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Abstract
Background The biological clock allows an organism to anticipate periodic environmental changes and adjust its physiology 
and behavior accordingly.
Objective This retrospective cross-sectional study examined circadian gene polymorphisms and clinical characteristics 
associated with insulin resistance (IR).
Methods We analyzed data from 1,404 Korean adults aged 30 to 55 with no history of cancer and cardio-cerebrovascular 
disease. The population was classified according to sex and homeostasis model assessment of insulin resistance (HOMA-
IR) values. Demographics, anthropometric and clinical characteristics, and single nucleotide polymorphisms (SNPs) were 
analyzed with respect to sex, age, and HOMA-IR values. We used association rule mining to identify sets of SNPs from 
circadian and metabolic sensing genes that may be associated with IR.
Results Among the subjects, 15.0% of 960 women and 24.3% of 444 men had HOMA-IR values above 2. Most of the 
parameters differed significantly between men and women, as well as between the groups with high and low insulin sensitiv-
ity. Body fat mass of the trunk, which was significantly higher in insulin-resistant groups, had a higher correlation with high 
sensitivity C-reactive protein and hemoglobin levels in women, and alanine aminotransferase and aspartate aminotransferase 
levels in men. Homozygous minor allele genotype sets of SNPs rs17031578 and rs228669 in the PER3 gene could be more 
frequently found among women with HOMA-IR values above 2 (p = .014).
Conclusion Oxidative stress enhanced by adiposity and iron overload, which may also be linked to NRF2 and PER3-related 
pathways, is related to IR in adulthood. However, due to the small population size in this study, more research is needed.

Keywords Insulin resistance · Circadian rhythm · Single nucleotide polymorphism · Adiposity · Inflammation · Iron 
overload
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Introduction

The circadian rhythm, which is generated by endogenous 
oscillators, forms the temporal structure of human physiol-
ogy by regulating energy metabolism in accordance with the 
natural light and dark cycle. When the circadian rhythm, gut 
microbial activities, and geophysical environmental signals 
are out of sync, energy metabolism can be disrupted, and 
conditions like insulin resistance may develop (Stenvers et 
al. 2019). Insulin sensitivity in skeletal muscle is remotely 
modulated by light and Sirtuin 1 (SIRT1) dependent path-
way (Aras et al. 2019). It has been reported that certain 
polymorphic variants of SIRT1, as well as other circadian 
genes such as Circadian Locomotor Output Cycles Kaput 
(CLOCK), Brain and Muscle Arnt-Like 1 (BMAL1, also 
known as aryl hydrocarbon receptor nuclear translocator-
like 1, ARNTL1), Cryptochrome 1 (CRY1) may lead to insu-
lin resistance and increase the risk of metabolic and mood 
disorders (Dong et al. 2011; Dashti et al. 2014; Kovanen et 
al. 2015; Angelousi et al. 2018).

Various genome-wide association studies (GWASs) and 
meta-analyses of GWASs have identified single nucleotide 
polymorphisms (SNPs) from various loci associated with 
insulin resistance and type 2 diabetes (Hong et al. 2014). 
However, identifying the genes associated with disease phe-
notypes in complex, multifactorial disorders can be more 
challenging compared to that in simple Mendelian diseases. 
It is generally thought that the combined effects of multiple 
genetic variants with small effect sizes may constitute such 
complex traits. However, the genome-wide significance 
threshold at the level of p < 5.0 × 10− 8, which is applied in 
GWAS to prevent type 1 error, might filter SNPs with small 
effect sizes unless the sample size is extremely large. There-
fore, additional methodologies might be necessary in order 
to compensate for the limitations of traditional GWASs 
(Stringer et al. 2011).

Breuer et al. (2018) addressed such issues of concern for 
GWAS of complex traits and hypothesized that analyzing 
the joint effect of genetic variants via the association rule 
mining (ARM) technique could be an alternative solution. 
ARM technique is a data mining technique that aims to 
extract frequent patterns from large databases. The tech-
nique is generally applied to analyze customer habits from 
transaction databases, and gene expression from microar-
ray data. Breuer et al. considered this technique can unravel 
unknown associations between genome-wide genetic vari-
ants. Besides the genetic variation of specific SNPs, minor 
allele content (MAC) can be calculated as a quantitative 
measurement. Genome-wide accumulation of MAC in indi-
viduals might play a role in the pathogenesis of complex 
diseases such as type 2 diabetes and Alzheimer’s disease 
(Lei and Huang 2017; Chen et al. 2020). According to Chen 

et al. (2014) and Kido et al. (2018), it can be hypothesized 
that as the result of a natural selection process, risk alleles, 
compared to protective alleles might face negative selection 
and be kept at lower proportions. Therefore, risk alleles are 
more likely to be found among minor alleles.

From the above literature, we have concluded that indi-
viduals who carry certain variants of circadian genes may 
be more vulnerable to metabolic disorders. For the circa-
dian genes, considering the joint effects of multiple vari-
ants and MAC might further enhance the prediction power 
of genome-wide association models. In this study, we will 
examine sex differences in circadian gene polymorphisms, 
and demographic and clinical characteristics associated 
with insulin resistance. Our hypothesis is: carrying certain 
sets of homozygous minor alleles or more minor alleles in 
the circadian and metabolic sensing genes may be metaboli-
cally riskier in the long term thus contributing to the patho-
genesis of insulin resistance.

Materials and methods

Study design and settings

In this retrospective cross-sectional study, we analyzed the 
data of Korean adults (n = 1404) provided by the Korean 
medicine Data Center (KDC). The study protocol con-
formed to the declaration of Helsinki. Due to the retrospec-
tive nature of the work, this study was granted an exemption 
by the local ethics committee with a waiver of consent 
(Daejeon University institutional review board exemption: 
1040647-202104-HR-019-03). The study population were 
relatively healthy adults recruited from the local community 
from 2017 to 2019, and had complete data on demograph-
ics, vital signs, anthropometric and bioelectric impedance 
measurements, hematological profile, and single nucleotide 
polymorphisms (SNPs). All data were anonymized, and the 
SNP data were analyzed on-site at the data center using a 
computer completely isolated from the internet and secured 
with a password and a locking device.

