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Abstract
Fuel represents a significant proportion of an airline’s operating costs. Statistical analyses and physical models have been 
used to monitor and estimate fuel consumption up to now, but these can have considerable inaccuracies. This means that, 
currently, there are no suitable detection methods for the evaluation of aircraft retrofits, of which some only suggest a fuel 
efficiency potential in the tenths of a percent range. This article examines suitable assessments of the fuel economy of aircraft 
and especially aircraft with and without retrofitting. For this purpose, the effects of technical influences such as measure-
ment errors and external uncertainties such as turbulence on the evaluation of the fuel economy are examined in more detail. 
The focus of the article is on a discussion of possible optimization potentials of conventional statistical evaluation methods, 
especially regarding possible misinterpretations and spurious correlations. This discussion is exemplarily based on a case 
study of simulated flight data of an Airbus A320 (with and without improved wing tips (sharklets) as an exemplary retrofit). 
For this purpose, a suitable simulation environment is presented in which relevant environmental parameters such as wind 
and turbulence can be set, and measurement errors in the recorded data can be manipulated. It is found that measurement 
errors as well as turbulence can lead to a bias in key figures that are used for the evaluation of fuel flow signals. The effect 
of turbulence can partly be mitigated by the use of an improved key figure the authors propose. The investigation is also 
carried out using a data-based evaluation method to simulate the fuel flow using a machine learning model (random forests), 
whereby the effects of turbulence and measurement errors significantly influence the fuel flow predicted by the model in the 
same order of magnitude as potential retrofit measures.

Keywords  Aircraft fuel economy · Retrofits · Machine learning · Aviation · Fuel efficiency · Data-based models · Grey box 
modeling · Noise · X-Plane · Simulation

1 � Introduction and relevance

A high and at the same time, highly variable share of the 
aircraft operating costs of airlines in civil aviation is repre-
sented by fuel. In 2018, the overall fuel contribution world-
wide was at 23.5% [1]. The main factors influencing the fuel 
consumption of a flight are, for example, the aerodynamic 
drag of the aircraft, the efficiency of the engines, the travel 
distance, the aircraft weight and the altitude profile (see [2]). 
From an economic point of view, aircraft operators strive 
to reduce fuel consumption. However, since new aircraft 

purchases involve a considerable investment, aircraft that 
are active on fleet are retrofitted.

So-called retrofits represent engine-specific, weight-
reducing or aerodynamic measures, which increase fuel 
efficiency and thus result in cost savings. Aerodynamic 
measures include, for example, the fitting of drag reducing 
surface coatings that mimic shark skin, the retrofitting of 
winglets or sharklets on the wingtip and the attachment of 
vortex generators. The engine performance can be improved 
by washing the fan and the compressor (see [3]). However, 
an assessment of the reduction in fuel consumption that can 
be attributed to a retrofit measure is not trivial: there is a 
wide variation in the range of use of the aircraft depending 
on the airline (e.g. route profile, load factor, payload) and 
the technical performance of the retrofits depending on the 
design operating points and the current operating states (e.g. 
concerning degradation effects). Usually these retrofits are 
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evaluated using averaged measurement data on dedicated 
flight tests and, for example, tests in the wind tunnel under 
manufacturer’s laboratory conditions. However, to be able 
to better assess the real savings potential for fuel of these 
retrofits, powerful mathematical models are necessary.

The fuel efficiency of an aircraft is a thermal efficiency of 
converting a chemical energy potential into kinetic energy 
or work. In general, fuel efficiency of an aircraft can be 
expressed as the ratio of fuel consumed to distance travelled 
[4]. The reciprocal of the fuel efficiency is the fuel consump-
tion of an aircraft. The fuel consumption of an aircraft is 
currently assessed in comparison to models and specifica-
tions from the manufacturers (so called book values). Sta-
tistical evaluations of flight data are mainly based on mean 
values over stable phases of the cruise flight [5]. However, 
the aforementioned models are set up according to aircraft 
type and not airframe specific. Using correction factors, the 
models can only be adapted to a limited extent to deviations 
of the statistically derived consumption value from the deter-
mined book value. These methods are, therefore, subject to 
considerable uncertainties and inaccuracies.

In general, the quality of data-based models (either statis-
tical analyses or machine learning methods) largely depends 
on the quality of data with which they are provided. It is, 
therefore, essential to analyse possible errors in the input 
parameters. Otherwise, measurement errors can cause the 
results to be tampered. The causes of such measurement 
errors or measurement tampering can be traced back to the 
measurement system and to external (atmospheric) influ-
ences such as wind and turbulence.

The presented case study primarily investigates the fuel 
flow of the aircaft engines, since this indicator is used as a 
key assessment parameter in the context of fuel efficiency 
monitoring by airlines as well as maintenance and overhaul 
companies. The article contributes to the evaluation of the 
fuel economy of aircraft by simulating external (aircraft 
invariant) influences of wind, turbulence and measurement 
inaccuracies in a flight simulation environment. Based on 
this, the results of conventional fuel efficiency assessments 
are compared and discussed with results of optimized assess-
ment procedures, which include machine learning methods. 
Applications of artificial intelligence, particularly in the 
aerospace industry, are becoming increasingly important. 
They can significantly outperform conventional physical and 
statistical models in terms of accuracy for a large number 
of applications. In addition, the surplus of iterative learning 
models lies in the comparatively simple inclusion of com-
plex influencing factors. The use of machine learning algo-
rithms for the exact quantification of fuel savings through 
retrofits is the subject of research of the authors.

