Skip to main content
Log in

Phosphofructokinase 1 platelet isoform induces PD-L1 expression to promote glioblastoma immune evasion

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

Overexpression of PD-L1 is observed in many types of human cancer, including glioblastoma (GBM) and contributes to tumor immune evasion. In addition, GBM shows highly-activated aerobic glycolysis due to overexpression of phosphofructokinase 1 platelet isoform (PFKP), which the key enzyme in the glycolysis. However, it remains unclear whether the metabolic enzyme PFKP plays a role in the regulation of PD-L1 expression and GBM immune evasion.

Objective

We aimed to investigate the non-metabolic role of PFKP in PD-L1 expression-induced GBM immune evasion.

Methods

The mechanisms of PFKP-induced PD-L1 expression were studied by several experiments, including real-time PCR, immunoblot analysis, and ATP production. The coculture experiments using GBM cell and T cells were performed to evaluate the effect of PFKP on T cell activation. The clinical relationship between PFKP and PD-L1 was analyzed in The Cancer Genome Atlas (TCGA) database and in human GBM specimens.

Results

We showed that PFKP promotes EGFR activation-induced PD-L1 expression in human GBM cells. Importantly, we demonstrated that EGFR-phosphorylated PFKP Y64 plays an important role in AKT-mediated β-catenin transactivation and subsequent PD-L1 transcriptional expression, thereby enhancing the GBM immune evasion. In addition, based on our findings, the levels of PFKP Y64 phosphorylation are positively correlated with PD-L1 expression in human GBM specimens, highlighting the clinical significance of PFKP Y64 phosphorylation in the GBM immune evasion.

Conclusion

These findings provide new mechanistic insight into the regulation of PD-L1 expression by a non-metabolic function of PFKP on tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated during this study are included in this article.

References

  • Abiko K, Mandai M, Hamanishi J, Yoshioka Y, Matsumura N, Baba T, Yamaguchi K, Murakami R, Yamamoto A, Kharma B et al (2013) PD-L1 on tumor cells is induced in ascites and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction. Clin Cancer Res 19:1363–1374

    Article  CAS  PubMed  Google Scholar 

  • Boussiotis VA (2016) Molecular and biochemical aspects of the PD-1 checkpoint pathway. N Engl J Med 375:1767–1778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Callahan MK, Postow MA, Wolchok JD (2016) Targeting T cell co-receptors for cancer therapy. Immunity 44:1069–1078

    Article  CAS  PubMed  Google Scholar 

  • Cancer Genome Atlas Research N (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Article  Google Scholar 

  • Casey SC, Tong L, Li Y, Do R, Walz S, Fitzgerald KN, Gouw AM, Baylot V, Gutgemann I, Eilers M et al (2016) MYC regulates the antitumor immune response through CD47 and PD-L1. Science 352:227–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho MA, de Carne TS, Rana S, Zecchin D, Moore C, Molina-Arcas M, East P, Spencer-Dene B, Nye E, Barnouin K et al (2017) Oncogenic RAS signaling promotes tumor immunoresistance by stabilizing PD-L1 mRNA. Immunity 47(1083–1099):e1086

    Google Scholar 

  • Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K et al (2002) Tumor-associated B7–H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    Article  CAS  PubMed  Google Scholar 

  • Dorand RD, Nthale J, Myers JT, Barkauskas DS, Avril S, Chirieleison SM, Pareek TK, Abbott DW, Stearns DS, Letterio JJ et al (2016) Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity. Science 353:399–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du L, Lee JH, Jiang H, Wang C, Wang S, Zheng Z, Shao F, Xu D, Xia Y, Li J et al (2020) beta-Catenin induces transcriptional expression of PD-L1 to promote glioblastoma immune evasion. J Exp Med 217:13

    Article  Google Scholar 

  • Enzo E, Santinon G, Pocaterra A, Aragona M, Bresolin S, Forcato M, Grifoni D, Pession A, Zanconato F, Guzzo G et al (2015) Aerobic glycolysis tunes YAP/TAZ transcriptional activity. EMBO J 34:1349–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodenberger ML, Jenkins RB (2012) Genetics of adult glioma. Cancer Genet 205:613–621

    Article  CAS  PubMed  Google Scholar 

  • Hamanishi J, Mandai M, Iwasaki M, Okazaki T, Tanaka Y, Yamaguchi K, Higuchi T, Yagi H, Takakura K, Minato N et al (2007) Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A 104:3360–3365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, Sosman JA, McDermott DF, Powderly JD, Gettinger SN et al (2014) Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 515:563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwai Y, Ishida M, Tanaka Y, Okazaki T, Honjo T, Minato N (2002) Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc Natl Acad Sci U S A 99:12293–12297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeon SM, Lim JS, Kim HR, Lee JH (2021) PFK activation is essential for the odontogenic differentiation of human dental pulp stem cells. Biochem Biophys Res Commun 544:52–59

    Article  CAS  PubMed  Google Scholar 

  • Jeon SM, Lim JS, Park SH, Kim HJ, Kim HR, Lee JH (2022) Blockade of PD-L1/PD-1 signaling promotes osteo-/odontogenic differentiation through Ras activation. Int J Oral Sci 14:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Liu R, Li J, Zhang C, Wang Y, Cai Q, Qian X, Xia Y, Zheng Y, Piao Y et al (2017) Stabilization of phosphofructokinase 1 platelet isoform by AKT promotes tumorigenesis. Nat Commun 8:949