Study population

For this study, we used minimal inclusion and exclusion 
criteria so that the study population could be representa-
tive of the general population. The inclusion criterion was: 
relatively healthy adults recruited from the local commu-
nity, who had complete data on demographics, vital signs, 
anthropometric and bioelectric impedance measurements, 
hematological profiles, and SNPs. The exclusion criterion 
was: those with a history of malignant tumor or cardio-cere-
brovascular diseases.
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Hematological profile

Overnight fasting blood samples (about 22.5 ml) were col-
lected between 8 AM and 12 PM from the median cubital 
vein of each participant. The samples were centrifuged for 
10 min at 3450 rpm and then transported to the laboratory 
(Seoul Clinical Laboratories, Yongin, Korea) within 24 h of 
collection for hematological examination. The blood test 
includes complete blood count, liver function, lipid profile, 
fasting plasma glucose and insulin levels, inflammatory 
markers, and differential count. Granulocyte count was cal-
culated by summing the neutrophil, eosinophil and basophil 
counts. The granulocyte to lymphocyte ratio (GLR) was cal-
culated by dividing the granulocyte count by the lympho-
cyte count, the neutrophil to lymphocyte ratio (NLR) was 
calculated by dividing the neutrophil count by the lympho-
cyte count, and the lymphocyte to monocyte ratio (LMR) 
was calculated by dividing the monocyte count by the lym-
phocyte count.

In this study, we used the homeostasis model assessment 
of insulin resistance (HOMA-IR), an indirect measurement 
of insulin resistance. HOMA-IR was calculated from fasting 
blood insulin and glucose levels. The primary cut-off point 
used for HOMA-IR in this study was 2, which corresponds 
to about the 75th percentile in the Korean population aged 
40–69 years in Kim et al. (2018)’s study. The formula used 
for calculating HOMA-IR was as follows:

HOMA − IR =
fastingglucose(mg/dL) × fastinginsulin(uU/mL)

405

Measurements

Anthropometric measurements were obtained and recorded 
according to a standardized protocol. Height, weight, 
waist and hip circumferences were measured to the nearest 
± 0.1 cm and kg. Body mass index (BMI) was calculated as 
body weight in kilograms divided by the square of height in 
meters (kg/m2). Mass and proportion of body fat and muscle 
were measured with the InBody 770 bioelectrical imped-
ance analyzer (Biospace, Seoul, Korea).

Gene analysis

SNP selection

A total of 750,050 SNPs were analyzed using the Theragen Pre-
cision Medicine Research Array (PMRA) chip (TheragenEtex 
Bio Institute, Suwon, Korea). Following genes that are involved 
in the circadian cycle and metabolic sensing (Rijo-Ferreira 
and Takahashi 2019; Stenvers et al. 2019) were selected for 
this study: AKT1, AKT2, ARNTL1, ARNTL2, CLOCK, CRY1, 

CRY2, DEC1, FOXO1, IRS1, JAK2, LIPE, LPL, MAPK8, 
NFE2L2, NFKB1, NPAS2, NR1D1, NR1D2, PBP4, PCK2, 
PER1, PER2, PER3, PNPLA2, RORA, RORB, RORC, SIRT1, 
SIRT6, SLC2A1, SLC2A2, SLC16A1, SLC16A4, SLC16A7, 
SREBF1, STAT3, STRA6, and TIMELESS. A list of SNPs for 
each gene was downloaded from the Single-Nucleotide Poly-
morphism database (National Center for Biotechnology Infor-
mation (NCBI) dbSNP). Only common, intersecting SNPs 
from the selected genes and the Theragen PMRA chip were 
used for the analysis. All SNPs were autosomal SNPs. Before 
data analysis, SNPs were pruned using PLINK (v1.07) soft-
ware (Purcell et al. 2007). SNPs with minor allele frequency 
and Hardy-Weinberg equilibrium of greater than 0.05 were 
selected. Then, SNPs with missingness per marker greater than 
10%, and missingness per individual greater than 5%, were 
excluded. This resulted in 478 SNPs that were passed on to 
later processes.

Linkage disequilibrium (LD) in a specific population refers 
to a non-random association of alleles at different loci. LDs 
for the SNPs used in this study were calculated using PLINK 
software. In this study, we pruned SNPs with LD above the 
r2 threshold of 0.5 with PLINK option --indep-pairwise 20 3 
0.5. This left us with 353 SNPs that were passed on to later 
processes. Further processes for selecting and pruning SNPs 
are shown in Fig. 1.

Exploratory association rule mining

For association rule mining, if the input data are too scarce, 
then rules can hardly be mined. Meanwhile, if all the SNPs 
including those with higher MAF are included in the associa-
tion rule mining, then the homozygous minor allele genotypes 
with higher MAF will have a higher chance to be randomly 
associated with each other compared to those with lower MAF. 
Since risk alleles, in many cases, tend to be minor alleles with 
low MAF (Kido et al. 2018), we had to find a point of com-
promise by further pruning process. Therefore, from the SNPs 
used above, those with high MAF, in which homozygous 
minor allele genotype presented in more than 10% of the entire 
population were removed.

Genotype data of the 305 SNPs from 1404 individu-
als were obtained with PLINK software. The Association 
rule mining algorithm was programmed with Python 3.9.1 
(Python Software Foundation, Wilmington, DE, USA) using 
the Mlxtend library (Raschka 2018). For association rule 
mining, minor allele-minor allele pairs were coded as 1 and 
minor allele-major allele pairs and major allele-major allele 
pairs were all coded as 0. All missing values in genotype 
data were assumed to be non-homozygous minor genotypes 
and thus were coded as 0. We created dummy variables and 
dropped the minor-major and major-major allele categories 
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support is used to select the frequently occurring sets from 
the entire dataset. Meanwhile, the confidence C is defined 
as follows: C (A → B) = P (B|A) = N(A ∩ B)/N (A). 
The confidence, in this case, is the probability of SNP B 
appears given the SNP A appears. The association rule min-
ing algorithm looks for sets with a high level of support and 
confidence in relation to their threshold.

Minor allele content

MAC of each individual was counted from the above 
dataset of n = 478 SNPs for circadian genes, and n = 133 
SNPs from core clock genes including ARNTL1, ARNTL2, 
CLOCK, CRY1, CRY2, DEC1, NPAS2, PER1, PER2, and 

so that we could come up with association rules between 
homozygous minor allele genotypes as a result.

We divided the SNP dataset according to males 
and females with high and normal HOMA-IR val-
ues. From the entire dataset of n items, we can generate ∑n

k=2

(
n
k

)
× (2k − 2) association rules. We then applied the 

apriori algorithm to the dataset to obtain candidates for the 
later association rule mining step. We used minimum sup-
port of 0.05 which is how often the item is present in the 
whole dataset. For the association rules, we used a threshold 
of 0.1 for minimum confidence. For the rules consisting of 
SNP sets of A and B, the support S is defined as follows: 
S (A → B) = P (A ∩ B) = N(A ∩ B)/n , where P stands 
for the probability and N stands for the number of sets. The 

Fig. 1 Schematic diagram of 
the SNP selection process for 
cluster analysis and exploratory 
association rule mining. SNP, 
single nucleotide polymorphism; 
PMRA, Precision Medicine 
Research Array; MAC, minor 
allele content
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and women separately. Furthermore, because the number 
of male subjects was lower than that of female subjects, the 
statistical power of males in this study was lower than that of 
females. The mean ages of men and women were also found 
to be significantly different. The actual difference in the mean 
age, however, was about 1.5 years, so we considered that it was 
clinically negligible.

