o,d
∀(o, d) ∈ OD.

(17)Po,d,t =
{

p ∈ ℕ
+
≤pmax,t

|

|

|

(

rt,p ≥ do,d
)

∧
(

tofl
req

o,d,t,p
≤ rwlavail

o

)

∧
(

lfl
req

o,d,t,p
≤ rwlavail

d

)

}

∀(o, d, t) ∈ OD × T ,

(18)po,d,t = max
(

Po,d,t

)

∀(o, d, t) ∈ ODT ,

(19)
co,d,t = doco,d,t + �1 ⋅ tsdo,d,t + �2 ⋅ Δbto,d,t ∀(o, d, t) ∈ ODT ,

(20)fo,d,t = capao,d ∕ po,d,t ∀(o, d, t) ∈ ODT ,

(21)
uo,d,t = fo,d,t ⋅

(

bto,d,t + tato,d,t
)

∕
(

Δtrn ⋅ utro,d,t
)

∀(o, d, t) ∈ ODT .

(22)OD =
{

(o, d) ∈ A × A ∣ o ≠ d ∧ capao,d > 0
}

,

(23)ODT =
{

(o, d, t) ∈ OD × T ∣ Po,d,t ≠ �
}

,

(24)ODt = OD ⧵
{

(o, d) ∈ OD ∣ Po,d,t = �
}

∀t ∈ T ,

(25)To,d = T ⧵
{

t ∈ T ∣ Po,d,t = �
}

∀(o, d) ∈ OD,

(26)ARRa = {(o, d, t) ∈ ODT ∣ d = a} ∀a ∈ A,

(27)DEPa = {(o, d, t) ∈ ODT ∣ o = a} ∀a ∈ A.

range, the takeoff or the landing performance of an aircraft 
type is not sufficient for serving a route. The subsets ODt 
include all route tuples (o, d), which can be served by the 
aircraft type t, Eq. (24). The subsets Tod include all aircraft 
types t, which can serve the route (o, d), Eq. (25). The sub-
sets ARRa and DEPa include all tuples of potential route and 
aircraft type combinations, which arrive at and departure 
from airport a, respectively, Eqs. (26) and (27).

The previously presented formulation of the optimiza-
tion problem leads to a linear program with both linear 

constraints, Eqs.  (13)–(15), and quadratic constraints, 
Eq. (16). The size of the optimization problem depends 
primarily on the number of routes and airports in the 
route network as well as the number of aircraft types in 
the fleet. For the analyses presented in this paper, the size 
of the optimization problem varies between approximately 
30 and 50 thousand constraints, 0.5 and 1.5 million vari-
ables as well as  2.5 and 6.0 million non-zero variable-
constraint coefficients. We use Gurobi Optimizer [52] to 
solve the optimization problem. The solver transforms the 
presented formulation of the optimization problem into 
a second-order cone problem formulation and applies its 
barrier method for solving. On a regular laptop with a 9th 
generation Intel i7 processor (6 physical cores, 2.6 GHz) 
and 32 GB RAM, solving the optimization problem takes 
approximately 100–550 seconds.

Currently, the optimization problem does not include any 
constraints for the flow of aircraft in the route network, e.g., 
requiring the number of departures and arrivals being equal 
per aircraft type and airport. This is because the input data 
for the route network includes significant sources and sinks 
regarding the offered seat capacity per airport. Therefore, 
including constraints on the flow of aircraft would require 
either manipulating the input data or adding the option of 
additional empty flights to the optimization problem. Both 
approaches are considered out of scope for this study.

Moreover, the optimization problem also does not require 
the number of flights on a route to be integer, see Eq. (20). 
We rate this as a suitable approximation as, first, the aim 
of the presented methodology is to model the yearly fleet 
assignment in the global ATS and the majority of flights and 
ASKs are offered on high frequency routes. For example, 
combinations of aircraft types and routes with 20 (100) or 
more flights per year contributed 99% (90%) of the ASKs 
in the route network input data for 2010. Thus, we expect 
the modeling error of allowing non-integer flight frequency 
solutions to be insignificant on a global scale. Second, the 
alternative of requiring the number of flights on a route to 
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be integer would transform the optimization problem from a 
linear program into a mixed-integer program, which would 
significantly increase the computational complexity of solv-
ing the optimization problem.

3 � Results

Using the previously described methodology and data sets 
to reproduce the fleet assignment in the global ATS for the 
years 2010–2019 leads to the following results.