The article is structured as follows: In the beginning, the 
basics of assessment procedures and metrics for the fuel 
economy of aircraft are presented in Sect. 2. Section 3 shows 

the peculiarities of the quantification of retrofit measures. 
Section 4 then discusses uncertainties and measurement 
errors influencing fuel economy indicators. Then, in Sect. 5, 
different influences on the evaluation of the fuel economy 
are examined and discussed based on modeling and simu-
lations. Building on this, optimizations for a more precise 
determination of fuel economy indicators are presented. 
Section 6 then refers to the evaluation of the fuel economy 
using machine learning models. The article concludes with 
a summary and an outlook for future work in Sect. 7.

2 � Fuel economy monitoring

The following three key performance indicators are com-
monly used to monitor and evaluate fuel efficiency [5]:

–	 Specific range method (SR) The SR method evaluates 
reports from flight status monitoring systems. It is a point 
evaluation under stable cruise conditions. For this pur-
pose, certain fluctuation ranges of some measurement 
parameters, e.g. for the flight altitude by a maximum of 
150 feet for a period of 100 s, must not be exceeded. A 
specific range is calculated using the ratio of the cur-
rently flown speed (e.g. the true airspeed TAS for a spe-
cific air range) to the fuel flow FF with 

 The SR method offers the advantage of being able to 
carry out evaluations of the fuel economy of an aircraft 
based on relatively short flight segments (point efficiency 
evaluation).

–	 Fuel used method (FU) The FU method is used to deter-
mine fuel consumption in a defined horizontal flight seg-
ment and to compare it with an equivalent performance 
indicator in the flight crew operating manual (FCOM) 
specified by the manufacturer. This method is less restric-
tive with regard to the stability criteria on which the 
above-mentioned SR method is based but is therefore 
also less precise. Necessary data are recorded over a rela-
tively long period of approx. 30–40 min, with the param-
eters being recorded approximately every 5 min. The FU 
method is used to measure key performance indicators 
of an aircraft over defined periods, e.g. as an average 
performance value over a year.

–	 Fuel burn off method (FBO) With the FBO method, fuel 
consumption is assessed over the entire flight (mission 
efficiency evaluation). For this purpose, the measured 
amount of used fuel is compared with the amount of fuel 
previously estimated with a flight planning tool. The 
book value of the aircraft can then be adjusted depend-

(1)SR =
TAS

FF
original in

(
NM

kg

)
.
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ing on the deviation. Any deviations can be an indicator 
of a degraded or improved performance of the aircraft. 
However, the metric is significantly influenced by factors 
such as deviations from the planned flight trajectory or 
atmospheric variations.

3 � Quantification of the increase in fuel 
efficiency of retrofits in literature

In addition to aircraft fuel economy and economic opera-
tions, ecological aspects play an increasingly important role 
for modern aircraft. Retrofittable technologies can signifi-
cantly reduce the fuel consumption and increase fuel effi-
ciency of aircraft that are already in operation [6].

However, the different retrofits differ significantly in the 
magnitude of their increase in fuel efficiency and in the 
implication for the overall system. By comparing the fuel 
consumed in a horizontal, stabilized flight segment with and 
without measures (retrofits), the reduction of fuel consump-
tion and the increase in fuel efficiency can be determined 
(see FU method in Sect. 2). For example, measures to opti-
mize aerodynamics often have more complex interactions 
than retrofits that target weight optimizations: the former 
can, for example by installing winglets or sharklets, lead to 
an increased mass and therefore not only reduce drag, but 
lead to a different combination of angle of attack, lift and 
drag. The most powerful retrofit measure with an efficiency 
potential of four to six percent (see, for example, [7] and 
[8]) is the aforementioned fitting of new wing tips such as 
sharklets or winglets. However, the saving potential depends 
on the aircraft type and the flight profile.

Nevertheless, such a modification involves great effort 
in the installation. In addition, depending on the aircraft 
type, the total mass is increased by about 100–400  kg for 
an Airbus A320 and thus some of the efficiency savings 
are cancelled out. On the other hand, engine washing is a 
less expensive measure, which counteracts and removes 
increasing contamination of the compressor. The associ-
ated efficiency potential is specified by service providers 
between one and two percent. The engine wash also lowers 
the turbine inlet temperature and thus reduces the negative 
effects of the hot gas on the turbine blades and increases 
their life span. Efficiency potentials of up to one percent can 
be achieved with weight-reducing measures, such as install-
ing lighter seats or replacing cabin trolleys.

However, it is not trivial to prove the real efficiency increase 
in flight operations, especially for retrofit measures with per-
formance increases of less than one percent due to inaccura-
cies of the measurements and analytical methods. The previ-
ously presented methods for evaluating the fuel economy (see 
Sect. 2) are subject to high data quality requirements. As a 
result, it is evident that these can be distorted by a variety of 

influences and thus lead to too imprecise results. For example, 
the measurement of the description parameters requires com-
parable influencing factors and boundary conditions. Resulting 
historical evaluations are based on empirically found knowl-
edge, but many influences remain unnoticed because only a 
few metrics are used to describe relevant effects or anomalies. 
The aim of providing evidence for an fuel efficiency increase 
is, therefore, to be able to reliably derive quantitative assess-
ments of the savings potential of retrofits down to the range 
of around 0.3–0.5% while considering the implications of the 
technology used. For the reliable assessment of the statements, 
information about the current level of uncertainty should also 
be included, i.e. uncertainties due to the current operating 
conditions, ambient conditions, and (unknown) external dis-
turbances such as measurement noise.