The distribution of HOMA-IR in men and women in this 
study population is shown in Table 2. HOMA-IR of 2, which 
was used as a cut-off point in this study, was at the 82nd per-
centile in the entire population, 85th percentile in women, 
and 76th percentile in men. Among the study population, 
144 (15.0%) women and 108 (24.3%) men had HOMA-IR 
values above 2. There were significant differences in most of 
the clinical characteristics between the groups with HOMA-
IR values above and below 2 (Table 1).

The hematological characteristics of the study popula-
tion are shown in Table 3. Most of the hematological char-
acteristics differed significantly between men and women, 
and between the groups with high and low insulin sensi-
tivity (i.e., HOMA-IR value below and above 2). Subjects 

PER3. Furthermore, we pruned the SNPs using different 
MAFs of 0.1 or 0.3.

Statistical analysis

The Hardy-Weinberg equilibrium, missing data, MAF, and 
LD were processed and calculated using PLINK software. 
The rest of the statistical analysis was performed using 
SPSS 23.0 for Windows (International Business Machines 
Corporation, Armonk, NY, USA) and Python 3.9.1 (Python 
Software Foundation, Wilmington, DE, USA). We applied 
log-normalization before analysis when appropriate. Males 
and females were analyzed separately. Differences were 
considered significant at P < .05. Correlation coefficients 
were interpreted as being negligible (0.00-0.10), weak 
(0.10–0.39), moderate (0.40–0.69), and strong (0.70 to 
1.00).

Results

Population characteristics

Table 1 contains the demographic and clinical characteristics 
of the study population. The age of the population ranged 
from 30 to 55 years. Among the 1404 subjects, 960 (68.4%) 
were women and 444 (31.6%) were men. Most of the clini-
cal characteristics differed significantly between men and 
women. Therefore, we conducted statistical analyses on men 

Table 1 Demographic and Clinical Characteristics of the Study Population
Women Men All
All
(n = 960)

HOMA-
IR < 2
(n = 816)

HOMA-
IR ≥ 2
(n = 144)

P for 
t-test

All
(n = 444)

HOMA-IR < 2
(n = 336)

HOMA-IR ≥ 2
(n = 108)

P for t-test P for 
t-test

Age, yr 44.6 ± 6.6 44.7 ± 6.5 44.2 ± 7.0 0.428 43.1 ± 7.1 43.3 ± 7.0 42.6 ± 7.3 0.343 < .001a

BMI, kg/m2 23.9 ± 3.5 23.3 ± 2.9 27.7 ± 4.3 < .001a 25.8 ± 3.3 25.0 ± 2.8 28.5 ± 3.3 < 0.001 a < .001a

SBP, mm Hg 112.7 ± 15.2 111.5 ± 14.9 119.4 ± 15.1 < 0.001 123.6 ± 14.1 122.1 ± 14.0 128.0 ± 13.3 < 0.001 < 0.001
DBP, mm Hg 70.1 ± 11.4 69.2 ± 11.2 74.9 ± 11.1 < 0.001 81.0 ± 11.3 79.8 ± 11.0 84.7 ± 11.7 < 0.001 < 0.001
FPI, μIU/mL 5.9 ± 4.2 4.6 ± 1.9 13.0 ± 6.3 < .001a 7.0 ± 5.2 5.0 ± 2.2 13.3 ± 6.8 < 0.001 a < .001a

FPG, mg/dL 82.8 ± 13.9 80.7 ± 8.7 95.0 ± 26.1 < .001a 87.5 ± 20.6 83.2 ± 9.8 101.1 ± 34.8 < 0.001 a < .001a

HbA1c, % 5.4 ± 0.5 5.4 ± 0.4 5.9 ± 0.9 < .001a 5.6 ± 0.7 5.5 ± 0.4 6.0 ± 1.2 < 0.001 a < .001a

AST, IU/L 23.9 ± 12.8 22.8 ± 8.9 29.9 ± 24.7 .001a 28.8 ± 13.0 27.7 ± 10.2 32.4 ± 18.8 0.014 a < .001a

ALT, IU/L 20.8 ± 18.0 18.1 ± 10.2 35.5 ± 36.3 < .001a 34.2 ± 23.6 31.1 ± 20.1 43.8 ± 30.2 < 0.001 a < .001a

GGT, IU/L 22.9 ± 24.2 20.5 ± 20.3 36.4 ± 37.1 < .001a 56.1 ± 59.7 51.2 ± 56.4 71.4 ± 67.1 0.005 a < .001a

TG, mg/dL 110.9 ± 66.3 103.3 ± 59.0 153.9 ± 86.1 < .001a 189.7 ± 169.2 169.0 ± 152.0 254.3 ± 201.9 < 0.001 a < .001a

HDL-C, mg/dL 59.6 ± 13.8 61.2 ± 13.8 50.5 ± 10.7 < .001a 49.5 ± 10.8 51.1 ± 11.0 44.6 ± 8.5 < 0.001 a < .001a

LDL-C, mg/dL 118.0 ± 32.6 115.7 ± 31.4 131.1 ± 36.2 < 0.001 125.5 ± 33.0 123.9 ± 32.2 130.4 ± 35.0 0.069 < 0.001
Values are expressed as mean ± standard deviation.
HOMA-IR, homeostasis model assessment of insulin resistance, BMI, body mass index, SBP, systolic blood pressure, DBP, diastolic blood 
pressure, FPI, fasting plasma insulin, FPG, fasting plasma glucose, HbA1c, hemoglobin A1c, AST, aspartate aminotransferase, ALT, alanine 
aminotransferase, GGT, gamma-glutamyltransferase, TG, triglyceride, HDL-C, high-density lipoprotein cholesterol, LDL-C, low-density lipo-
protein cholesterol.
aMann-Whitney U test was used instead as the P-value of Levene’s test for equality of variances was less than 0.05.

