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Abstract
Robust flutter analysis described in this paper is based on the robust control theory framework. Therefore, a time-domain 
linear fractional transformation representation of the perturbed aeroelastic system is modeled. Then, the robust stability is 
analyzed by means of the structured singular value � , which is defined as an alternative measure of robustness. Robust flut-
ter analysis deals with aeroelastic (or aeroservoelastic) stability analysis taking structural dynamics, aerodynamics and/or 
unmodeled system dynamics uncertainties into account. Flutter is a well-known dynamic aeroelastic instability phenomenon 
caused by an interaction between structural vibrations and unsteady aerodynamic forces, whereby the level of vibration may 
trigger large amplitudes, eventually leading to catastrophic failure of the structure. The primary motivation of the robust 
flutter analysis is that this method allows the computation of the worst-case flutter velocity which can support, for example, 
the flight test program by a valuable robust flutter boundary. This paper addresses the issue of an approach for aeroelastic 
robust stability analysis with structural uncertainties with respect to physical symmetric and asymmetric stiffness perturba-
tions on the wing structure by means of tuning beams.

Keywords Robust flutter analysis · �-Analysis method · LFT modeling · Aeroelasticity · Robust stability analysis · 
Uncertain systems

1 Introduction

The primary aim of this paper is to investigate the impact of 
the stiffness uncertainties of the wings in spanwise direction 
and handle each wing separately in case of symmetric and 
especially asymmetric stiffness distribution. The asymmetric 
stiffness perturbation is mentioned in [3] within the robust 
flutter analysis for aeroelastic systems as an important issue 
for future investigations. It is quite possible that poor lev-
els of precision with respect to manufacturing capabilities 
a small difference of bending and/or torsional stiffness may 
occur between the two wing structures which -in worst-case 
scenario- can be significant enough to cause an unpredict-
able coupling between symmetric and asymmetric modes. 
Therefore, it is essential to model such an asymmetry by 
means of an adequate uncertainty in physical stiffness model 
for each wing separately.

This paper starts with a brief mathematical introduction 
on the LFT representation of uncertain systems and provides 
an understanding of the definition and interpretation of � 
within the robust stability analysis.

2  Linear fractional transformation and � 
‑analysis

The linear fractional transformation is a common framework 
for robust stability analysis of complex systems based on 
the small gain theorem [1]. An LFT is an interconnection 
of operators arranged in a feedback manner. Using a linear 
complex partitioned operator

the LFT, ��(�,Δ) is defined as the closed-loop transfer 
matrix from system input u to system output y as the upper-
loop LFT of system � closed by the norm-bounded struc-
tured matrix of perturbations Δ (Fig. 1):

(1)� =

[
��� ���

��� ���

]
∈ ℂ

(o1+o2) x (i1+i2),
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An equivalent expression ��(�,Δ) is defined as the closed-
loop transfer matrix from system input u to system output y 
as the lower-loop LFT of system � closed by Δ as illustrated 
in Fig. 2:

It can be seen from the Eq.  (2) that ��� denotes the transfer 
function (matrix) from input u to output y of the nominal plant 
while ��� , ��� and ��� content the information how the pertur-
bation is embedded in the nominal plant. After the uncertainty 
block Δ is extracted from the nominal plant, the system can be 
described as a nominal plant with an artificial feedback-loop. 
From the Eq.  (2) it becomes apparent that the LFT is well-
posed if and only if the inverse of (� − ���Δ) exist [4] (Fig. 3).

3  Structured singular value �

The structured singular value � is an exact indicator of robust 
stability for systems with structured uncertainties (perturba-
tions). It is a function of the complex transfer function matrix 
� and �̄�(⋅) denotes the maximum singular value of the argu-
ment [2]

(2)��(�,Δ) = ��� + ���Δ(� − ���Δ)
−1���.

(3)��(�,Δ) = ��� + ���Δ(� − ���Δ)
−1���.

(4)𝜇(�) =
1

min
Δ∈�

{�̄�(Δ) ∶ det(� − �Δ) = 0}
.

∀Δ ∈ � such that det(� − �Δ) = 0 otherwise � = 0.