4 � Measuring errors and uncertainties 
in determining the fuel economy

As explained at the beginning, measurement uncertainties 
and external disturbances can lead to misinterpretations when 
evaluating the fuel economy. Measurement errors depend to a 
large extent on the measurement system used, external influ-
ences can mainly be attributed to atmospheric disturbances. 
In the following sections, a basic characterization of these 
two objects of investigation takes place, before in Sect. 5 the 
implementation in the simulation for examining the case study 
is discussed.

4.1 � Measurement errors

In most cases, measurements of any kind are subject to errors. 
Measurement errors arise, among other things, from the 
improper execution of the measurement, repercussions of the 
measuring device on the quantity to be measured or also purely 
randomly [9]. The latter category includes reading errors and 
errors that are due to the noise of electrical components, such 
as resistors, across which a voltage is measured. Therefore, the 
specification of a measured value must always be seen in con-
nection with the uncertainty present during the measurement.

The absolute error E corresponds to the difference between 
the measured value A and the true value W

If this absolute error is related to the true value, you get the 
relative error e

Three kinds of errors will be discussed in detail:

–	 systematic errors,

(2)E = A−W.

(3)e =
E

W
.
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–	 dynamic errors,
–	 stochastic errors

Their mathematic formulation will be subject to the following 
paragraphs.

4.1.1 � Systematic errors

Systematic errors have known causes and can, therefore, be 
corrected in principle by processing the measured values. Con-
sider a measurement result A that is a calculated quantity of 
several measured sizes ai

Then the systematic error Esys of the (calculated) combined 
measurement result A is given with the following error prop-
agation formula (see [9]):

4.1.2 � Dynamic errors

Dynamic errors occur with variables that change over time. 
The measurement error occurs because the measurement sys-
tem can follow a fast change in the measured variable only 
with a certain time delay. The system is, therefore, not to 
be considered as a biproper system. This can be attributed 
to mechanical, thermal, or electromagnetic inertia within 
the measuring devices. In system theory, this means that the 
measuring system can be modelled as a low-pass system. A 
typical representation for a low-pass system with time constant 
T is the PT1 system which has the following transfer function:

The instantaneous dynamic measurement error is indicated 
by

The average dynamic measurement inaccuracy can be 
expressed as following:

4.1.3 � Stochastic errors

The cause of stochastic measurement errors is the noise of 
circuit components, such as shunt resistors, across which a 

(4)A = f
(
a1, a2,… , an

)
where i ∈ ℕ.

(5)�A = Esys =

n∑

i=1

�a

�ai
�ai.

(6)G(s) =
1

Ts + 1
with A(s) = G(s) W(s).

(7)Edyn(t) = A(t)−W(t).

(8)E
2

dyn
= lim

T→∞

1

T ∫
T

0

E2
dyn

(t)dt.

voltage is measured. Random errors can be described using 
key figures from probability theory. Using a Gaussian nor-
mal distribution, stochastic errors can be described with the 
mean

Hereby, � describes the arithmetic mean (average) of a final 
number of single measurements ai , which leads to an estima-
tion of the true value W of a quantity. Deviations from the 
mean are quantified by the empirical standard deviation s:

This metric can also be used to describe the error, charac-
terized by the mean deviation of the measured value from 
the mean � (true value). The probability density p then also 
describes the frequency of the occurrence or observation 
of a value of the measurement variable based on a normal 
distribution

4.2 � Turbulence

Atmospheric disturbances influence the speed and direc-
tion of the air inflow at the aircraft. The wind speed can be 
described with an (approximately) constant component and 
a superimposed stochastic component, the turbulence. The 
magnitude of the turbulence can be quantified by the stand-
ard deviation �x for the body-fixed coordinates u, v and w. 
These standard deviations represent the power density and 
can be interpreted as the intensity of the turbulence. The size 
scale of the turbulence can be described by the characteristic 
wavelength L. The wavelength depends on the altitude and 
the temperature gradient [10].

5 � Modeling of influences on the evaluation 
of fuel economy

To assess the influences of measurement errors and turbu-
lence on the fuel economy, flight simulation is used. This 
offers the advantages of manipulating influencing factors 
and boundary conditions and keeping them constant for 
reproducibility. Furthermore, effects of individual influenc-
ing variables can be characterized separately. To do this, 
however, the simulation must be able to represent the flight 
physics sufficiently well.

(9)Ā = 𝜇 =
1

N

N∑

i=1

ai.

(10)s = � =

√
1

N − 1

(
ai − �

)2
.

(11)p(a) =
1

�
√
2�

e
−

1

2

�
a−�

�

�2

.
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The commercially available software X-Plane from the 
US company Laminar Research is used for this article. 
X-Plane provides a variety of simulation data via an inter-
face using user datagram protocol to exchange information 
(data units). These are updated in every simulation calcula-
tion cycle and many of them can be overwritten, for example 
to manipulate environmental conditions such as wind and 
turbulence. The flight model used in this work is an Airbus 
A320 (A320-214) with and without sharklets.

5.1 � Modeling for the simulation of measurement 
errors

The key assessment parameter for the fuel economy is fuel 
consumption. The detection on the aircraft takes place via a 
fuel flow measurement, for example via a torque flow meter, 
which determines the mass flow as a function of an impel-
ler deflection. Typically, an inaccuracy of ±1 % is found for 
these sensors (see [11]). For an dedicated AMETEK mass 
flow meter of type 8TJ167 [12], which is found on aircraft 
of the Airbus A320 family with CFM International type 
CFM56-5B engines, an inaccuracy of only up to maximum 
+ 0.5 % for typical values of the fuel flow during cruise 
flight is specified by the manufacturer (see [12]).