Table 2 Distribution of HOMA-IR in Men and Women
Percentile
10th 25th 50th 75th 90th

HOMA-IR (all) 0.48 0.68 1.05 1.63 2.41
HOMA-IR (women) 0.47 0.64 0.99 1.44 2.27
HOMA-IR (men) 0.50 0.76 1.16 1.93 2.80
HOMA-IR, homeostasis model assessment of insulin resistance
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a greater visceral fat area (VFA), percentage of body fat 
(PBF), body fat mass (BFM) of the upper and lower limbs, 
fat to lean mass ratio (FLMR), fat to skeletal muscle mass 
ratio (FSMMR), and lean fat to trunk fat ratio (LFTFR). 
Meanwhile, men had greater soft lean mass (SLM) and skel-
etal muscle mass (SMM). BFM of the trunk did not differ 
between men and women. Subjects with HOMA-IR of 2 or 
higher had higher VFA, PBF, BFM, FLMR, SLM, SMM, 
FSMMR, and LFTFR.

with a HOMA-IR value of 2 or higher had higher levels 
of high-sensitivity C-reactive protein (hsCRP), neutro-
phils, lymphocytes, monocytes, red blood cell (RBC) count, 
hemoglobin, and hematocrit, and lower mean corpuscular 
volume (MCV) and mean corpuscular hemoglobin (MCH) 
in both men and women. In addition, women with HOMA-
IR 2 or higher had higher GLR and NLR.

The body impedance measurements of the study popula-
tion are shown in Table 4. Compared to men, women had 

Table 3 Hematological Characteristics of the Study Population
Women Men All
All
(n = 960)

HOMA-
IR < 2
(n = 816)

HOMA-
IR ≥ 2
(n = 144)

P for 
t-test

All
(n = 444)

HOMA-
IR < 2
(n = 336)

HOMA-
IR ≥ 2
(n = 108)

P for 
t-test

P for 
t-test

hsCRP, mg/L 1.3 ± 3.4 1.1 ± 3.2 2.6 ± 4.5 < .001a 1.2 ± 1.8 1.1 ± 1.8 1.6 ± 1.7 0.016 .404a

Neutrophils, /mm3 3140 ± 1220 3020 ± 1140 3780 ± 1450 < .001a 3400 ± 1190 3340 ± 1150 3610 ± 1310 0.047 < 0.001
Lymphocytes, /mm3 1780 ± 500 1750 ± 480 1980 ± 540 < 0.001 2060 ± 540 2030 ± 540 2160 ± 540 0.029 < .001a

Monocytes, /mm3 279 ± 84 272 ± 82 314 ± 90 < 0.001 338 ± 103 332 ± 103 356 ± 101 0.036 < .001a

RBC, 106/μL 4.4 ± 0.3 4.3 ± 0.3 4.6 ± 0.3 < 0.001 5.0 ± 0.3 4.9 ± 0.3 5.1 ± 0.3 < 0.001 < 0.001
Hb 13.1 ± 1.2 13.0 ± 1.2 13.5 ± 1.2 < 0.001 15.4 ± 0.9 15.3 ± 0.9 15.6 ± 0.9 0.010 < 0.001 a

Hct 40.6 ± 3.1 40.4 ± 3.0 41.8 ± 3.2 < 0.001 46.8 ± 2.8 46.7 ± 2.8 47.3 ± 2.7 0.035 < 0.001
MCV, fL 93.2 ± 6.1 93.4 ± 6.2 91.8 ± 5.4 0.004 94.2 ± 4.0 94.5 ± 4.0 93.3 ± 4.0 0.004 < 0.001 a

MCH 30.1 ± 2.4 30.1 ± 2.5 29.8 ± 2.2 0.049 31.0 ± 1.3 31.0 ± 1.3 30.7 ± 1.3 0.023 < 0.001 a

MCHC 32.3 ± 1.1 32.2 ± 1.1 32.4 ± 1.1 0.212 32.9 ± 0.8 32.8 ± 0.9 32.9 ± 0.8 0.411 < 0.001 a

GLR 2.0 ± 0.9 1.9 ± 0.9 2.1 ± 0.9 0.020 1.9 ± 0.8 2.0 ± 0.9 2.0 ± 0.8 0.920 0.038
NLR 1.9 ± 0.8 1.8 ± 0.8 2.0 ± 0.8 0.022 1.7 ± 0.8 1.7 ± 0.8 1.7 ± 0.7 0.855 0.018
LMR 6.8 ± 2.2 6.8 ± 2.1 6.7 ± 2.7 0.925 6.5 ± 2.0 6.5 ± 2.0 6.4 ± 1.8 0.647 0.012
Values are expressed as mean ± standard deviation.
HOMA-IR, homeostasis model assessment of insulin resistance, hsCRP, high-sensitivity C-reactive protein, RBC, red blood cells, Hb, hemo-
globin, Hct, hematocrit, MCV, mean corpuscular volume, MCH, mean corpuscular hemoglobin, MCHC, mean corpuscular hemoglobin con-
centration, GLR, granulocyte to lymphocyte ratio, NLR, neutrophil to lymphocyte ratio, LMR, lymphocyte to monocyte ratio.
aMann-Whitney U test was used instead as the P-value of Levene’s test for equality of variances was less than 0.05.

Table 4 Clinical Differences in Fat and Muscle Distributions and Ratios Based on Body Impedance Measurements
Women Men All
All
(n = 960)

HOMA-IR < 2
(n = 816)

HOMA-
IR ≥ 2
(n = 144)

P for 
t-test

All
(n = 444)

HOMA-IR < 2
(n = 336)

HOMA-
IR ≥ 2
(n = 108)

P for 
t-test

P for 
t-test

VFA 100.6 ± 37.2 93.7 ± 31.9 139.5 ± 41.3 < .001a 87.2 ± 35.4 79.1 ± 30.7 112.5 ± 37.3 < .001a < .001a

PBF, % 34.0 ± 6.0 33.1 ± 5.6 39.2 ± 5.5 < 0.001 25.8 ± 6.3 24.6 ± 6.1 29.7 ± 5.4 < 0.001 < 0.001
BFM, kg 20.8 ± 6.5 19.6 ± 5.2 28.0 ± 8.0 < .001a 20.0 ± 7.0 18.3 ± 6.1 25.2 ± 7.2 < .001a 0.022
 Upper limbs, kg 1.5 ± 0.6 4.4 ± 1.9 2.8 ± 0.9 < .001a 1.3 ± 0.7 2.2 ± 1.1 3.5 ± 1.6 < .001a < 0.001
 Lower limbs, kg 3.2 ± 0.9 6.1 ± 1.5 8.2 ± 2.2 < .001a 2.8 ± 0.9 5.3 ± 1.5 6.9 ± 1.8 < .001a < 0.001
 Trunk, kg 10.3 ± 3.3 9.7 ± 2.8 14.0 ± 3.8 < .001a 10.5 ± 3.8 9.6 ± 3.4 13.4 ± 3.8 < .001a .381a

