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A Hawkes point process describes self-exciting behaviour where event arrivals are
triggered by historic events. These models are increasingly becoming a popular choice
in analysing event-type data. Like all other inhomogeneous Poisson point processes,
the waiting time between events in a Hawkes process is derived from an exponential
distribution with mean one. However, as with many ecological and environmental data,
this is an unrealistic assumption.We, therefore, extend and generalise theHawkes process
to account for potential under- or overdispersion in the waiting times between events by
assuming the Weibull distribution as the foundation of the waiting times. We apply this
model to the acoustic cue production times of sperm whales and show that our Weibull–
Hawkes model better captures the inherent underdispersion in the interarrival times of
echolocation clicks emitted by these whales.

Key Words: Overdispersion; Point patterns; Self-excitement; Underdispersion; Sperm
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1. INTRODUCTION

A temporal point pattern comprises a series of observed event times over some time
period (Daley and Vere-Jones 2003). Such events often occur in clusters, and through using
point process methodology, we are able to infer the inherent pattern in their sequences
(Diggle 2013). A temporal Hawkes process (Hawkes 1971a,b) is a type of self-exciting
model where the occurrence of one event triggers events in the near future. This means that
each event immediately increases the rate at which future events occur; the influence of the
event diminishes over time.

The self-exciting behaviour of theHawkes processmakes it a particularly usefulmodel for
phenomena where events tend to cluster in time. Applications are wide-ranging and to date
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include seismology (Ogata 1988), finance (Bacry et al. 2015; Hawkes 2018), criminology
(Zhuang and Mateu 2019; Park et al. 2021), neuroscience (Reynaud-Bouret et al. 2013) and
social media (Zhao et al. 2015). The common theme amongst these applications is that the
occurrence of an event (e.g. an earthquake, a large financial trade, or a Tweet) is known to
trigger future events (i.e. an aftershock, further transactions, retweets). By using a Hawkes
model, the potential causal relationship between events may be inferred. This is because the
self-exciting component captures the heightened risk or rate of occurrences immediately
following an event.

The phenomenon of event occurrences inducing others is also prevalent throughout envi-
ronmental, biological and agricultural sciences. Modelling these data as a Hawkes process
aids in detecting the clustering and the potentially triggering nature of these events. Accord-
ingly, the Hawkes process has recently begun to see use in these fields, including modelling
the spread of invasive species (Balderama et al. 2012; Gupta et al. 2018), forest fires (Tonini
et al. 2017; Holbrook et al. 2022), and fisheries stocks (Nakagawa et al. 2019).

The events of a classic Hawkes process are distributed according to an inhomogeneous
Poisson process according to a rate that consists of some baseline intensity and a term that
accounts for the self-excitement (Hawkes 1971a). However, many natural and ecological
events do not occur according to the typically assumed inhomogeneous Poisson process, but
are either underdispersed (less variance in the times between events) or overdispersed. For
example, the spatial locations of termite mounds (Pringle et al. 2010), pine trees (Kenkel
1988) and pollinated plants (Herrera 2021) are all more regularly spread out than a Poisson
point pattern, and the counts of offspring (Brooks et al. 2019) often have less variance than a
Poisson distribution. Conversely, overdispersion is common in much ecological count data
such as counts of migrating birds (Lehikoinen et al. 2010) and plant species richness (Kleijn
et al. 2008).

For an inhomogeneous temporal Poisson process, the compensator at a given point in time
point is the expected number of events that have occurred since time zero, see Sect. 2.1. The
differences in compensator values between consecutive events are exponentially distributed.
Previous work by Berman (1981) allowed the consecutive compensator differences of a
temporal point process to instead follow a gamma distribution. There is also a long tradition
of using the Weibull distribution to model inter-event times in renewal processes (Lomnicki
1966; Yannaros 1994; Ong et al. 2015). More generally, Lindqvist et al. (2003) developed
their trend renewal process, which allows an inhomogeneous temporal point process to use
any distribution for the compensator differences whose support is non-negative in place of
the exponential. The Weibull distribution has been a common choice as the compensator
difference distribution in trend renewal processes, being applied in diverse applications
such as medicine (Pietzner and Wienke 2012), volcanic eruptions (Bebbington 2010), and
battery reliability (Wang et al. 2019). These previous models, however, do not describe the
potentially self-exciting nature of events, as the inhomogeneous “trend function” is not a
Hawkes process.