Further characteristic values of this sensor are discussed 
below, assigned to the three types of measurement errors and 
used for the case study in this paper.

5.1.1 � Systematic errors

With such a measuring system, systematic measurement 
errors are based on the calibration to dedicated environ-
mental conditions. If the sensors are operated outside of a 
calibrated range, there may be significant deviations, but 
different uncertainties can also arise within the measuring 
range when determining the flow. As mentioned, there are 
systematic errors of around half a percent (limited on one 
side) for the flow meter mentioned for the Airbus A320, 
so that the measured value lies between the true value and 
1.005 times the true value.

5.1.2 � Dynamic errors

In terms of system theory, the dynamic behaviour of a mass 
flow meter can be approximated with a low-pass filter of 
the first order ( PT1 ). The output of a PT1 reaches 95 percent 
of its final value after three time constants (3T) and can be 
equated with the rise time T95 [14]. Based on the data sheet 
of the mass flow meter AMETEK 8TJ167 [12] considered 
here as an example, the flow meter reacts to a step input 
over the whole measurement range with a response time of 
four seconds. The time constant T for describing the PT1 can 

thereby be determined to be approximately one second in the 
worst case (precisely: T = 1.33s).

5.1.3 � Stochastic errors

According to Roppel [15], real transmission systems have 
a limited bandwidth. Since the measurement systems of 
interest for this article have a bandwidth of less than 3 tera-
hertz, stochastic error components can be approximated by a 
white noise in which all frequencies are equally represented. 
Hence we can assume a constant power density over the 
specified bandwidth.

The signal-to-noise ratio SNR describes the ratio of the 
power PR (or amplitude) of the noise to the power PN (or 
amplitude) of the desired signal. It is usually given in deci-
bels and is determined by

For white noise, the standard deviation of the noise signal 
also corresponds to the root mean square. According to 
studies by Svilainis et al. [16] on an ultrasonic flow meter, 
values of 35 dB can be assumed for a strongly noisy signal 
and 95 dB for an extremely low-noise signal. No according 
information can be found in the AMETEK data sheet [12]. 
A very similar product from another company, Emerson 
Daniel Series 1500 [13], provides a reproducibility metric 
of 0.02%, which can be seen as a consideration of random 
errors. Assuming this value to represent a confidence inter-
val of 95 % corresponding to twice the standard deviation of 
a normal distribution, the signal-to-noise ratio is estimated 
to be approximately 80 dB.

5.2 � Modelling of turbulence influences

A common representation of turbulence in flight dynamics 
investigations is the Dryden spectrum (see [17]). In this, 
the turbulence signal is approximated with a white noise 
for all three directional components u, v and w in the body-
fixed frame. This noise is then filtered through a linear time 
invariant filter (LTI filter) to obtain a frequency spectrum 
that approximates the time signal of the wind speeds of 
turbulence. For investigations at flight altitudes above the 
ground boundary layer (approx. 300 m), the turbulence can 
be regarded as approximately homogeneous and isotropic 
(see [18]), so that the standard deviations in the three spatial 
dimensions of the wind signal can be assumed equal:

According to Moorhouse and Woodcock [18], the strength 
and, therefore, the standard deviation of the turbulence 
takes on values between 0 and 6.5 m/s depending on the 

(12)SNR = 10 log10

(
PR

PN

)
.

(13)�u = �v = �w.
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classification into weak, medium or strong turbulence (see 
Fig. 1). The characteristic wavelength L of turbulence is 533 
m, according to Langelaan and Alley [19].

6 � Fuel economy evaluations of retrofits 
for different influences

In this section, investigations of the aforementioned influ-
ences (measurement errors and turbulence) on the evalua-
tion of the fuel economy are presented (based on the fuel 
flow signal). In the following first two sections, the effects 
of measurement errors and turbulence on the fuel flow are 
separately assessed by means of statistics. Building on this, 
an improved key figure for evaluating the fuel economy 
based on the parameter estimation of a sinusoidal signal is 
presented. The section concludes with a summarized assess-
ment of the effects of measurement errors and turbulence on 
the quality of machine learning models, shown here using 
the example of uncorrelated and bootstrap-aggregated deci-
sion trees in a random forest as learning method.

The following investigations are based on recorded flight 
data of an Airbus A320 flight model using the presented 
simulation environment in X-Plane (see Sect. 5). Using the 
user datagram protocol, the flight data were recorded and 
the simulation in X-Plane can be controlled by the program 
Matlab of the company The MathWorks. Thereby also the 
simulation environment in X-Plane can be expanded due 
to the integration of a module for injecting turbulence to 
adjust the atmospheric model in X-Plane via Matlab during 
the flight simulations as well as a module to manipulate the 
recorded flight data and apply the dedicated measurement 
errors. On the one hand, this approach enables the simulation 

of flight data of dedicated flight models with and without 
modification (retrofits) under consistent conditions. On the 
other hand, the influencing parameters to be examined can 
be set precisely. The effects on the evaluation of the fuel 
efficiency will then be based on these differences. For the 
simulation conventional cruise altitudes from flight levels 
FL290–FL390 were used. Similar approaches have already 
been successfully pursued in other works of the authors (see 
[21, 26, 28], and [29]).

The authors are aware that the data obtained from this 
simulation model may not exactly represent real-world val-
ues in terms of steady state performance values. However, 
it is considered suitable to demonstrate the effects described 
in the following sections. For the dedicated investigations 
of the fuel economy of an Airbus A320 with and without 
retrofit, it was not possible to use real airline flight data of an 
airline. On the one hand, the authors did not have access to 
dedicated flight data for the specified investigation spectrum 
in sufficient data quality of an airline. On the other hand, 
with real flight data such an investigation to evaluate the 
impacts of isolated effects would not be possible anyway.