In this context � is robustly stable with respect to � which 
is  norm-bounded by scalar  � ∈ ℝ such that 
‖Δ‖∞ ≤ �, ∀Δ ∈ � if and only if �(�) ≤ 1

�
 . In the �-frame-

work the model � is usually weighted to normalize the norm-
bounded uncertainty set Δ to unity

For � ≤ 1 there is no perturbation within exists that will 
destabilize the system. This state depicts that the true system 
dynamics are stable, assuming the nominal model dynamics 
with its set of uncertainty operators (modeling errors) are 
able to capture the dynamic behaviour of the true system.

4  Aeroelastic model

In this paper a condensed FE model of the FLEXOP dem-
onstrator aircraft [5] for the numerical demonstration of the 
robust flutter analysis is used. The full FE model ( > 600000 
nodes) comprises the wing, fuselage and empennage. The 
wing is modeled by a high-fidelity FE model comprising 
beam, surface and solid elements. The condensation of the 
FE model has been performed by the Guyan-reduction, also 
known as static condensation. The reduced model consists of 
303 structural nodes and 1818 degrees of freedom (DoF). The 
aerodynamic model is based on vortex lattice method (VLM) 
[11] for steady aerodynamics and doublet lattice method 
(DLM) [10] for unsteady aerodynamics. A detailed overview 
of both the structural and aerodynamic model of the aircraft 
(Fig. 4) is described in [5].

4.1  Equations of motion for the aeroelastic system

The equations of motion for the nominal aeroelastic system in 
time domain can expressed in a matrix form as

which describes a system of N linear ordinary differential 
equations (ODEs) with N degrees of freedom (DoF) in 
the FE model where x(t) is the displacement vector with 
translational and rotational DoFs of the nodes, � , � and 

(5)‖Δ‖∞ ≤ 1, ∀Δ ∈ � if and only if �(�) ≤ 1.

(6)
�ẍ(t) + �ẋ(t) +�x(t) =

1

2
𝜌V2�(s̄,Ma)x(t)

=P aero(t)

Fig. 1  Diagram representation of ��(�,Δ)

Fig. 2  Diagram representation of ��(�,Δ)

Fig. 3  LFT system for robust 
stability analysis using �
-Framework
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� ∈ ℝ
N x Nare physical mass, stiffness and viscous damping 

matrices respectively belonging to the structural dynamics 
part of the equation. The right hand side of the Eq.  (6) 
denotes the unsteady aerodynamic forces where � is the den-
sity of atmosphere, V is the flight speed and �(s̄,Ma) is the 
unsteady aerodynamic influence coefficient (AIC) matrix 
which is a function of the nondimensional Laplace variable 
s̄ and the Mach number Ma. The AIC matrix can be com-
puted by several aerodynamic theories, such as DLM. In this 
paper, the subsonic unsteady aerodynamic forces have been 
modeled by means of DLM. Based on small disturbance 
hypothesis, DLM solves the linearized potential flow equa-
tion and obtains the aerodynamic forces under the assump-
tion that aerodynamic surfaces oscillate harmonically. The 
nondimensional Laplace variable s̄ is denoted s̄ = g + ik 
where g is the damping and k is the reduced frequency. On 
the assumption of harmonic aerodynamic loads the nondi-
mensional Laplace variable s̄ becomes:

where � is the frequency of vibration and cref the reference 
chord. Note that the dependence on the Mach number of the 
AIC matrix will be omitted from now on for conciseness. 
Using mode displacement method the physical displacement 
vector x(t) can be represented as a linear combination of m 
linearly independent vectors (mode shapes) leading to the 
approximation

where m is the number of eigenvectors. Combination of the 
Eqs. (6), (7) and (8) results in the following reduced-order 
dynamics

with

(7)s̄ = s
cref

2V
= i𝜔

cref

2V
= ik

(8)x(t) = �� , � =
[
Φ1 Φ2 …Φm

]
∈ ℝ

N x m

(9)
�m�̈�(t) + �m�̇�(t) +�m𝜂(t) =

1

2
𝜌V2�m(ik)𝜂(t)

=P aero
m

(t)

where �m is the generalized mass matrix, �m is the general-
ized viscous damping matrix, �m is the generalized stiffness 
matrix and �m(ik) the generalized AIC matrix.