The RHawkes model developed by Wheatley et al. (2016) allows the compensator dif-
ferences for the baseline, i.e. non-self-excited events only, to come from any distribution
with non-negative support. The Weibull–Hawkes process developed by Zhang et al. (2020)
again only relaxes the assumption for the baseline events; they define the baseline rate as a
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power-law function. In both cases, the remaining (self-excited) events are assumed to adhere
to the Poisson assumption regarding compensator differences mentioned above.

The different assumptions about baseline and non-baseline events are computationally
expensive and suppose some fundamental difference between these two classes of events.
This, alongside the exponential waiting time assumption itself, is unrealistic for many situa-
tions. This is because (1) in many examples there is no way to reliably distinguish a baseline
from a non-baseline event, even when applyingmethods such as stochastic declustering, and
(2) real-world events are often either overdispersed or underdispersed compared to what a
inhomogeneous Poisson assumes.

In this paper, we extend the traditional Hawkes process to account for under- or overdis-
persion in thewaiting times between events bymodelling all (both baseline andnon-baseline)
compensator differences using the Weibull distribution, and as an example we fit this model
to the acoustic cue production times of sperm whales (Physeter macrocephalus). In Sect. 2
we present our Weibull–Hawkes process and demonstrate, via simulation, the model’s abil-
ity to capture both under- and overdispersion. In Sect. 3 we introduce the acoustic cue data
and show that the extended Hawkes model captures the inherent underdispersion in the
interarrival times of echolocation clicks. In Sect. 4 we discuss how this extension leads to
a more realistic and flexible self-exciting model better suited to the typical data structures
seen throughout the environmental, biological, and agricultural sciences.

2. MATERIALS AND METHODS

2.1. A SELF-EXCITING TEMPORAL POINT PROCESS

A Hawkes process assumes that each event immediately increases the rate at which
future events may occur, i.e. the occurrence of an event excites others. This self-excitement
effect diminishes over time and the rate of events decays to some long-term baseline rate
if no further events are observed. For current time t the conditional rate of occurrence is
given by an intensity function, λ(t; ·), which comprises a baseline intensity and a self-
excitement term. The self-exciting term typically consists of a summation over all historic
events (τi < t where i = 1, ..., N ) that is weighted by some specified decay kernel. The
conditional intensity of the Hawkes process proposed by Hawkes (1971a) for current time
t is given by

λ(t; γ, ·) = μ(t; ·) + γ
∑

i :τi<t

ν(t − τi ). (1)

Here, μ(t; ·) > 0 is some temporally varying background (baseline) rate and ν(t − τi )

is the historic dependence kernel (which integrates to one). The parameter γ , termed the
branching ratio, gives the expected number of events triggered by any single event. The
baseline events are customarily called immigrants and the triggered events children, though
in practice it may not be possible to distinguish between the two. Where applicable, this is
the terminology we will use during the remainder of the manuscript.
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The compensator of a temporal point process, �(t̃), evaluated at some time t̃ gives the
expected number of events in the interval [0, t̃]. For any inhomogeneous Poisson process
such as a Hawkes process, the compensator is defined as

�(t̃) =
∫ t̃

0
λ(t) dt . (2)

The random time change theorem (Daley and Vere-Jones 2003) states that if the set
of events [τ1, τ2, ..., τN ] is a realisation of an inhomogeneous Poisson process, then
[�(τ1),�(τ2), ..., �(τN )] is a realisation of a homogeneous Poisson process with unit rate.
We denote the compensator differences as δ�i = �(τi ) − �(τi−1) for i = 2, ..., N and
δ�1 = �(τ1). Under the assumptions above δ�i ∼ Exp(1). This is an unrealistic and
restrictive assumption for many real-world data, which rarely occur in an independent Pois-
son manner.