6.1 � Statistical evaluation of the fuel economy 
considering measurement errors

Typical cruise fuel mass flow rates for one engine of the 
A320 aircraft family are in the range of about 0.25–0.41 
kg/s (derived from [20]). Only in this measuring range, the 
manufacturer’s uncertainty information on systematic errors 
of up to +0.5% applies. However, the real flow meter charac-
teristics are unknown. Figure 2 shows examples of feasible 
flow meter characteristics within the determined tolerance 
limits (according to the manufacturer’s data sheet [12]).

The fuel economy assessments are now influenced by sys-
tematic errors. The measured value deviates from the true 
value by a constant offset. The influences on the evaluation 
metric SR also depend on the systematic errors of the meas-
ured variable of the true airspeed (TAS) (see Eq. (1)). The 

Fig. 1   Characteristic values of the standard deviation in the Dryden 
spectrum as a function of the flight altitude (based on [18])

Fig. 2   Feasible flow meter characteristics while meeting the manufac-
turer’s uncertainty specifications
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TAS in turn is calculated from the dynamic pressure q, the 
static pressure p and the temperature T. After evaluation of 
equation (5), the effects on the systematic error of the evalu-
ation metric SR are as follows:

The TAS is calculated according to the following formula:

whereby the systematic error of the true airspeed (relative, 
i.e. divided by the size TAS itself), is calculated as follows:

with

With known systematic errors of the individual measure-
ments ( �q , 𝛥p̄ and �T  ) and known values for static pressure, 
dynamic pressure and temperature, the systematic error of 
the key figure SR can thus be calculated following the Eqs. 
(14)–(20).

The dynamic error is discussed based on Fig. 3, which 
shows a fuel flow signal (solid line) ideally recorded from 
the flight simulation and the same with a signal affected by 
low-pass filtering (dashed line). This causes the fluctuations 
in the original signal to be delayed, which can result in large 
instantaneous dynamic errors.

To estimate the maximum and average effects of dynamic 
errors, recordings at different turbulence intensities (lead-
ing to different dynamic fluctuations of the fuel flow signal) 
are examined. Figure 4 shows these results. As the signal 
dynamics increase, both the relative maximum dynamic 
error and the relative mean dynamic error increase in 
amount. The current maximum values of the error reach 
orders of magnitude of 10–15%, while the average errors 

(14)ΔSR = −
TAS

FF2
ΔFF +

1

FF
ΔTAS

(15)
ΔSR

SR
= −

ΔFF

FF
+

ΔTAS

TAS

(16)TAS =

√√√√
2

𝜅

𝜅 − 1
RT

((
1 +

q

p̄

) 𝜅−1

𝜅

− 1

)

(17)
ΔTAS

TAS
= kp̄(q, p̄)

Δp̄

p̄
+ kq(q, p̄)

Δq

q
+ kT

ΔT

T

(18)
kp̄(q, p̄) = −

q

2

𝜅 − 1

𝜅

1

q + p̄

(
1 −

(
q

p̄
+ 1

)1∕𝜅
)

(19)
kq(q, p̄) =

q

2

𝜅 − 1

𝜅

1

q + p̄

(
1 −

(
q

p̄
+ 1

)1∕𝜅
)

(20)kT =
1

2
. are in the range of 0.2 to 0.5% and thus fall within the range 

of savings potential of different retrofts.

6.1.1 � Summary of the results

The effects of measurement errors on the evaluation metrics 
for the fuel economy depend on the measurement errors of 
the individual measured variables from which the metrics 
are formed.

The systematic error in the fuel flow measurement could 
be identified in the range of about 0.5% based on the manu-
facturer’s information. It should be noted that a certain abso-
lute error (e.g. a fixed bias) in the upper measuring range of 
a sensor has a significantly smaller influence on the relative 
error. In contrary, in the lower measuring range, a system-
atic error leads to significantly higher relative errors. The 
manufacturer’s uncertainty statement is then no longer valid 
for the latter situation. In flight operations, this must be con-
sidered especially in the descent phase. In this phase, the 
engines are operated in a low thrust setting in or near flight 

Fig. 3   Exemplary time signal of the fuel flow (simulation (solid) and 
after adding the dynamic error (dashed))

Fig. 4   Experimentally determined maximum and average dynamic 
errors over 630 simulation recordings
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idle, resulting in low fuel mass flows compared to the entire 
consumption cycle from take-off to landing (see [22]).

The reproducibility of measurements under similar 
conditions is described by the specification of random or 
stochastic errors. Due to a finite number of measurements 
and measurement time, the arithmetic mean value differs 
from that of the underlying normal distribution. Hence, a 
zero-mean white gaussian noise to model stochastic errors 
also has an influence on the formation of the fuel economy 
indicators. However, its influence is very small and can be 
estimated in the range of hundredths of a percent as stated 
with 0.002%    in [12].

The size of dynamic errors depends crucially on the rela-
tionship between the bandwidths of the sensor and the fuel 
flow signal: if the bandwidth of the signal is greater than 
that of the sensor, it contains frequency components that 
the sensor can only transmit in an attenuate manner due to 
its low-pass characteristics, which creates dynamic meas-
urement errors. Higher-frequency components cause the 
dynamic measurement error to increase significantly. The 
maximum dynamic error values at individual points in time 
exceed those of the systematic or random errors by a mul-
tiple and can assume values in the tenths of a percent range 
up to several percents.