4.2  Rational function approximation

The generalized AIC matrix �m(ik) ∈ ℂ
m x m is a set of matri-

ces which are calculeted for a set of suitable values of reduced 
frequency k. Thus, in order to compute AIC for any desired 
reduced frequency and perform time domain analysis (state-
space representation), the AIC matrix in the frequency-domain 
has to be transformed into the Laplace domain and conse-
quently into the time domain. One possible way is to fit the 
frequency dependent AIC matrix with rational functions in a 
least-squares sense. This method is called Rational Function 
Approximation (RFA). In this paper the Roger’s formulation 
[6] is used to approximate the AIC matrix �m(ik):

The RFA Eq. (14) can be interpreted as a general two-part 
approach for aerodynamic loads based on quasi-steady and 
lag contributions. �0

m
 , �1

m
 and �2

m
 are ℝm x m real coefficient 

matrices representing the contribution of acceleration, veloc-
ity and displecement of the rigid and flexible degrees of 
freedom on the aerodynamic loads denoting the quasi-steady 
part of the approximation. The �Li

m ∈ ℝ
m x m matrices with 

the predefined poles �i, i = 1, 2, ..., np , are responsible for 
the lagging behavior of the unsteady flow. This is referred 
to time lag effect.

For time domain representation the equation system in (14) 
can be rearranged as follows [7]

where

(10)�m = �T��

(11)�m = �T��

(12)�m = �T��

(13)�m(ik) = �T�(ik)�

(14)

�m(ik) = �m(s̄) ≈ �0
m
+ s̄�1

m
+ s̄2�2

m
+

np∑
i=1

�Li
m

s̄

s̄ + 𝛽i

.

(15)�m(s̄,Ma) ≈ �0
m
+ s̄�1

m
+ s̄2�2

m
+ �(s̄� − �)−1�s̄

(16)� =
[
�

L1
m �

L2
m … �

Lnp
m

]
∈ ℝ

m x (m⋅np),

(17)
� = diag

([
−�1� − �2� … − �np

�
])

∈ ℝ
(m⋅np) x (m⋅np),

Fig. 4  Aerodynamic panel model of the FLEXOP aircraft and struc-
tural nodes of condensed FE model
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For the lag states xL ∈ ℝ
nlag x 1 the following ODE with �̇� as 

input can be derived [7]:

The resulting generalized aerodynamic forces are then

An alternative new approach for the generation of a gener-
alized state-space aeroservoelastic model based on tangen-
tial interpolation is presented in [12]. Compared to RFA 
approach, this method enables a minimal order realization 
with interpolation of the unsteady aerodynamics by avoiding 
any selection of poles �i [12].

5  LFT model of the perturbed system

Consider again the generalized equations of motion for the 
aeroelastic response of the aircraft with unstaedy aerody-
namics by combining the Eqs.  (9) and (20):

The state-space respresentation of the Eq. (21) is formulated 
with the generalized states � , �̇� and the unsteady aerody-
namic states xL:

where

(18)� =
[
� � … �

]T
∈ ℝ

(m⋅np) x m.

(19)ẋL =

(
V

cref∕2

)
�xL + ��̇�

(20)

Paero
m

=
1

2
𝜌V2�m(ik)𝜂(t) ≈

1

2
𝜌V2

[
�0

m
𝜂

+
cref∕2

V
�1

m
�̇� +

(
cref∕2

V

)2

�2
m
�̈� + �xL

]

(21)

�m�̈�(t) + �m�̇�(t) +�m𝜂(t)

=
1

2
𝜌V2

[
�0

m
𝜂 +

cref∕2

V
�1

m
�̇�

+

(
cref∕2

V

)2

�2
m
�̈� + �xL

]

(22)
⎡⎢⎢⎣

�̇�

�̈�

ẋL

⎤⎥⎥⎦
= �V

⎡⎢⎢⎣

𝜂

�̇�

xL

⎤⎥⎥⎦

(23)

�V =

⎡⎢⎢⎢⎣

� � �

−(�Q
m
)−1�Q

m
− (�Q

m
)−1�Q

m

1

2
�V2(�Q

m
)−1�

� �
2V

cref
�

⎤⎥⎥⎥⎦
,

5.1  Parametrization over flight speed

The �-framework determines the stability over a range of air-
speed to specify the onset of flutter. The generalized equations 
of motion for the aeroelastic response (22) are a function of the 
flight speed V, such that perturbations of this parameter can be 
integrated into the system as a linear fractional transformation.