As was discussed in Sect. 1, the exponential compensator assumption for inhomoge-
neous temporal Poisson processes has previously been relaxed by using Gamma processes
(Berman 1981), and more generally, any distribution with non-negative support and unit
mean (Lindqvist et al. 2003). For the self-exciting case, Wheatley et al. (2016) relaxes the
exponential waiting time assumption for the immigrant points only. That paper developed
a renewal Hawkes model where for the immigrant points δ�i ∼ Weibull (ρ, k) with scale
parameter ρ and shape parameter k, see Sect. 2.2. However, the children remain restricted by
the assumption of exponential compensator differences. In Sect. 2.2 we extend the Hawkes
model to account for under- and overdispersion in the waiting times of all events, both
immigrants and children, using the Weibull distribution.

2.2. AN INHOMOGENEOUS WEIBULL–HAWKES MODEL

In Sect. 2.2.1 we discuss theWeibull distribution and how it can be used to create a family
of distributions with mean one. In Sect. 2.2.2 we review the classic Hawkes process with an
exponentially decaying kernel, and in Sect. 2.2.3 we present our Weibull–Hawkes model.

2.2.1. The Weibull Distribution

If T ∼ Weibull (ρ, k) (for t ≥ 0), then

f (t; ρ, k) =
(
k

ρ

) (
t

ρ

)k−1

exp

(
− t

ρ

)k

(3)

where ρ > 0 is the scale parameter and k > 0 is a shape parameter that control the
spread (stretching/shrinking) and peakedness (peak roundness) of the distribution, respec-
tively. The mean is given by ρ	(1 + 1/k) where 	(·) is the Gamma function. The haz-
ard (failure) rate function follows a power-law relationship with time and is given by

h(t; ρ, k) =
(
k
ρ

) (
t
ρ

)k−1
. Note that when k = 1, the hazard rate is constant (ρ−1).
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Setting g(k) = 	(1+ 1/k) and ρ = 1
g(k) , the Weibull probability density function given

by Eq. (3) becomes

f (t; k) = (k g(k)) (t g(k))k−1 exp (−t g(k))k . (4)

Here, k is a dispersion parameter; when k = 1 the distribution reduces to an exponential,
when k > 1 the variance is smaller than that of an exponential, and when k < 1 it is larger.
Thus, the parameter k allows us to model both overdispersion (k < 1) and underdispersion
(k > 1). By setting ρ appropriately, we have ensured that the mean is always one and
thus eliminate the need for the second parameter. For δ�i ∼ Weibull(1/g(k), k), the log-
likelihood, l (g(k), k | δ�), is given by

l (g(k), k | δ�) = N
[
log(k) + k log(g(k))

]

+∑N
i=1(k − 1) log(δ�i ) − (g(k)δ�i )

k (5)

where N is the number of events.

2.2.2. The Hawkes Process

The intensity of a classicHawkes process detailed inHawkes (1971a) with an exponential
decay kernel is

λ(t;α, β, ·) = μ(t; ·) + α
∑

i :τi<t

exp(−β(t − τi )). (6)

Here, α is the immediate increase in intensity following an event, and β is the exponential
decay of the intensity over time. The branching ratio [γ in Eq. (1)] isα/β. The log-likelihood
for the version of the Hawkes process presented in Eq. (6) is given as follows:

lH (α, β, · | τ ) =
N∑

i=1

log (λ(τi ;α, β, ·)) −
T∫

0

λ (t;α, β, ·) dt . (7)

As noted by Ozaki (1979), this log-likelihood is not always convex and therefore a
maximisation algorithm should be run from multiple starting points to ensure that the true
maximum has been found.

2.2.3. Proposed Weibull–Hawkes Model

Weconsider twoextension to theHawkesprocess, both relaxing the restrictive assumption
of an exponential compensator difference distribution. The extensionswe propose bothmake
use of theWeibull distribution and allow us to capture/model both under- and overdispersion
in waiting times to varying degrees of flexibility. The first model we propose lets δ�i ∼
Weibull(1/g(k), k) as in Sect. 2.2.1; that is, the compensator differences follow the Weibull
distribution given by Eq. (4), while having an event rate λ(t; ·) which is the same as the
Hawkes process [see Eq. (6)].