It turns out that measurement errors under unfavorable cir-
cumstances can have a negative impact on the evaluation of the 
fuel economy indicators, which can lead to misinterpretations. 
If the relative size of the measurement errors is in the range of 
the savings potential of an individual retrofit (e.g. in the range 
of 0.3–0.5%), the effectiveness can no longer be proven with the 
previously mentioned parameters (see Sect. 2). In this case noise 
due to measurement errors overlays the actual useful signal.

6.2 � Statistical assessment of the fuel economy 
under the influence of turbulence

Figure 5 shows the values recorded in the simulation envi-
ronment for the fuel flow under the influence of different 
levels of turbulence � . It can be stated that with increasing 
turbulence intensity, the variation of the fuel flow values 
increases. The dispersion of the data points of both groups 
(with sharklet (SL = 1), and without (SL = 0)) shows no 
overlap and hence the increase in efficiency due to the retro-
fit with sharklets is even visually evident due to a clear sepa-
ration of the data points in Fig. 5. This also can be proven 
using statistical methods like the Wilcoxon rank sum test 
(see [32]).

Stronger turbulence generally leads to a greater dispersion 
of data points (see Fig. 5). In terms of statistical detection 
methods, this results in greater uncertainty or in a loss of 
detection power of significance analyses. In the case of retro-
fits with only small increases in fuel efficiency, for example 
in the range of 0.5%, the influence of turbulence leads to an 

overlap of the measurements of the flight model with and 
without retrofit (sharklet) at greater turbulence intensities 
(from about 5 m/s).

The classification of the effects of the retrofit under 
consideration (significance of the Wilcoxon rank sum test) 
depends crucially on the sample size (see [32]). Small sam-
ple sizes can significantly reduce the statistical significance 
of the tests (see [23]). However, the test result for the Wil-
coxon rank sum test identifies an actual efficiency gain of 
0.5% as significant, even with a small sample size of N = 40.

In these case studies, the single data points are obtained 
by averaging over the fuel flow signal for time phases of 120 
s. The signal itself is subject to oscillations over time: These 
are caused by variations in the current inflow speed of the 
air relative to the aircraft while the automatic thrust con-
trol of the aircraft tries to correct these speed disturbances. 
The continuous variation in thrust results in a variation in 
fuel consumption (see also Figs. 3 and 5). A customized 
assessment procedure is, therefore, proposed to generate 
meaningful data points from these flight segments. Possible 
approaches for this are developed and evaluated in the fol-
lowing subsection.

6.3 � Optimization of an evaluation key figure 
for oscillating time signals

The aim of statistical evaluations of the fuel flow is to make 
statements about its true equivalent value (mean value over 
an idealized, infinitely long observation period) based on a 
time window (e.g. of 150 s) of a fuel flow signal. In terms 
of estimation theory, we are looking for an estimator for 
the true equivalent value. Explorative statistical analyses of 
fuel flow signals recorded under the influence of turbulence 
reveal visible periodicity. The authors’ assumption is that 
the fuel signal can be represented by an approximation and 

Fig. 5   Comparison of the fuel flow of aircraft with (black) and with-
out (grey) sharklets depending on the turbulence intensity
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to treat them like sinusoidal signals. Similar approaches can 
be found, for example, in electronics, see [24].

6.3.1 � Considerations for forming the evaluation key figure

Standard methods use the mean value as an estimator for 
the equivalent value of the fuel flow signal. For sinusoidal 
signals with a non-integer period of sine oscillations in the 
observation time frame, more lower or upper half-waves are 
included in the averaging (see Fig. 6). This leads to strong 
deviations from the equivalent value of the signal and the 
obtained estimate of the equivalent value will be biased.

The idea is now to approximate the true equivalent value 
of the fuel flow signal by a parameter estimation of a sinu-
soidal signal of the form

Hereby, the parameter d approximates the true equivalent 
value of the signal. Appropriate boundary and start con-
ditions must be selected for the model parameters. The 
parameter fit was carried out using Matlab-internal func-
tions implementing a least-squares trust-region algorithm 
(see [25]).

Since the parameter estimation of the sinusoidal signal 
can still be biased, the fitting process is carried out sev-
eral times for each recording to be evaluated, using differ-
ent sub-time intervals I1 … Im . From the obtained estimated 
parameters d1 … dm a mean value d̄ is formed to reduce the 
effects of scatter in the individual evaluations of the fuel 
flow signal to reduce bias as much as possible. This value d̄ 
can then be interpreted as an estimate of the true equivalent 
value of the signal.

6.3.2 � Analysis of evaluation key figure bias

A real fuel flow signal with a recording length of 800 s is 
used to compare the optimized evaluation key figure d̄ with 

(21)y(t) = d + A sin (2�ft + �).

a conventional evaluation of the fuel flow by averaging ( FF ). 
For this quite long duration of 800 s, the mean value can be 
taken as a truth source for the true equivalent value which 
we try to approximate. The two key figures are evaluated 
over sub-intervals of 150 s and compared in a histogram (see 
Fig. 7). It can be seen that the two evaluation indicators have 
a similar spread, but the evaluations by the mean value FF 
have two clear peaks to the right and left of the true equiva-
lent, while the optimized indicator d̄ better approximates 
a normal distribution and more often gives values close to 
the true equivalent value. This helps, to make estimations 
more accurate.