3.1 � Fleet assignment per aircraft type

Figure 2 visualizes the distance distributions of individual 
aircraft types in the 2016 fleet assignment, comparing his-
toric flight schedule data with model results. Addition-
ally, the ASKs for each aircraft type are plotted on the 
second ordinate and displayed with an asterisk symbol. 
The results show closer resemblance for narrow body air-
craft than for wide body aircraft. Furthermore, aircraft 
types with lower ASKs, e.g., A340-500, B757-300 and 
B767-400, tend to show larger differences than aircraft 
types with higher ASKs. For the A220-300, no results 
were obtained from the model as the entry into service of 
the aircraft type took place in the second half of the year, 
preventing an inclusion in the representative aircraft fleet 
input data from end of June the same year.

Figure 3 shows the distributions of the capacity share 
on a route per aircraft type for the year 2016. The second 

ordinate displays the number of used aircraft units per air-
craft type. The results show that the model overestimates 
the route capacity share of most aircraft types; especially 
for those with large numbers of used units and ASKs (see 
also Fig. 2), e.g., A320ceo, A330, B737-800 and B777.

To quantify and summarize the previously described 
differences of the fleet assignments for multiple years and 
evaluation parameters, a normalized first Wasserstein dis-
tance (NWSD) approach is used. For each year the data and 
model distributions of each aircraft type are compared using 
the Wasserstein distance and normalized with the mean of 
the input data. The results of the different aircraft types are 
then ASK-weighted and averaged for each year. Figure 4 
shows the results of the NWSD evaluation for the time span  
2010–2019 for distance, capacity and capacity share distri-
butions. The results show the lowest NWSD values for the 
distance distributions and the largest for the capacity share. 
Additionally, the results for the capacity share are also more 
volatile than for the distance and the capacity. Regarding 
the different time spans of calibration and validation, the 
NWSD results show no distinct differences; with the cali-
bration including the data sets for 2010–2016, which were 
used for calculating the parameters a5 through a14 of the uti-
lization submodel, the parameters a25 and a26 of the market 
concentration submodel and the weighting factors �1 and �2 
of the objective function; and with the validation including 
the data sets for 2017–2019.

Fig. 2   Comparison of aircraft type distance distributions between historic flight schedule data and model results for the year 2016
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3.2 � Fleet assignment per route category

Aggregating and comparing the historic flight schedule fleet 
assignments and model results for routes with similar dis-
tance and capacity characteristics leads to the subsequently 
described results.

Figure 5 shows the average number of flights per day for 
routes in different distance categories for the year 2013. The 

importance of the different categories for the overall ATS is 
underlined by the relative ASK and departure count (Depc) 
shares of each category visualized on the upper abscissa. 
The results show smaller differences between input data 
and model results for categories with distances longer than 
900 km and larger differences for shorter routes. However, 
the routes in the two shorter distance categories only repre-
sent about 10% of the overall ASKs.

Fig. 3   Comparison of aircraft type capacity share distributions between historic flight schedule data and model results for the year 2016

Fig. 4   Comparison of normalized Wasserstein distances between his-
toric flight schedule data and model results for the years 2010–2019

Fig. 5   Comparison of historic flight schedule data with model results: 
average flight frequency in flights per day over distance categories for 
the year 2013
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Figure 6 visualizes the average number of available seats 
per flight for different capacity categories for the year 2013. 
The results show the highest accuracy for capacity categories 
with more than 240 available seats per day. Together these 
categories represent about 90% of the ASKs and departures. 
The largest differences occur for low capacity routes with 
less than 120 available seats per day, representing about 10% 
of the ASKs and departures.

Similar to the NWSD analysis performed around Fig. 4, 
the categorized results can also be quantified, summarized, 
and analyzed for different years and evaluation parameters. 
However, as the categorized results include only vectors of 
scalar values instead of vectors of discrete distributions, a 
normalized mean absolute error metric (NMAE) instead 
of the NWSD metric is used for data aggregation. Figure 7 
shows the NMAE results for all combinations of distance 
and capacity categories with the evaluation parameters 
flights per day, seats per flight and HHI aircraft type market 
concentration per route. The results show the lowest error 
values for the seats per flight and the highest error values 
for the HHI-related evaluation parameters. For the valida-
tion time span, the HHI-related evaluation parameters show 
increasing error values, while the flights per day and seats 
per flight error values remain approximately constant.

3.3 � Airport capacity usage

Figure 8 shows the calculated runway capacity constraints 
and the number of runway operations per day for both the 
historic flight schedule data and the model results for the 

year 2016. The visualized data are used to check the accu-
racy of the airport capacity submodel as well as the local 
accuracy of the overall model. The depicted twelve airports 
are those with the highest relative runway capacity usage in 
the model results.