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Liu R, Li J, Wang Y, Tan L, Li XJ, Qian X, Zhang C, Xia Y, Xu D et al (2018) EGFR-phosphorylated platelet isoform of phosphofructokinase 1 promotes PI3K activation. Mol Cell 70(197–210):e197

    Article  Google Scholar 

  • Lee JH, Shao F, Ling J, Lu S, Liu R, Du L, Chung JW, Koh SS, Leem SH, Shao J et al (2020) Phosphofructokinase 1 platelet isoform promotes beta-catenin transactivation for tumor development. Front Oncol 10:211

    Article  PubMed  PubMed Central  Google Scholar 

  • Li CW, Lim SO, Xia W, Lee HH, Chan LC, Kuo CW, Khoo KH, Chang SS, Cha JH, Kim T et al (2016) Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nat Commun 7:12632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Egervari G, Wang Y, Berger SL, Lu Z (2018) Regulation of chromatin and gene expression by metabolic enzymes and metabolites. Nat Rev Mol Cell Biol 19:563–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y, Chang SS, Lin WC, Hsu JM, Hsu YH et al (2016) Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell 30:925–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu Z, Hunter T (2018) Metabolic kinases moonlighting as protein kinases. Trends Biochem Sci 43:301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mor I, Cheung EC, Vousden KH (2011) Control of glycolysis through regulation of PFK1: old friends and recent additions. Cold Spring Harb Symp Quant Biol 76:211–216

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Sanchez R, Rodriguez-Enriquez S, Marin-Hernandez A, Saavedra E (2007) Energy metabolism in tumor cells. FEBS J 274:1393–1418

    Article  CAS  PubMed  Google Scholar 

  • Nomi T, Sho M, Akahori T, Hamada K, Kubo A, Kanehiro H, Nakamura S, Enomoto K, Yagita H, Azuma M et al (2007) Clinical significance and therapeutic potential of the programmed death-1 ligand/programmed death-1 pathway in human pancreatic cancer. Clin Cancer Res 13:2151–2157

    Article  CAS  PubMed  Google Scholar 

  • Palsson-McDermott EM, Dyck L, Zaslona Z, Menon D, McGettrick AF, Mills KHG, O’Neill LA (2017) Pyruvate kinase M2 is required for the expression of the immune checkpoint PD-L1 in immune cells and tumors. Front Immunol 8:1300

    Article  PubMed  PubMed Central  Google Scholar 

  • Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC et al (2007) Loss of tumor suppressor PTEN function increases B7–H1 expression and immunoresistance in glioma. Nat Med 13:84–88

    Article  CAS  PubMed  Google Scholar 

  • Shang M, Yang H, Yang R, Chen T, Fu Y, Li Y, Fang X, Zhang K, Zhang J, Li H et al (2021) The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation. Nat Commun 12:1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao B, Li CW, Lim SO, Sun L, Lai YJ, Hou J, Liu C, Chang CW, Qiu Y, Hsu JM et al (2018) Deglycosylation of PD-L1 by 2-deoxyglucose reverses PARP inhibitor-induced immunosuppression in triple-negative breast cancer. Am J Cancer Res 8:1837–1846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:707–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sznol M, Chen L (2013) Antagonist antibodies to PD-1 and B7–H1 (PD-L1) in the treatment of advanced human cancer. Clin Cancer Res 19:1021–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson RH, Gillett MD, Cheville JC, Lohse CM, Dong H, Webster WS, Krejci KG, Lobo JR, Sengupta S, Chen L et al (2004) Costimulatory B7–H1 in renal cell carcinoma patients: Indicator of tumor aggressiveness and potential therapeutic target. Proc Natl Acad Sci U S A 101:17174–17179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wintterle S, Schreiner B, Mitsdoerffer M, Schneider D, Chen L, Meyermann R, Weller M, Wiendl H (2003) Expression of the B7-related molecule B7–H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res 63:7462–7467

    CAS  PubMed  Google Scholar 

  • Xu D, Shao F, Bian X, Meng Y, Liang T, Lu Z (2021) The evolving landscape of noncanonical functions of metabolic enzymes in cancer and other pathologies. Cell Metab 33:33–50

    Article  CAS  PubMed  Google Scholar 

  • Xue S, Hu M, Iyer V, Yu J (2017) Blocking the PD-1/PD-L1 pathway in glioma: a potential new treatment strategy. J Hematol Oncol 10:81

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Bu X, Wang H, Zhu Y, Geng Y, Nihira NT, Tan Y, Ci Y, Wu F, Dai X et al (2018) Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 553:91–95

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dong-A University research fund.

Author information

Authors and Affiliations

Authors

Contributions

SW, SHP, JSL, Y-YP, LD, and J-HL designed and performed experiments and analyzed data. SW, SHP, JSL, and J-HL wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Jong-Ho Lee.

Ethics declarations

Conflict of interest

All authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 166 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Park, S.H., Lim, J.S. et al. Phosphofructokinase 1 platelet isoform induces PD-L1 expression to promote glioblastoma immune evasion. Genes Genom 44, 1509–1517 (2022). https://doi.org/10.1007/s13258-022-01291-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-022-01291-4

Keywords

Navigation