6.4 � Evaluation of effects considering turbulence 
as well as dynamic and stochastic measurement 
errors on machine learning models for the fuel 
economy

Artificial intelligence methods are becoming increasingly 
important for the optimization of consumption analyses 
and the forecasting of fuel consumption profiles. In previ-
ous publications by the authors, iterative learning methods 
are already used to calculate the fuel flow of aircraft (see 
[26] and [28]). It can be proven that the quality of models 
learned from flight operation data (so-called full-flight data) 
for individual flight phases and entire flight missions, con-
sisting of climb, cruise and descent, depends on the learning 
algorithm (neural network or random forest). Their results 
show relative errors of one to two percent with new input 
data, which was not used for training before. In addition, 
the authors showed that outliers, which can occur in real 
recorded measurement data, can significantly deteriorate the 
quality of data-based models (in relation to the validation of 
training and test phases) (see [29]).

In this section, the effects of turbulence and measurement 
errors on the quality of data-based models from the field of 

Fig. 6   Discrepancies between mean value and true equivalent value 
for a sine signal

Fig. 7   Histograms of fuel flow evaluations based on the key figures 
FF (left) and d̄ (right). The dashed line represents the true equivalent 
value
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machine learning are examined in more detail. In the follow-
ing sections, the design of experiments with explanations 
of the used database, modelling method, and performance 
metrics for evaluating model results are explained in detail 
before the results of the investigation are presented.

Due to the multitude of external influences, isolated 
analyses on the model quality with real flight data are dif-
ficult to perform. The database used here are recorded flights 
which originate from the simulation environment presented 
in Sects. 5 and 6. This has been extended by modules for 
the generation of measurement errors and for the simula-
tion of turbulence according to the Dryden spectrum. For 
the measurement errors, here only stochastic and dynamic 
errors are considered due to their high shares of the total 
error (see Sect. 6).

As a learning method, the decision tree procedure pre-
sented in the previous publications by the authors (see [28] 
and [29]) is used as an ensemble method (random forest 
of uncorrelated bootstrap-aggregated decision trees). The 
number of decision trees is 30 in total per run. Each of these 
decision trees is trained on a bootstrapped training data set 
and per se represents a weak learner. The classification or 
regression result is finally formed by averaging over the 
results of all uncorrelated trees in a forest as a majority deci-
sion. The randomized selection of samples for the training 
of each tree prevents strong predictors from dominating the 
top levels of the decision trees and thus the relevant deci-
sion rules. Without this procedure, correlated and thus very 
similarly structured trees would emerge, which achieve less 
robust results in terms of accuracy with unknown data. In 
contrast, the single uncorrelated trees of the forest (random 
forest) show high variances by themselves. By aggregating a 
large number of weak learners, however, on average a lower 
variance and thus a higher robustness in the model results 
can be achieved (see [30]).

Relevant performance metrics for the evaluation of the 
model quality are used according to [27]. The overall models 
(a decision forest) are trained and optimized for the mean 
square error (MSE) as a quality function (with regard to 
a reduced tree division, called pruning). For the present 
contribution, the performance metrics for the best over-
all model from a total of ten training runs are evaluated, 
whereby each metric is formed from the results of a fivefold 
cross-validation. This ensures that all data sets with the boot-
strapped samples are used to validate the training models. 
Furthermore, the mean absolute error (MAE), the relative 
error (MRE) based on the mean value of the sample, the 
square root of the square error (RMSE) and the coefficient 
of determination ( R2 ) are used as performance criteria for 
describing the model quality on the test data used (based on 
[28, 29] and [27]).

To evaluate the effects of turbulence and measurement 
errors on the model quality, the individually determined 

values for the RMSE are used and subjected to a hypothesis 
test. For this, a Wilcoxon rank sum test is used to check if 
there are significantly different results of the model quality 
between the originally recorded and the manipulated record-
ing data used for model training. This test is a non-paramet-
ric, free of distribution check for tendencies in the median 
for two coupled samples (see [32]). The metrics are obtained 
from the test are the p value for the probability of observing 
a test statistic as or more extreme than the observed value 
under the null hypothesis and the test decision, a logical 
for a rejection of the null hypothesis (h = 1) or a failure to 
reject the null hypothesis (h = 0) at a specific significance 
level (see [32]). For this investigation, p values less than 5% 
are used as a criterion for accepting significance. However, 
the significance does not allow any statements to be made 
about the extent of the effect. This can be assessed using 
the determination of an effect size r. The effect size is a 
standardized measure for magnitude of observed effects with 
which different hypothesis tests and random samples can be 
compared. Effects are characterized by r-values around 0.1 
as small, around 0.3 as medium and greater of 0.5 as large. 
The latter effect contributes to more than 25% of the vari-
ance (see [32]).

The initial training and test data are generated in the 
simulation environment for horizontal cruise segments at 
an altitude of 37,000 feet (ISA conditions) at an indicated 
airspeed of 230 knots. A total of 15 features are selected for 
the predictors of the model, which are composed of the flight 
speed, the altitude, the control surface deflections for the 
ailerons, the angle of attack, environmental parameters such 
as the temperature, the pitch and roll angles as well as the 
horizontal and vertical accelerations. The model response is 
the fuel flow of the engines of the flight model in the simula-
tion environment.

Different data sets are used to train the machine learning 
models. On the one hand, flight data from the simulation 
environment are used, which do not show atmospheric tur-
bulence or measurement errors (marked as original data in 
Table 1). On the other hand, flight recordings with different 
turbulence intensities (marked as light, medium, and severe 
in Table 1) with the addition of dynamic and stochastic 
measurement errors are used. The following paragraphs of 
this section present the results of the investigation.