Fig. 6   Comparison of historic flight schedule data with model results: 
average aircraft size in seats per flight over capacity categories for the 
year 2013

Fig. 7   Normalized mean absolute error comparison between historic 
flight schedule data and model results for the years 2010–2019

Fig. 8   Number of runway operations per day for the twelve airports 
with the highest percentage usage of modeled airport capacity in 
2016
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The comparison of the model results with the airport 
capacity submodel constraints indicates that only seven air-
ports (PEK to LGW) are directly capacity constrained. For 
all other airports in the overall model the airport capacity 
submodel calculates a higher runway capacity than required. 
The capacities of four shown airports are overestimated 
(HND, DXB, CGK and FRA), two are underestimated (PEK 
and LHR) and the capacities of the other six shown airports 
are estimated with only minor differences. For the depicted 
airports, the largest difference between historic flight sched-
ule data and model results, not caused by too restrictive con-
straints, occurs for Dubai International (DXB).

4 � Discussion

In the following, the previously described results are dis-
cussed and interpreted to draw conclusions for the overall 
model performance and potential future improvements.

First, both the aircraft type results (Figs. 2 and 3) and the 
categorized results (Figs. 5 and 6) show a higher accuracy 
of the overall model for aircraft types and route categories 
with high ASK shares. This is not surprising as most met-
rics within the model, including the calibration process, are 
ASK-weighted. Hence, the model focuses on minimizing 
the differences of high ASK categories and aircraft types. 
This behavior is expected to lead to the best overall results 
and is, thus, rated desirable for the global ATS scope of the 
overall model.

Additionally, low ASK categories and aircraft types are 
more sensitive to potential single outliers, caused by either 
route or airline characteristics. For instance, all B767-400 
passenger aircraft included in the historic flight schedule 
data for 2016 are operated by two North American network 
carriers; an information surely affecting the resulting opera-
tional scenarios of this aircraft type, but unknown to, and 
out of scope of the model. Nevertheless, future work should 
include an in-depth analysis of the low ASK differences.

Second, the previously presented results show a relatively 
low accuracy of the overall model regarding the aircraft 
type capacity share and the aircraft type market concentra-
tion on individual routes, see Figs. 3, 4 and 7. Even though 
the market concentration submodel closely links the route 
capacity to an upper HHI limit, see Eq. (11), the resulting 
NMAE values regarding the HHI of the capacity categories 
are relatively large, see Fig. 7. Furthermore, the increasing 
NMAE of the HHI evaluation parameters during the valida-
tion time span might even indicate an overfit of the market 
concentration submodel to the calibration data. Additionally, 
the volatility in the NWSD capacity share results, see Fig. 4, 
may indicate a lacking significance of the model regarding 
the reproduction of the capacity share. In sum, the presented 
results underline that the current approach of using a market 

concentration submodel to include the effects of market seg-
mentation and airline competition in the explanatory cross-
airline approach needs to be rethought and improved. From 
a computational perspective, an alternative approach without 
the HHI would also be beneficial as calculating the HHI 
leads to the only quadratic constraints in the otherwise linear 
optimization problem, see Eq. (16).

Third, the exemplary airport results, see Fig. 8, indicate 
that a more precise airport capacity submodel could improve 
the accuracy of the overall model. Although the capacities 
of some airports are precisely reproduced or even underesti-
mated, the capacities of the majority of airports are overes-
timated. While according to IATA information [53] a global 
total of 171 and 197 level 3 coordinated airports exist for the 
winter and summer season 2021, respectively, the model 
results only show seven airports operating at their capacity 
limit in 2016. Despite the five-year time difference of the 
comparison data, this might indicate that the airport capacity 
constraint in the overall model is currently too loose.

Additionally, the airport results for DXB underline the 
incapability of the presented modeling approach to repro-
duce local characteristics. As the hub of the largest A380 
operator, Emirates, an accumulation of A380 flight opera-
tions occur at DXB. For the depicted year of 2016 a total 
of 47% of all A380 operations originate from, or terminate 
at DXB. As the global cross-airline model has no reason to 
assume such an accumulation of A380 operations in one 
airport, other smaller aircraft types are used for flights to 
and from DXB. Thence, the number of flight operations at 
DXB is overestimated, as seen in Fig. 8.