A. B. M. Van Helsdingen et al.

The second model we propose is an extension of the one described above where now
we use a mixture of two Weibull distributions to model the compensator differences. We
denote the first Weibull distribution as having dispersion parameter k1 and mixture weight
p. The second Weibull has dispersion parameter k2 and by necessity mixture weight 1− p.
We constrain p to be greater than a half to ensure the model is identifiable. We define the
contribution of the first Weibull to the mean as m1 = p g (k1) ρ1, where g(·) is defined as
in Sect. 2.2.1. Given that the mean of the mixture must be one, we can compute the scale
parameter of the first Weibull as ρ1 = m1/ (p g(k1)) and that of the second Weibull as
ρ2 = (1 − m1)/ ((1 − p) g(k2)). Thus the parameter space is defined by 0 < m1 < 1,
0.5 < p < 1, k1, k2 > 0.

The likelihood of the first Weibull–Hawkes model is the probability of observing no
events between time 0 and τ1, τ1 and τ2... τN−1 and τN multiplied by the conditional
intensities at τ (Daley and Vere-Jones 2003; Lindqvist et al. 2003). The probability that
there are zero events in the interval [τi−1, τi ] is

1 − F(�(τi ;α, β, ·) − �(τi−1;α, β, ·); 1/g(k), k)

where F is the c.d.f. of theWeibull distribution given in Eq. (3). Following Eq.4 of Lindqvist
et al. (2003), the conditional intensity at the time τi can be written as

λC I (τi ;α, β, · | Ht ) = λ(τi ;α, β, ·) h(�(τi ;α, β, ·) − �(τi−1;α, β, ·); 1/g(k), k) (8)

where h(t; 1/g(k), k) is the hazard function of the previously mentioned Weibull distribu-
tion. Thus, we can write

LWH (g(k), k, α, β, · | τ ) =
N∏
i=1

[1 − F(�(τi ;α, β, ·) − �(τi−1;α, β, ·); 1/g(k), k)]
N∏
i=1

λ(τi ;α, β, ·) h[�(τi ;α, β, ·) − �(τi−1;α, β, ·); 1/g(k), k]
(9)

and by noting the definition of hazard h(t) = f (t)/(1 − F(t)), this simplifies to

LWH (g(k), k, α, β, · | τ ) = ∏N
i=1 λ(τi ;α, β, ·) f (�(τi ;α, β, ·) (10)

−�(τi−1;α, β, ·); 1/g(k), k)

and so we can write the log-likelihood as

lW H (g(k), k, α, β, · | τ , δ�) = l(g(k), k | δ�) +
N∑

i=1

log(λ(τi ;α, β, ·)) (11)

where l(g(k), k | δ�) is defined by Eq. (5) and λ(t;α, β, ·) by Eq. (6).
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Alternatively, if one were to use the conditional intensity given by Eq. (8) and substitute
this into the likelihood given by Eq. (7), one obtains Eq. (5) in Lindqvist et al. (2003). This
equation can be rearranged to give Eq. (6) of the same article, whose first term is equivalent
to Eq. (10). We do not need the second term because we have assumed throughout that the
process stops at the time of the last event τN , which means the second term is always one.

The derivation of the likelihood for our second, mixture model follows the same line of
reasoning, except that the distribution referred to by its c.d.f F(·), p.d.f. f (·) and hazard
h(·) is now the mixture model parameterised above. Thus, in the final likelihood given by
Eq.11,we substitute lM (g(k1), g(k2), k1, k2, p,m1) for l(g(k), k | δ�). Using the definition
of f (t; p, k) in Eq. (3) this can be written as

lM (g(k1), g(k2), k1, k2, p,m1, α, β, · | δ�)

=
N∑

i=1

log[p f (δ�i ,m1/(p g(k1)), k1)

+(1 − p) f (δ�i , (1 − m1)/((1 − p)g(k2)), k2)] (12)

Our model is self-exciting and accounts for either under- or overdispersion in waiting
times. The self-exciting component captures the heightened instantaneous average rate of
occurrences immediately following an event, and the Weibull interarrival times give the
model a huge degree of flexibility over a standard Hawkes process.

Figure1 shows three realisations of this Weibull–Hawkes process, all with α = 0.5,
β = 1, and μ = 1. The pattern shown in panel A is simulated with k = 1 (i.e. with the
typically exponentially distributed waiting times of a Hawkes process); panel B shows the
start of simulated point processes with k = 5 (underdispersed) and k = 0.5 (overdispersed)
while panels C and D show the histograms of compensator differences of the point patterns
depicted on panel B. An exponential is a poor fit for both, highlighting the flexibility of our
model.