Table 1 lists the performance metrics for the different 
models (without (original) and with the influence of turbu-
lence and measurement errors on the recorded data from the 
simulation (manipulated)). These were determined on the 
basis of the trained overall models using the test database 
and a comparison between the model result and the recorded 
target size (the accumulated fuel flow of the engines). In 
addition, Table 1 shows the model quality with different lev-
els of turbulence. The stochastic and dynamic measurement 
errors (if present) are not varied further in this investigation. 
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Figure 8 shows a result for the original and modeled fuel 
flow of the engines. In the following, differences of the per-
formance metrics used to assess model quality in Table 1 are 
discussed in more detail.

The comparison of the results for the different models 
shows significant differences in the model quality, for exam-
ple in the comparison of the values for the mean absolute 
error (MAE) and the relative error (MRE) between the mod-
els, which were generated from original and manipulated 
data. In these cases, the increase in the two aforementioned 
metrics is a factor of 15–20 between the two models with-
out and with manipulation. No such deterioration can be 
observed in the comparison of the metrics for the square 
root of the quadratic error (RMSE) and the coefficient of 
determination ( R2 ). However, it should be noted here that the 
metric RMSE is used to evaluate outliers and R2 to evaluate 
a linear model between the model result and real target val-
ues. The model deterioration is not expressed in this regard, 
in contrary to the two previously discussed metrics MAE 
and MRE. However, the assessment of the extent of error 
with MAE and MRE outweighs with relational or correlat-
ing metrics such as RMSE and R2 (see [31]). Based on these 
facts, it is recommended that multiple metrics are always 
considered and compared with one another when evaluating 
the model quality.

Based on the results of the hypothesis test shown in the 
right column of Table 1, the test metric shows significance 
below one percent ( p < 0.01 ) in a pairwise comparison of 
the model with manipulated data and the model based on 
the original data. This goes hand in hand with the rejection 
( h = 1 ) of the null hypothesis regarding the same medians 
at the standard significance level of five percent. Since the 
samples are small (ten values each), the p value is calcu-
lated exactly. This test provides sufficient statistical evidence 
that the median value of the mean square root of the sum 
of squares of a model, which is based on simulated data 
without measurement errors and turbulence, is significantly 
smaller than the median value of a model, which in contrast 
has been trained with manipulated data. According to Cohen 
in [32], the found difference in the medians can be inter-
preted as a strongly pronounced effect with a effect size |r| 
greater than 0.8. Last but not least, there are no significant 

differences within the data sets of flight recordings that were 
subjected to turbulence and measurement errors.

In general, it can be stated on the basis of Table 1 that a 
significantly better model quality of the iterative learning 
models can be achieved with the original data from the 
simulation (no wind, no turbulence). This is in line with 
the authors’ prior expectations of this investigation. How-
ever, further, it is noticeable that better model qualities are 
achieved if flight data recordings with medium and severe 
(rather than with only light) turbulence intensities were 
used for training. Considering the probability of occur-
rence of these turbulence intensities (see [17] and [18]) 
and the mission profile of the Airbus A320 with cruising 
altitudes above flight level FL290, this result can also be 
brought into line with the previous findings. But consid-
ering the relative errors given in Table 1, the following 
conclusion can be drawn with regard to the focus of this 
paper. For the evaluation of different fuel economy indi-
cators based on aircraft with and without retrofit, it can 
be seen that the effects of turbulence and measurement 
errors in the data already produce uncertainties in quality 
of the data-based machine learning models in the range of 

Fig. 8   Simulated target (grey) and random forest model result (black) 
of the fuel flow for different cruise segments. The model is trained 
with simulated data including light turbulence as well as dynamic 
measurement errors and noise

Table 1   Comparison of the performance metrics to evaluate model quality of iteratively learned random forests (bootstrap-aggregated trees) for 
dedicated operating points from the cruise for an Airbus A320 aircraft model

Meas. error Turbulence Model MAE  RMSE in ( kg/s × 10−3) MRE  R2 in ( %) p (–)  h (–)  r (–)

None None Original 0.3  1.8 0.4  99.01 < 0.1  1 0.84
Dynamic and stochastic Light Manipulated 6.4  10.3 0.9  95.84

Medium Manipulated 4.2  6.8 0.6  98.31
Severe Manipulated 4.4  7.4 0.62  97.96
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several tenths of a percent. This makes it difficult to quan-
tify efficiency potentials of less than one percent, since 
the discrimination of effects of retrofits from the model’s 
background noise cannot be demonstrated.

7 � Conclusion and outlook

With regard to the evaluation and quantification of aircraft 
retrofits with efficiency potential in the tenths of a percent 
range, optimization potential of conventional statistical 
methods can be identified. The article deals with the inves-
tigation of influences such as turbulence and measurement 
errors on flight data recordings, which in turn affect the 
evaluation of fuel economy indicators of aircraft. At the 
beginning, conventional evaluation indicators of the fuel 
economy were presented and peculiarities of the quan-
tification of retrofit measures were shown. A simulation 
environment was used for further investigations, which 
allows the influencing of relevant environmental param-
eters such as wind and turbulence as well as the manipula-
tion of recorded data with measurement errors. The dis-
cussion of results includes any effects on the evaluation 
of the fuel economy of aircraft with and without retrofits. 
In this respect, the results show significant differences 
when using data with influences such as turbulence and 
measurement errors. This is relevant for the quantifica-
tion of retrofits based on flight data recordings on aircraft 
due to relating uncertainties. Subsequent works of the 
authors shed more detail on this. A feasibility analysis for 
the quantification (diagnosis) of the fuel efficiency of air-
craft with and without retrofits and thus to evaluate retrofit 
technologies to reduce the aircraft fuel consumption was 
to be carried out in a project in the German Aeronautical 
Research Programme LuFo V-2 (see acknowledgments).
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