SLM, kg 37.1 ± 4.4 36.6 ± 4.1 40.1 ± 4.9 < .001a 53.0 ± 6.8 52.1 ± 6.5 55.5 ± 7.0 < 0.001 < .001a

SMM, kg 21.3 ± 2.8 20.9 ± 2.6 23.2 ± 3.1 < .001a 31.6 ± 4.3 31.0 ± 4.2 33.2 ± 4.4 < 0.001 < .001a

FLMR 0.561 ± 0.150 0.537 ± 0.134 0.696 ± 0.161 < .001a 0.379 ± 0.130 0.354 ± 0.123 0.455 ± 0.120 < 0.001 < .001a

FSMMR 0.980 ± 0.260 0.940 ± 0.236 1.203 ± 0.276 < 0.001 0.637 ± 0.221 0.596 ± 0.212 0.763 ± 0.203 < 0.001 < .001a

LFTFR 0.459 ± 0.036 0.922 ± 0.071 0.892 ± 0.066 < 0.001 0.414 ± 0.411 0.848 ± 0.944 0.770 ± 0.064 0.395 .023a

Values are expressed as mean ± standard deviation.
HOMA-IR, homeostasis model assessment of insulin resistance, VFA, visceral fat area, PBF, percent body fat, BFM, body fat mass, SLM, soft 
lean mass, SMM, skeletal muscle mass, FLMR, fat to lean mass ratio, FSMMR, fat to skeletal muscle mass ratio, LFTFR, lean fat to trunk fat 
ratio.
aMann-Whitney U test was used instead as the P-value of Levene’s test for equality of variances was less than 0.05.
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Exploratory association rule mining

N = 283, 309, 143, 411 candidate rules were stratified for the 
group of (1) females and (2) males with high insulin sensitivity 
(normal HOMA-IR values), and (3) females and (4) males with 
low insulin sensitivity (high HOMA-IR values), respectively. 
The cut-off value of ≥ 2 was used to differentiate between nor-
mal and high HOMA-IR values. Supports ranged from 0.050 
to 0.10 and confidence ranged from 0.46 to 1 in the outcome 
association rules.

Breuer et al. (2014) used binary variables in their work by 
coding homozygous minor alleles and heterozygous major-
minor allele pairs as a single variable, and homozygous 
major alleles as another variable. Their resulting association 
rules consisted of sets of SNPs from different genes. How-
ever, in our study, we adopted a slightly different approach 
by coding homozygous minor alleles as one variable, and 
heterozygous minor-major allele pairs and homozygous 
major alleles into another variable, and dropped the latter 
variable when generating dummy variables. Therefore, in 
this study, we searched for the association patterns of homo-
zygous minor alleles of the circadian and metabolic sensing 
genes. This resulted in the rules consisting of SNPs from the 
same genes only. It may be due to the relatively small sample 
of genes examined in this study, and linkage disequilibrium 

Figure 2 summarizes the contents in Tables 1 and 3, and 4. 
Men and Women in the study population demonstrated both 
similar and different pathophysiological features of insulin 
resistance. The shared pathophysiological features of insulin 
resistance in men and women were increased levels of hsCRP 
and BFM of the trunk. The features that were found signifi-
cant only in insulin-resistant women were elevated levels of 
low-density lipoprotein cholesterol (LDL-C), GLR, NLR, and 
LFTFR. Meanwhile, BMI, blood pressure, fasting plasma insu-
lin and glucose, liver enzymes, triglyceride, neutrophils, lym-
phocytes, monocytes, RBC count, hemoglobin, and hematocrit 
were all found to be significantly elevated in the insulin-resis-
tant population and they were also significantly higher in men. 
VFA, PBF, FLMR, and FSMMR were significantly elevated in 
the insulin-resistant population and they were also significantly 
higher in women. Furthermore, correlations between levels of 
inflammatory markers, trunk fat mass, low-density lipoprotein 
cholesterol, liver enzymes, hemoglobin, and hematocrit in 
men and women are shown in Fig. S1. Correlations between 
HOMA-IR and clinical parameters in men and women in dif-
ferent age groups are shown in Table S13.

Fig. 2 Shared and unique features of insulin resistance between men 
and women. LDL-C, low-density lipoprotein cholesterol; GLR, gran-
ulocyte to lymphocyte ratio; NLR, neutrophil to lymphocyte ratio; 
LFTFR, lean fat to trunk fat ratio; hsCRP, high sensitivity C-reactive 
protein; BMI, body mass index; RBC, red blood cell; MCV, mean cor-

puscular volume; MCH, mean corpuscular hemoglobin, HDL-C, high-
density lipoprotein cholesterol; VFA, visceral fat area; PBF, percent 
body fat; FLMR, fat to lean mass ratio; FSMMR, fat to smooth muscle 
mass ratio
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with HOMA-IR ≥ 2 as well, although the results were not 
statistically significant.

Effect of MAC in the pathophysiology of insulin 
resistance

MAC of specific genes for each individual was calculated as 
described in the methods and in Fig. 1. Pearson’s correlation 
analysis was performed between HOMA-IR and different 
MAC categories constructed using circadian genes and core 
clock genes as previously mentioned in the methods section. 
We performed the correlation analysis on groups of different 
ages and sex. Log-normalized HOMA-IR values and MAC 
categories did not show any correlation in female groups in 
their 30s, 40s, and 50s. Meanwhile, in males, different age 
groups showed different patterns of correlation between 
HOMA-IR values and MAC categories. For males in their 50s, 
homozygous minor/minor genotype count of core clock genes 
with MAF < 0.3 had a weak positive correlation (r = .2) with 
HOMA-IR values at the significance level of 0.05. For males 
in their 30 and 40 s, however, homozygous minor/minor geno-
type count of core clock genes with MAF < 0.3 was negatively 
correlated (r=-.12 without statistical significance, r=-.13 with 
marginal significance, respectively). The results are displayed 
in Table 7.

as proposed by Zondervan and Cardon (2004). Since some 
of the association rules were shared among all groups while 
other rules only appeared in certain groups, we compiled 
all the rules from groups with different clinical features 
altogether. Among the rules, those that were shared but dis-
played different frequencies between the groups (examined 
by the Chi-square test with a significance level of 0.10) are 
shown in Table 5. The characteristics of the SNPs in Table 5 
are shown in Table 6. Considering the significance level of 
0.05, only one set of SNPs in the PER3 gene was significant. 
However, the statistical power of this study was low and 
this significance would vanish if we consider the Bonferroni 
correction. Detailed results are attached as supplementary 
data, Tables S1–12.