Consider an additive perturbation �V on the nominal veloc-
ity V

Separate the terms in the system dynamics (22) that involve 
�V:

where

with

(24)�Q
m
= �m − �

c2
ref

8
�2

m
,

(25)�Q
m
= �m −

cref

4
�V�1

m
,

(26)�Q
m
= �m −

1

2
�V2�0

m
.

(27)V = V + �V

(28)

⎡⎢⎢⎢⎣

�̇�

�̈�

ẋL
zV

⎤⎥⎥⎥⎦
=

�
� �V

� �V

� ⎡⎢⎢⎢⎣

𝜂

�̇�

xL
wV

⎤⎥⎥⎥⎦

(29)� =

⎡⎢⎢⎢⎣

� � �

−(�Q
m
)−1�̃m − (�Q

m
)−1�̃m

1

2
�V

2
(�Q

m
)−1�

� �
2V

cref
�

⎤⎥⎥⎥⎦

(30)�̃m = �m −
1

2
�V

2
�0

m
,

(31)�̃m = �m −
cref

4
�V�1

m
,

(32)�V =

⎡⎢⎢⎣

� � � �

V� � V� �

� � � �

⎤⎥⎥⎦
,

(33)

� =

⎡⎢⎢⎢⎢⎣

1

2
𝜌(�Q

m
)−1�0

m
� �

� �
2

cref
�

� �
1

2
𝜌(�Q

m
)−1�

1

2
𝜌V̄(�Q

m
)−1�0

m

cref

4
𝜌(�Q

m
)−1�1

m

1

2
𝜌V̄(�Q

m
)−1�

⎤⎥⎥⎥⎥⎦
,
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The additional input and outputs signals

are introduced into the nominal aeroelastic system given in 
(22) to include the perturbation in velocity to the nominal 
dynamics in a feedback manner (Fig. 5):

The nominal flutter problem modeled by means of per-
turbation to flight speed V in Eq. (28) can be solved as a �
-computation. The tranfer function matrix �(s) which relates 
the input signal wV to the output signal zV can be derived 
from the Eq. (28):

(34)�V =

⎡⎢⎢⎢⎣

� � � �

� � � �

� � � �

� � � �

⎤⎥⎥⎥⎦
.

(35)wV = [w1,w2,w3,w4]
T ,

(36)zV = [z1, z2, z3, z4]
T ,

(37)z1 =
�

2

(
�Q

m

)−1
�0

m
�,

(38)z2 =
2

cref
�xL,

(39)z3 =
�

2

(
�Q

m

)−1
�xL,

(40)
z4 =

𝜌

2
V
(
�Q

m

)−1
�0

m
𝜂 +

cref

4
𝜌

(
�Q

m

)−1
�1

m
�̇�

+
𝜌

2
V
(
�Q

m

)−1
�xL + w1 + w3,

(41)wV =�VzV .

To make the perturbation on flight speed �V  which has the 
same unit as V  , to unity norm-bound constraint ‖�V‖∞ ≤ 1 , 
the transfer function matrix �(s) has to be scaled by a 
weighting W

V
 , where

The scaled plant transfer function matrix �(s) is given by:

and in frequency domain with s = i�

where �(i�) is also called the flutter loop transfer function 
matrix of the uncertain system (Fig. 6).

Now the nominal flutter speed V nom,�

flutter
 can be determined 

via �-computation by means of the following algorithm.

For 𝜇 < 1 there is no perturbation within exists that will 
destabilize the closed-loop system. Beacuse of well-known 
difficulties of exact real/mixed � computation, which poses 
an NP-hard problem, efficiently computable upper bound of 
� is used within the analysis.