Finally and despite the above mentioned further improve-
ment potential, the overall accuracy of the results shows that 
an explanatory approach to modeling the fleet assignment 
in the global ATS via an optimization problem is very much 
suitable. When reproducing the average flight frequency and 
aircraft size for different route categories the NMAEs are 
smaller than 6%. For the aircraft type distance distributions, 
the NWSDs between model results and historic flight sched-
ule data are smaller than 12%.

In comparison to fleet assignment models in the literature 
for individual airlines or multiple competing airlines, we 
made additional assumptions and approximations to allow 
global fleet assignment modeling. The overall accuracy of 
the results shows that these assumptions and approximations 
are reasonable, given the global and more aggregated scope 
within this study.

In comparison to other global fleet assignment models 
available in the literature, e.g., AIM [25–27] and FoAM 
[28], our new explanatory modeling approach leads to two 
main advantages. First, the presented modeling approach 
allows for aircraft types with similar size but different opera-
tional capabilities. This is especially useful when analyz-
ing future ATS scenarios, which include both conventional 
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and new propulsion technology aircraft and the latter ones 
potentially having different range capabilities. For exam-
ple, Wehrspohn et al. [54] use the model presented in this 
study to determine a potential operating scenario of a future 
hybrid-electric hydrogen aircraft concept, which has the 
same size as an older conventional large short-haul aircraft 
but a shorter design range. Second, the explanatory approach 
enables analyzing the influences of different future economic 
and operational scenarios as well as of different fleet com-
positions on the global fleet assignment. For instance, ATS 
scenarios with high energy cost will lead to more energy 
efficient aircraft being deployed on long-range routes, while 
less efficient aircraft are used on shorter range operations. 
Likewise, ATS scenarios with limited airport capacities in 
one region and more available capacities in other regions 
will lead to the utilization of larger aircraft in the first region 
and smaller aircraft in the others. Additionally, ATS sce-
narios with different fleet compositions—especially if these 
compositions include new aircraft sizes or exclude all air-
craft of similar size—will lead to changes in the fleet assign-
ment, which the statistical approaches of FoAM and AIM 
cannot model.

Within this study, the global aircraft fleet and the global 
route network with its offered passenger seat capacity per 
route are constant inputs generated from historic data. Thus, 
the interactions of passenger demand, fleet assignment, and 
fleet development are not within the scope of this study. 
However, for other studies, like the introduction of a new 
aircraft type in the future [55], this can be changed by inte-
grating the presented model into a simulation framework 
with feedback loops to distinct models for passenger demand 
and preferences [56] as well as fleet development.

When using the presented model for future scenarios, 
this is done under the assumption that the calibration of the 
submodels and objective function with data from the years 
2010–2016 remains valid. This implies that the overall struc-
ture of the ATS remains comparable to the calibration time 
span, e.g., regarding the competition of airlines, the number 
of available aircraft types and the balance of demand and 
supply. While there currently is no inherent reason to assume 
differently, a recalibration to newer data might become nec-
essary in the future. In addition, a sensitivity analysis regard-
ing the calibration time span could give insights into the 
uncertainty for future scenarios.

5 � Conclusion

This article presents a new methodology for modeling the 
fleet assignment in the global ATS. The new methodology 
is based on an explanatory cross-airline approach; formulat-
ing and solving an optimization problem representing the 
fleet assignment in the global ATS. The objective function 

of this optimization problem includes the airline perspec-
tive via operating cost and the passenger perspective via 
schedule delay and travel time. The optimization constraints 
include logical, operational, and technological aspects of 
the fleet assignment, like payload-range and airport capac-
ity constraints.

The presented results demonstrate the overall suitability 
of this approach, while also indicating improvement poten-
tial for future work. When reproducing the fleet assignment 
of 35 different aircraft types for the years 2010–2019, the 
results show errors of less than 6% for the average route 
flight frequency and aircraft size in comparison to historic 
flight schedule data. Similarly, the distance distributions of 
individual aircraft types are reproduced with errors of less 
than 12%. Larger errors occur for the aircraft type market 
concentration and capacity share.

The accuracy of the overall model can most likely be 
increased by improving the existing objective function and 
constraints of the optimization problem. Alternatively, new 
constraints and additional terms to the objective function 
should be investigated. Additional aircraft types, in particu-
lar regional and commuter aircraft, can improve the applica-
bility of the presented model. Moreover, future work should 
focus on the application of the presented model. Potential 
research questions include modeling and analyzing the fleet 
assignment for future global ATS scenarios as well as deriv-
ing operational scenarios for future (green aviation) aircraft 
designs.
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