2.3. SIMULATION STUDY

To assess the model performance, we carried out two simulation studies. The two simu-
lation studies use a common baseline intensity μ(t) = μ + B s(t) −C sin( t

P ). We defined
s(t) as 1 when Pπ < t < 2Pπ , 3Pπ < t < 4Pπ , 5Pπ < t < 6Pπ ... and 0 at all other
times. We included a constraint 0 < C < μ. Thus, the baseline rate consists of a constant
μ, a sinusoidal component C sin( t

P ) and a square wave B s(t). The peaks and troughs
of the sinusoidal curve and square wave align. For our simulation study we set μ = 0.5,
B = 1, C = 0.25, and P = 10. As will be seen in Sect. 3.2, this choice of baseline function
has similarities with the function we use in the applied example. The self-excitement had
parameter values γ = 0.25 and 0.75 and β = 0.01 and 0.1.

For the first study, we simulated from the first proposed Weibull–Hawkes model with
values of k = 0.5, 2/3, 1.5 and 2 to test under- (k > 1) and overdispersion (k < 1) relative
to the exponential assumption (k = 1). The second simulation study tested the proposed
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Figure 1. Top: portion of a sequence of times (blue) fromaHawkes processwithλ(t) = 1+0.5
∑

i :τi<t exp(−(t−
τi )) and the corresponding intensity (black line). Middle: sequence of times from our Weibull–Hawkes process
(see Sect. 2.2.3) with the same formula for λ(t), but with dispersion parameters k = 5 (orange) and k = 0.5 (green).
Bottom: simulated distributions of the compensator differences of both processes. The exponential distribution
(blue) is clearly inconsistent with both. See Appendix C for the simulation method (Color figure online).

mixture Weibull–Hawkes model. The same values for the parameters of μ(t), α, β and T
were used. We set k1 = 1.5, 2 and 3, k2 = 0.5 and 0.75, p = 0.65 and 0.85. In each
simulation, p = m1.

For every set of parameters, we simulated four different time periods: T = 400, 1000,
2500 and 6250. For the first study, there are 64 combinations of parameters and time periods
and for each set we generated 250 realisations of our Weibull–Hawkes process for a total
of 16,000 simulations. For the second study, we simulated 100 realisations for each of the
192 parameter and time period sets for a total of 19,200 simulations.

Details of the simulation algorithm can be found in Appendix C. Model fitting was
carried out using the R package TMB (Kristensen et al. 2016), which allows a user to write
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Table 1. Median biases (%) for each parameter across the four time periods used in the two simulation studies

Model Weibull Weibull mixture
Parameter 400 1000 2500 6250 400 1000 2500 6250

μ 5.91 1.82 −3.63 −6.22 14.3 20.0 25.8 28.6
B −3.03 −3.39 −3.55 −3.37 −12.0 −10.0 −9.9 −10.0
C 7.07 11.4 13.2 14.2 14.6 15.9 13.0 12.3
α
β 1.25 1.71 1.95 3.18 −3.64 −1.07 −0.735 −1.15

β 1.04 5.63 4.91 3.31 73.1 53.5 52.1 53.3
k1 0.512 0.182 0.0392 0.0241 −2.69 −1.77 −1.55 −1.16
k2 – – – – 2.38 0.605 −0.141 −0.0683
p – – – – 3.42 2.89 2.57 2.48
m1 – – – – 3.06 2.83 2.98 2.80

The second row gives the study duration T

a log-likelihood function in C++. Due to the non-convex nature of the likelihood (Ozaki
1979), we maximised the log-likelihood given by Eq. (11) from 20 random starting points.
We used the New Zealand eScience Infrastructure (NeSI) server (https://www.nesi.org.nz/)
to perform the simulations and fitting, which required 482h of computing time. The results
of this study are given in Sect. 2.4 (Table1).