(42)�(s) = �

(
s� − �

)−1

�V + �V

(43)V = V + �V ⋅W
V
, ‖�V‖∞ ≤ 1

(44)�(s) = W
V
�(s)

(45)�(i�) = W
V
�(i�) ,

Fig. 5  Upper-LFT system for nominal stability analysis in �-frame-
work with perturbation in-flight speed

Fig. 6  Feedback loop represen-
tation of the uncertain flutter 
transfer function matrix
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The algoritm set out above should therefore give an 
introduction into the �-framework. The nominal flutter 
speed V nom

flutter
 can also be calculated by means of stand-

ard flutter solution techniques such as p−k-method or g
-method. For example, the p−k-method [8] is widely used 
in flight flutter test campaigns. The g-method proposed 
by Chen [9] promises a reliable damping prediction by 
including a first order of damping term in the flutter equa-
tion. For the robust aeroelastic stability analysis additional 
uncertainties such as in structural dynamics, aerodynamics 
and/or unmodelled system dynamics have to be defined 
and subsequently included in the linear system to intro-
duce modeling errors between the numerical model and 
the physical aircraft (Fig. 7).

6  Tuning beams

In this paper, account is taken of the uncertainties in the 
structural dynamics or, more explicitly, the structural stiff-
ness model which has a significant impact within the lower 
frequency range and flutter analysis respectively. For the 
realization of the stiffness parameter variations tuning 
beams have been generated with respect to the condensed 
FE model. This approach is suitable for varying of stiff-
ness parameters by only adjusting material properties of 
the tuning beams like bending and torisonal stiffness while 
avoiding a modification of the full FE model. The tuning 
beams are 3D beams and may also be called “space beam” 
elements [13].

The beam element resists force in any direction and 
moment about any axis. The element stiffness matrix 
�el ∈ ℝ

12x12 of the 3D beam in local coordinate system 
is given by [13]:

where the submatrices �11
el

 , �12
el

 , �21
el

 and �22
el

 are defined as 
follows:

(46)�el =

[
�11

el
�12

el

�21
el

�22
el

]
,

and

where E is elastic modulus, G is shear modulus, A is cross-
sectional area, Iyy and Izz are principal moments of inertia of 
A, Ip is the torsional constant and L is the length of the 3D 
beam element. The assembly of global stiffness matrix of 
the tuning structure requires that each of the element stiff-
ness matrix has to be transformed into the global coordinate 
system and subsequently integrated into the global stiffness 
matrix of the nominal FE model in the following way:

where � tuned is the physical stiffness matrix of the tuned 
FE model, � is the nominal physical stiffness matrix of the 
FE model and � beam

i
 is the physical stiffness matrix of the 

i th tuning beam. This type of representation of the stiffness 
matrix in Eq. 51 by superposition of nominal model and the 