Homozygous minor allele genotype sets of SNPs 
rs10930781, rs2364720, rs10188107, and rs4243387 
(NFE2L2 gene) and rs17031578 and rs228669 (PER3 
gene) could be more frequently found among females with 
HOMA-IR ≥ 2 (p = .072 for homozygous minor genotypes 
in SNP clusters of NFE2L2 and p = .014 for that of PER3) 
although the estimated odds ratio for those variations were 
not high (1.8 for homozygous minor genotypes in SNP clus-
ters of NFE2L2 and 2.1 for that of PER3 in women). Those 
sets of SNPs could be more frequently found among males 

Table 5 Results for association rule mining on insulin sensitive and resistant men and women
Gene SNP set Insulin sensitive Insulin resistant

Women
(n = 816)

Men
(n = 336)

Women
(n = 144)

Men
(n = 108)

NFE2L2
(NRF2)

rs10930781, rs2364720, 
rs4243387

47(0.058) † 24(0.071) 14(0.097) † 11(0.10)

rs10188107, rs10930781, 
rs4243387

43(0.053) † 23(0.068) 13(0.090) † 11(0.10)

rs10188107, rs2364720, 
rs4243387

43(0.053) † 23(0.068) 13(0.090) † 11(0.10)

rs10188107, rs10930781, 
rs2364720

43(0.053) † 23(0.068) 13(0.090) † 11(0.10)

PER3 rs17031578, rs228669 42(0.051) * 21(0.063) 15(0.10) *‡ N/A(< 0.05) ‡
Data are expressed as n(support).
The difference within the same sex, significant at * p < .05, † p < .1; difference between different sex, significant at # p < .05, ‡ p < .1 according 
to the Chi-square test. NFE2L2, nuclear factor erythroid-derived 2-like 2, NRF2, nuclear factor erythroid 2-related factor 2, PER3, period3.

Table 6 Position, MAF, and Variant Type of SNPs rs10930781, rs2364720, rs10188107, rs4243387, rs17031578, and rs228669 in NFE2L2 and 
PER3 genes
Gene SNP Position Minor allele Major allele MAF Variant type
NFE2L2
(NRF2)

rs10930781 chr2:177249904 A G A = 0.2783 Intron variant
rs2364720 chr2:177240416 A G A = 0.284 Intron variant
rs10188107 chr2:177255584 T G A = 0.2549 Intron variant
rs4243387 chr2:177253037 C T A = 0.2777 Intron variant

PER3 rs17031578 chr1:7799131 C A C = 0.2438 Intron variant
rs228669 chr1:7809988 T C T = 0.2434 Synonymous variant

MAF, minor allele frequency; SNP, single nucleotide polymorphism; NFE2L2, nuclear factor erythroid-derived 2-like 2; NRF2, nuclear factor 
erythroid 2-related factor 2; PER3, period3.
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across the cell membrane. AQPs are generally expressed in adi-
pocytes and hepatocytes. In rodents, males have higher hepatic 
AQP9 protein, and thus greater hepatic glycerol permeability. 
Similar tendencies are observed in humans as men have higher 
hepatic glycerol permeability compared to women (Rodríguez 
et al. 2015). In this study, serum levels of liver enzymes were 
significantly higher in men and in subjects with HOMA-IR 
values above 2. In addition, there were stronger correlations 
between BFM of the trunk and ALT and AST in men compared 
to those in women. It could be possible that in insulin-resistant 
men, hepatic cell damage and the resulting oxidative stress and 
inflammation could be more prominent. In a community-based 
study by Cho et al., an increase in liver enzyme activities was 
accompanied by an increase in C-reactive protein in diabetic 
patients, and both of them were independent predictors for type 
2 diabetes (Cho et al. 2007). In men, the accumulation of fat 
in the liver, central obesity, and inflammation may be one of 
the common pathophysiologies of insulin resistance and type 
2 diabetes. These results may partially explain the higher inci-
dence of fatty liver disease in men as well (Rodríguez et al. 
2015).

On the other hand, the accumulation of body fat is related 
to chronic inflammatory conditions (Fernández-Sánchez et al. 
2011). In this study, women, on average, had a higher percent-
age of body fat and FLMR compared to those of men. Parame-
ters such as LDL-C, GLR, and NLR were elevated and LFTFR 
was decreased in insulin-resistant women but not in insulin-
resistant men. In addition, insulin-resistant women had a higher 
level of hsCRP in their plasma compared to insulin-resistant 
men. There were stronger correlations between hsCRP and 
NLR and BFM of the trunk in women compared to those in 
men (Fig. S1). From these results, it could be postulated that 

Discussion

Insulin, an anabolic peptide hormone, is produced, stored, and 
secreted by the pancreatic beta cells in response to a glycemic 
stimulus. In healthy adults, β-cell responsiveness and insulin 
sensitivity are both higher in the morning and lower in the eve-
ning as they are under circadian control (Saad et al. 2012). In 
addition, plasma glucose and hepatic gluconeogenesis are also 
regulated by circadian metabolic rhythm (Simcox et al. 2015). 
Insulin resistance is a complex phenomenon that can be caused 
by diverse pathways. Proteomics studies revealed that there are 
different pathological processes of insulin resistance in skel-
etal muscle, adipose tissue, and liver (Li et al. 2020). Men and 
women have different body composition and physiology of fat 
and muscle, and the difference may lead to sex differences in 
the pathophysiology of insulin resistance. In general, women 
rely more on lipid metabolism while men tend to prefer utiliz-
ing glucose in a situation where energy is needed. Exercising 
induces a greater degree of lipolysis in women compared to that 
in men. Meanwhile, the carbohydrate oxidation rate is higher in 
men compared to that in women (Hedrington and Davis 2015). 
It might be due to the fact that the skeletal muscle is a major 
site for glucose uptake and decomposition. Men on average, 
compared to women, have greater skeletal muscle mass. It is 
well known that greater skeletal muscle mass is associated with 
increased insulin sensitivity while sarcopenia is known to be 
related to insulin resistance (Moon 2013).