(47)�11
el

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA

L
0 0 0 0 0

0
12EIzz

L3

12EIyz

L3
0

−6EIyz

L2

6EIzz

L2

0
12EIyz

L3

12EIyy

L3
0

−6EIyy

L2

6EIyz

L2

0 0 0
GIp

L
0 0

0
−6EIyz

L2

−6EIyy

L2
0

4EIyy

L

−4EIyz

L

0
6EIzz

L2

6EIyz

L2
0

−4EIyz

L

4EIzz

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(48)�12
el

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−EA

L
0 0 0 0 0

0
−12EIzz

L3

−12EIyz

L3
0

−6EIyz

L2

EIzz

L2

0
−12EIyz

L3

−12EIyy

L3
0

−6EIyy

L2

6EIyz

L2

0 0 0
−GIp

L
0 0

0
6EIyz

L2

6EIyy

L2
0

2EIyy

L

−2EIyz

L

0
−6EIzz

L2

−6EIyz

L2
0

−2EIyz

L

2EIzz

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(49)�21
el

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−EA

L
0 0 0 0 0

0
−12EIzz

L3

−12EIyz

L3
0

6EIyz

L2

−6EIzz

L2

0
−12EIyz

L3

−12EIyy

L3
0

6EIyy

L2

−6EIyz

L2

0 0 0
−GIp

L
0 0

0
−6EIyz

L2

−6EIyy

L2
0

2EIyy

L

−2EIyz

L

0
6EIzz

L2

6EIyz

L2
0

−2EIyz

L

2EIzz

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(50)�22
el

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA

L
0 0 0 0 0

0
12EIzz

L3

12EIyz

L3
0

6EIyz

L2

−6EIzz

L2

0
12EIyz

L3

12EIyy

L3
0

6EIyy

L2

−6EIyz

L2

0 0 0
GIp

L
0 0

0
6EIyz

L2

6EIyy

L2
0

4EIyy

L

−4EIyz

L

0
−6EIzz

L2

−6EIyz

L2
0

−4EIyz

L

4EIzz

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(51)� tuned = � +

nbeam∑
i=1

� beam
i

,

Fig. 7  Arbitrarily oriented 3D beam element with 12 nodal degrees 
of freedom (DoF) in local and global coordinate system [13]
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tuning structure is used for the uncertainty definition in the 
next section. The global stiffness matrix with its substructure 
components (nominal model and tuning structure) is visual-
ized in Fig. 8.

7  Uncertainty modeling

In this study, the wing structure is affected by the uncer-
tainty of the physical stiffness matrix by means of tun-
ing beams’ parameters. Two kinds of variations of physi-
cal stiffness characteristics have been defined. The first 
approach is characterized by symmetric variation of physi-
cal stiffness with respect to torsional rigidity ( GIp ) and/or 
flexural rigidity (bending stiffness) ( EIyy ), i.e. the tuning 
beams on the right and left wing structure have the same 
material properties to include symmetric uncertainties 
into the nominal model. The second approach denotes 
asymmetric variation of stiffness parameters of the tuning 
beams on the right and left-wing structure to represent 
asymmetric stiffness distribution in the nominal model.

Considering the perturbation of the physical stiff-
ness matrix, the parametric additive uncertainties can be 
described as follows: 

 I. Symmetric variation 

 II. Asymmetric variation 

where nbeam is the total number of tuning beams, � is the 
nominal physical stiffness matrix of the aircraft, �WR

i
 

and �WL
i

 are weigthing matrices which are in this case 
the physical stiffness matrices of the ith tuning beam with 
respect to the right wing (WR) and left wing (WL) struc-
ture, respectively. �i , �WR

i
 and �WL

i
 are norm-bounded 

uncertainty operators with ‖�W
i
‖∞ ≤ 1 , ‖�WR

i
‖∞ ≤ 1 and 

‖�WL
i

‖∞ ≤ 1 . It should be noted that � is the modal (eigen-
vector) matrix of the nominal system. This assumption is 
reasonable for small perturbations and can be validated by 
modal correlation analysis between nominal and perturbed 
system.

The extended LFT model of the new perturbed system, 
which includes feedback signals relating the perturbation 
to flight speed and uncertainties described in the Eqs. (52) 
and (53), may be defined analogous to the Eq. (28):

(52)� sym
m

= �T

[
� +

nbeam∕2∑
i=1

�
W
i

(
�WR

i
+�WL

i

)]
�

(53)

� sym
m

= �T

[
� +

nbeam∕2∑
i=1

�
WR
i

�WR
i

+

nbeam∕2∑
i=1

�
WL
i

�WL
i

]
�

where the new submatricest �K ∈ ℝ
(2m+nlag) x (m⋅nbeam) and 

�K ∈ ℝ
(m⋅nbeam) x (2m+nlag) are given as follows

T h e  s u b m a t r i c e s  �V,K ∈ ℝ
(3m+nlag)x(3m+nlag)  , 

�K,V ∈ ℝ
(m⋅nbeam)x(3m+nlag) and �K ∈ ℝ

(m⋅nbeam)x(m⋅nbeam) are zero 
matrices.

The robust flutter problem modeled by means of per-
turbation to flight speed V and stiffness model uncertainty 
in Eq. (54) can be solved by a �-computation. The tranfer 
function matrix �K(s) which relates the input signals wV 
and wK to the output signals zV and zK can be derived from 
the Eq. (54):

(54)

⎡⎢⎢⎢⎢⎢⎣

�̇�

�̈�

ẋL
zV
zK

⎤
⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎣

�

�
�V �K

�
�
�

�K

� �
�V �V,K

�K,V �K

� ⎤⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

𝜂

�̇�

xL
wV

wK

⎤⎥⎥⎥⎥⎥⎦

(55)�K =

⎡⎢⎢⎣

�m �m ⋯ �m
−�m − �m ⋯ − �m

�nlag x m⋅nbeam

⎤⎥⎥⎦

(56)�K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(�Q
m
)−1�T�WR

1
� �m �m x nlag

⋮ ⋮ ⋮

(�Q
m
)−1�T�WR

nbeam∕2
� �m �m x nlag

(�Q
m
)−1�T�WL

1
� �m �m x nlag

⋮ ⋮ ⋮

(�Q
m
)−1�T�WL

nbeam∕2
� �m �m x nlag

⎤⎥⎥⎥⎥⎥⎥⎥⎦

Fig. 8  Visualization of the (assembled) global stiffness matrix
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Once the transfer function matrix �K(s) has been determined, 
the robust flutter speed V rob

flutter
 can be determined within the �

-framework by means of the following algoritm.

8  Numerical results

For the numerical demonstration of the proposed uncertainty 
description 11 tuning beams for each wing ( nbeam = 22 ) have 
been defined. Each wing consists of 60 structural nodes. 
The beams are placed within the nondimensional span range 
� = [0.25, 0.75] . For the modal model the first 15 modes 
( m = 15 ) have been considered within the frequency range 
of 2.9 ≤ f ≤ 35.6  Hz. In this context, the considered fre-
quency grid for �-computation must be sufficiently dense 
in order not to miss a critical frequency, which can lead 
to a prohibitive computational cost. For the following case 
studies, a frequency grid of 50 logarithmically spaced points 
between 3.0 and 12.0 Hz has been considered with regard to 
the nominal flutter results. The computed � values are then 
interpolated within the same frequency range using linear 
interpolation with a step size of Δf = 0.05 Hz.

Symmetric stiffness perturbations

I Additive uncertainty of 102 N

m2
 with respect to bending 

stiffness EIyy for each tuning beam on the left and right 
wing structure

��

�
= diag

(
�
W
1
�m, �

W
2
�m, … , �W

nbeam∕2
�m

)
 .

(57)�K(s) =

[
�

�K

](
s� − �

)−1[
�V �K

]
+

[
�V �V,K

�K,V �K

]
II Additive uncertainty of 102 N

m2
 with respect to tor-

sional stiffness GIp for each tuning beam on the left and 
right wing structure

���

�
= diag

(
�
W
1
�m, �

W
2
�m, … , �W

nbeam∕2
�m

)
 .

III Additive uncertainty of 102 N

m2
 with respect to both 

bending stiffness EIyy and torsional stiffness GIp for each 
tuning beam on the left and right wing structure

����

�
= diag

(
�
W
1
�m, �

W
2
�m, … , �W

nbeam∕2
�m

)
 .

Asymmetric stiffness perturbations

IV Additive uncertainty of 0.8 × 102
N

m2
 with respect to 

bending stiffness EIyy for each tuning beam on the left 
wing and 1.2 × 102

N

m2
 for each tuning beam on the right 

wing 

V Additive uncertainty of 0.8 × 102
N

m2
 with respect to 

torsional stiffness GIp for each tuning beam on the left 
wing and 1.2 × 102

N

m2
 for each tuning beam on the right 

wing 

VI Additive uncertainty of 0.8 × 102
N

m2
 with respect to 

both bending stiffness EIyy and torisonal stiffness GIp for 
each tuning beam on the left and 1.2 × 102

N

m2
 for each 

tuning beam on the right wing 

Based on the above-defined cases, robust aeroelastic 
analyses have been carried out using Algorithm 2. Cor-
responding results are shown as �-f plots at various flight 
speeds in Figs. 9, 10, 11, 12, 13 and 14. The � values are 
taken from the upper bound calculation. The results for 
the nominal and robust flutter analysis are summarized in 
Table 1 (Fig. 15).