In addition to metabolic preferences, lipid metabolism itself 
displays sexual dimorphism. For instance, the aquaglyceropo-
rin (AQP) expression pattern is different in males and females. 
AQPs are channel protein that facilitates glycerol transportation 

Table 7 Correlations (r) between minor allele content counts, homozygous minor/minor genotype counts and HOMA-IR values in men and 
women in different age groups
Population Minor allele content (MAC) count Homozygous minor/minor genotype 

count
Circa-
dian 
genes, 
<.3a

Circa-
dian 
genes, 
<.1b

Core 
clock 
genes, 
<.3a

Core 
clock 
genes, 
<.1b

Circa-
dian 
genes, 
<.3a

Circa-
dian 
genes, 
<.1b

Core 
clock 
genes, 
<.3a

Core 
clock 
genes, 
<.1b

All population 0.017 0.029 0.022 0.019 − 0.010 0.038 − 0.054* − 0.007
Women (n = 960)
 30s (n = 242) 0.003 0.001 0.050 0.034 − 0.029 0.048 0.022 0.100
 40s (n = 447) 0.040 0.018 0.039 0.000 0.042 0.060 − 0.068 − 0.049
 50s (n = 271) 0.012 − 0.064 − 0.035 − 0.020 − 0.003 0.030 − 0.074 0.022
Men (n = 444)
 30s (n = 152) 0.055** 0.220 0.050 0.120 − 0.003 0.069 − 0.120 0.035
 40s (n = 191) − 0.008 0.079 − 0.001 0.041 − 0.081 − 0.024 − 0.130† − 0.079
 50s (n = 101) − 0.066 0.047 0.015 0.092 − 0.069 0.110 0.200* 0.075
Pearson’s correlation coefficient (r) was significant at † p < .1, * p < .05, ** p < .01. We applied log-normalization before analysis when appropri-
ate.
HOMA-IR, homeostasis model assessment of insulin resistance.
a<0.3: calculated from the SNPs with MAF below 0.3; b<0.1: calculated from the SNPs with MAF below 0.1.
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important role in iron metabolism. Iron can mediate glucose 
metabolism at multiple levels, and increased iron load can pro-
mote oxidative stress via the Fenton reaction (Kerins and Ooi 
2018). NRF2 can restrict inflammation and protect cells from 
oxidative damage by regulating the pentose phosphate path-
way (PPP). The PPP is also important for glutathione reduc-
tion, NADPH production, and nucleic acid biosynthesis (Early 
et al. 2018). Therefore, dysregulation of NRF2 may render cells 
vulnerable to oxidative stress and chronic inflammation. NRF2 
can be a potential target for the treatment of chronic inflamma-
tion, insulin resistance, and type 2 diabetes (David et al. 2017). 
It has been recently discovered that Nrf2 can restore leptin and 
insulin sensitivity by reducing the oxidative stress produced by 
the hypothalamus in mice (Yagishita et al. 2017).

Meanwhile, rs228669 SNP in the PER3 gene is a synony-
mous variant while rs17031578 is an intron variant. In Kovac 
et al.’s study, SNP rs228669 was significantly associated with 
increased levels of triglycerides (TG) and risk of pre-term birth 
(Kovac et al. 2019). In Zhang et al.’s study, rs228669 SNP was 
significantly associated with the overall survival of patients 
with hepatocellular carcinoma. SNP rs228669 is located in the 
exonic splicing enhancer (ESE) region. Therefore, when there 
is a variation, it is possible that the sequence of mRNA, and 
structures and functions of the product protein can be altered 
(Zhang et al. 2014). Although it is not directly related to those 
SNPs above, PER3 length polymorphism in its exon 18 has 
been reported in patients with type 2 diabetes (Karthikeyan 
et al. 2014). In addition, the transcript level of PER3 was 
reduced in type 2 diabetes patients (Ando et al. 2009). It has 
been recently discovered that adipogenesis is regulated by 
the circadian rhythm generated by Per3 in adipocyte precur-
sor cells (APCs), and deletion of the Per3 gene is related to 
increased adipogenesis in vivo in mice. In APCs in mice, the 
Per3-Bmal1 complex can regulate adipogenesis by modulating 
Klf15 (Kruppel-like factor 15) and Pparγ (peroxisome prolif-
erator-activated receptor γ). Meanwhile, in human cells, there 
are conflicting results. Some studies reported that human PER3 
repressed adipogenesis in human mesenchymal stem cells and 
downregulation of human PER3 immortalized bone marrow-
derived Scp-1 cells and patient adipose-derived stromal cells. 
On the other hand, PER3 enhanced adipogenesis in human adi-
pose tissue-derived stromal cells (Aggarwal et al. 2017; Wan 
et al. 2021). Further research may be necessary to clarify the 
relationship of the PER3 variations to the development of insu-
lin resistance in humans.

Recently, Jakubiak et al. (2021) discovered that obesity and 
insulin resistance had the strongest relationship with oxida-
tive stress among metabolic syndrome components such as 
“obesity and insulin resistance,” “dyslipidemia,” and “blood 
pressure.” It is worth noting that NRF2 and PER3 are related 
to the redox cycle and adipogenesis. According to Rey et al. 
(2016), inhibiting the PPP can alter circadian rhythm through 

women are more prone to systemic inflammation and oxidative 
stress due to higher adiposity.

Besides adiposity, elevated RBC count, hemoglobin lev-
els and hematocrit were all related to insulin resistance in this 
study population. Meanwhile, hsCRP was weakly correlated 
with Hb and Hct in women only. Many studies have suggested 
that insulin has an erythropoietic effect and insulin receptor is 
engaged in RBC proliferation. It was previously described by 
Choi et al. that increased erythropoiesis and chronic subclinical 
inflammation are related to insulin resistance in elderly Kore-
ans (Choi et al. 2003). Iron is a major source of hydroxyl radi-
cal (•OH) which can cause a wide range of biological damage. 
Insulin resistance is associated with iron overload as insulin 
can stimulate ferritin synthesis and facilitate iron uptake by 
cells. It has been recently discovered that iron overload can 
predict early death in a dose-dependent manner in the general 
population (Fernández-Real et al. 2015). Prolonged iron over-
load can lead to decreased lysosomal pools, autophagy failure, 
glucose intolerance and insulin resistance. Interventions such 
as an iron restriction diet, blood-letting, and chelation therapy 
could all increase insulin sensitivity (Jahng et al. 2019).