���
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]
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)
and

�WL
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= diag
(
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1

��, �
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�m, … , �WL
nbeam∕2

�m

)
.
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8.1  Analysis results

The numerical example demonstrates that even small stiff-
ness parameter variations on the wing structures have a 
major impact on the onset of the flutter. There are consid-
erable differences between flutter speeds with respect to 
bending and torsional stiffness variations. The impact of 
bending stiffness variations on the flutter margin is much 
stronger than the torsional stiffness uncertainties. This was 
to be expected due to the flutter results of the nominal model 
as shown in the graphic below (Fig. 16) where normalized 
modal participation factors of the flutter mode are plotted. 
The flutter mode involves a strong coupling between the 
first wing bending and the first wing torsion mode (critical 
modes) whereas the first wing bending mode at f = 2.93 Hz 
dominates the motion at the flutter condition. Consequently, 
bending stiffness variations have a higher effect on the onset 
of the flutter condition.

The defined uncertainty in Case I reduces the flut-
ter speed by roughly 8% compared to the nominal flutter 
speed given in Table 1 whereas the symmetric uncertainty 
of the torsional stiffness defined in Case II leads to a 
reduction of the flutter speed by roughly 6.2% . The Case 
III depicts a combination of the previous two cases and 
leads to a further reduction of the flutter speed by roughly 
3.8% compared to the Case I. A further important point 
relating to key characteristics of the results refers to the 
asymmetry of the stiffness distribution as an uncertainty 
integrated into the nominal model. Comparison of the 
flutter speeds between Cases I and IV leads to the con-
clusion that an asymmetric bending stiffness uncertainty 
has an greater influence on the flutter margin then an 
assumption of symmetric bending stiffness uncertainty 
(reduction of flutter speed by 10.2% ), whereas the flut-
ter speeds in Cases II and IV related to the symmetric 
and asymmetric torsional stiffness uncertainties remain 

relatively unchanged. Comparison of the results between 
Cases III and VI also reflects that a combination of asym-
metric stiffness uncertainties related to bending and tor-
sion parameters has a stronger effect on the flutter margin 
in comparison to the assumption of symmetric stiffness 
uncertainties in the model.

Tuning beams

Fig. 9  Structural nodes of condensed FE model with tuning beams

Table 1  Comparison of nominal and robust flutter analysis results

Method Type Case fflut (Hz) Vflut (m/s) Comp. time

p-k Nominal – 7.73 56.04 3 s
�-V Robust I 8.08 51.56 210 s
�-V Robust II 8.05 52.59 147 s
�-V Robust III 8.05 49.45 191 s
�-V Robust IV 8.05 50.35 458 s
�-V Robust V 8.08 52.62 348 s
�-V Robust VI 8.07 48.03 559 s

frob

Fig. 10  �-Frequency plots of robust stability analysis for Case I

frob

Fig. 11  �-Frequency plots of robust stability analysis for Case II
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9  Conclusions

In this work a robust aeroelastic stability analysis within 
the �-framework has been carried out. Therefore, an LFT 
model of the perturbed aeroelastic system in state-space 
form parametrized over flight speed has been developed. 
Here, the account is taken of the uncertainties in the struc-
tural stiffness model which has a significant impact within 
the lower frequency range and flutter analysis respectively. 
For the realization of the stiffness parameter variations 
tuning beams have been generated with respect to the con-
densed FE model. This approach is suitable for varying of 
stiffness parameters by only adjusting material properties 
of the tuning beams avoiding to intervene in the full FE 
model. The study is limited to the wings of the aircraft and 
focussed on the investigation of physical stiffness uncer-
tainties of the wings in spanwise direction and handle 

frob

Fig. 12  �-Frequency plots of robust stability analysis for Case III

frob

Fig. 13  �-Frequency plots of robust stability analysis for Case IV

frob

Fig. 14  �-Frequency plots of robust stability analysis for Case V

frob

Fig. 15  �-Frequency plots of robust stability analysis for Case VI

Fig. 16  Modal participation factors of flutter mode at Vflut = 56.04
m

s
 

of the nominal FE model
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each wing separately in case of symmetric and especially 
asymmetric stiffness distribution which is widely under-
researched scientifically with respect to robust aeroelastic 
analyses.
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