From the exploratory association rule mining, we could see 
that sets consisting of homozygous minor allele genotypes of 
SNPs rs10930781, rs2364720, rs10188107, and rs4243387 
(from NFE2L2 gene) and rs17031578 and rs228669 (from 
PER3 gene) could be more frequently found among females 
with HOMA-IR ≥ 2 although the estimated odds ratio for those 
variations (1.8 for homozygous minor genotypes in SNP clus-
ters of NFE2L2 and 2.1 for that of PER3; all odds ratios may 
be applied to women only) are not that high. SNPs rs10930781, 
rs2364720, rs10188107, and rs4243387 are all intron variants 
of the NFE2L2 gene. They have been reported in the studies on 
acute respiratory distress syndrome and adult-onset cognitive 
deficits induced by Phencyclidine as possible functional vari-
ants in the NFE2L2 gene (Acosta-Herrera et al. 2015; Shirai et 
al. 2015) NFE2L2 (Nuclear factor-erythroid 2 like, also known 
as NRF2) is a transcription factor that regulates redox metabo-
lism in cells. NFE2L2 activity increases during various stress-
ful situations, including inflammation and redox perturbation 
to direct metabolic reprogramming of the cells and protect cells 
from oxidative damage. NFE2L2 is necessary for antioxidant 
function and nicotinamide adenine dinucleotide phosphate 
(NADPH) production in cells and tissues (Hayes and Dinkova-
Kostova 2014; Uruno et al. 2015). In addition, NFE2L2 can 
regulate circadian rhythm and integrate redox metabolism 
into the tissue-specific circadian cycle by binding to enhancer 
regions of CRY2 and the stress response element (STRE) motif 
of PER3 and regulating their expression (Wible et al. 2018).

The cytoprotective and antioxidative activity of Kelch 
Like ECH Associated Protein 1 (KEAP1)-NRF2 system is 
important for glucose homeostasis as it can protect pancreatic 
beta cells from oxidative damage. Moreover, NRF2 plays an 
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From association rule mining results, we could find that 
homozygous minor allele contents in a circadian gene such as 
PER3 may predispose individuals to be more prone to insulin 
resistance although additional evidence from further research 
is necessary. In this study, homozygous minor alleles of PER3 
could be more frequently found among women with decreased 
insulin sensitivity (p = .014). It may be due to the fact that 
women tend to rely more on lipid metabolism and alterations 
in the PER3 gene may affect lipid metabolism. Meanwhile, 
homozygous minor alleles of NFE2L2 could also be more fre-
quently found among women with insulin resistance, although 
the result was not statistically significant (p = .072). The degree 
of systemic inflammation measured with hsCRP, GLR, and 
NLR was greater in insulin-resistant women compared to that 
in insulin-resistant men. Due to the higher level of systemic 
low-grade inflammation, women with decreased insulin sensi-
tivity may be more prone to oxidative stress. However, because 
the number of female subjects was greater than that of male 
subjects, females had greater statistical power in this study than 
males. As a result, the greater significance observed in female 
groups could be a result of the power difference as well.

To conclude, oxidative stress due to adiposity and iron 
overload is related to insulin resistance in early to middle 
adulthood. Homozygous minor alleles of genes such as 
PER3 and MAC of the circadian genes may predispose indi-
viduals to insulin resistance. However, the population in this 
research may be relatively too young and small to draw a 
meaningful conclusion. Therefore, further investigation of a 
larger population is necessary.

Limitations

There are several limitations to this study. First, since the num-
ber of subjects was not large, our data have to be interpreted 
with careful consideration. We did not apply multiple com-
parison corrections for gene analysis because we only applied 
planned comparisons on specific SNPs. The results may no 
longer be significant if we apply Bonferroni correction. In this 
study, we primarily used the PLINK program for data process-
ing and association rule mining for the main analysis. The 
reason for this is that the number of subjects was small and 
insufficient to perform GWAS. Rather than searching for SNPs 
associated with insulin resistance throughout the entire pool, 
the authors focused on the genes associated with the mecha-
nism of insulin resistance and then looked for association rules 
within the SNPs of those genes. Searching for SNP sets rather 
than individual SNPs will also result in a larger effect size. 
Duplication studies with a larger population may be necessary 
to further verify and supplement the present investigation. In 
addition, there were fewer men compared to women in this 
study. So, the power of statistical tests may differ between men 
and women. The age of the population of this study is 30 to 

mechanisms independent of the transcription-translation feed-
back loop and NRF2 is a key mediator linking the redox signals 
and circadian oscillations. 6-aminonicotinamide (6AN) treat-
ment, which inhibits PPP and NADPH production, could delay 
the circadian phase in a reversible manner. Circadian genes, 
including PER3, displayed phase delays in transcription pro-
files as well. 6AN treatment also induced NRF2 activation and 
subsequent PER3 response. NRF2 has been shown to bind to 
the STRE site and mediate Per3 expression (Wang et al. 2012).

Meanwhile, the roles of NRF2 and PER3 in human adi-
pogenesis still remain uncertain. Despite the fact that evi-
dence from the majority of studies suggests that oxidative 
stress can upregulate Nrf2, which in turn promotes adipo-
genesis. Nrf2 inhibition can reduce lipid accumulation in 
response to oxidative stress. However, conflicting evidence 
suggests that Nrf2 can inhibit adipogenesis through the aro-
matic receptor pathway. More research is needed to clarify 
the pathway and fully comprehend the relationship between 
circadian rhythm, oxidative stress, obesity, and insulin 
resistance.

For the MAC of the circadian genes, it was found that 
homozygous minor genotype count of the circadian genes 
with MAF below < 0.3 were significantly correlated with 
HOMA-IR only in men in their 50s, although the correlation 
was very modest (r = .200, p < .05). For women, MAC or 
homozygous minor genotype count of the circadian genes 
did not display any significant correlation with HOMA-IR. 
It was interesting to note that homozygous minor/minor 
genotype count for the core clock genes with MAF < 0.03 
was negatively correlated with HOMA-IR in men in their 
30s (r=-.12) and 40s (r=-.13). However, for men in their 
50s, the variables were positively correlated (r = .2). It might 
be due to aging-associated changes in gene expression. Fur-
ther investigation is required. In a previous study conducted 
on the British population, it was found that enrichment 
of minor alleles of SNPs was found in patients with type 
2 diabetes (Lei and Huang 2017). SNPs from genes other 
than circadian and metabolic sensing genes may need to be 
included in the model to enhance the predictive capability of 
MAC for insulin resistance and type 2 diabetes.

The goal of this study was to discover the minor alleles 
that might be related to the pathogenesis of insulin resistance. 
From this study, we have found that body composition and 
physiological differences in men and women may lead to 
sex differences in the pathophysiology of insulin resistance. 
Insulin-resistant women, compared to insulin-resistant men, 
had a greater degree of systemic inflammation and adipos-
ity. Meanwhile, insulin-resistant men had greater levels of 
liver enzymes, plasma insulin and glucose, and hematological 
parameters such as hematocrit compared to those in insulin-
resistant women.
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