2.4. SIMULATION STUDY RESULTS

Our simulation studies showed that the bias in the estimates of the parameters of the
compensator difference distribution: k1 (or k), k2, p and m1 are low and decrease with
sample size. The parameters for the baseline rate and β show greater bias, especially in
the second mixture model simulation study. The model has some difficulty determining
how much of the baseline intensity is comprised of the constant μ and how much is time-
varying (B and C). Some biases do not decrease with sample size; perhaps the period of
the pulse wave (B s(t)) and sinusoidal wave

(
C sin

( t
P

))
were too short for these waves

to be distinguishable. However, on the whole, biases are reasonable and the results give
us confidence in the simulation methodology, the likelihood that we derived in Sect. 2.2.3
and that the model can be fitted in a reasonable amount of time. The complete results
of our two simulation studies can be found in the GitHub repository https://github.com/
ABMvanHelsdingen/WHP. Selected results of the simulation study are plotted in Appendix
D, and complete results of our two simulation studies can be found in the GitHub repository
https://github.com/ABMvanHelsdingen/WHP.

3. APPLIED EXAMPLE

3.1. ACOUSTIC CUE RATE DATA

Acoustic cues are emitted by cetaceans for a variety of reasons, including hunting by
echolocation (Johnson et al. 2004), communication (Deecke et al. 2005), and mating (Smith
et al. 2008). Acoustic cues of cetaceans can be passively recorded by either hydrophones

https://www.nesi.org.nz/
https://github.com/ABMvanHelsdingen/WHP
https://github.com/ABMvanHelsdingen/WHP
https://github.com/ABMvanHelsdingen/WHP
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Table 2. Summary statistics for the whale cues, depths, and dive cycles

Quantity Value

Number of clicks 50,031
Tagging time (s) 39,394
Mean interclick interval (s) 0.787
Maximum interclick interval (s) 1010
Mean depth (m) 457
Maximum depth (m) 880
Deep dives 13

(Zimmer et al. 2008) or by tagging individual whales (Madsen et al. 2002). One example
of the latter is a digital acoustic recording tag (DTAG), which are motion and acoustic
recording tags that are attached to cetaceans via suction cups (Johnson and Tylack 2003).
The tag records sound and also has sensors that measure the dive depth and the animal’s
orientation. The sound data are then processed (Shamir et al. 2014), so that sounds emitted
by the animal can be distinguished from background noise. The acoustic properties of the
cues themselves such as frequency harmonics and power spectra can be used to infer specific
behaviours (Mohl et al. 2003; Au et al. 2006) of cetaceans. In addition, the rate of acoustic
cues can be used to infer the impact of anthropogenic sounds on behaviour (Tyack et al.
2011; Hawkins and Popper 2016).

A resourceful way of using these data is to estimate animal abundance. To do this,
we need to estimate the average cue production rate (Marques et al. 2013) and cues are
often considered as having a constant long-term average rate that averages out any other
factors such as depth. In previous studies analysing the relationships between cue rates and
covariates, the cue data have been binned or aggregated across dive cycles (Stimpert et al.
2015; Warren et al. 2017). This aggregation leads to a huge loss of information. Therefore,
we propose treating the acoustic cue times as a temporal point process directly, considering
the timestamps of cues as a realisation of some point process. In addition, we propose the use
of a self-exciting model to better capture the inherent clustering and potentially contagious
nature of echolocation cues.

Figure2 shows the temporal point pattern of acoustic cues from a single sperm whale
alongside its recorded depth (m). A summary of the data over the entire time period consid-
ered (approximately 11h) is given in Table2. These data were recorded using DTAGs and
are part of the ACCURATE project (https://accurate.st-andrews.ac.uk/), which has collated
data from over 100 sperm whales. To illustrate our proposed methods, we consider an indi-
vidual, tag code sw03_253b, tagged in the Mediterranean in 2003. Figure4 in Appendix A
shows the distribution of the interclick intervals.

The number of acoustic cues emitted by sperm whales is known to increase with dive
depth (Stimpert et al. 2015; Warren et al. 2017). Furthermore, there is evidence to suggest
that cue rate changes alongside the whale’s rate and direction of descent (Watwood et al.
2006). We found that acoustic cues were more frequent during descents and when the whale
was at the bottom of each dive, see Fig. 6 in Appendix B. Acoustic cues occurred at a lower

https://accurate.st-andrews.ac.uk/
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Figure 2. Top: depth profile of the whale. Middle: rug plot showing cue times with inset showing individual cue
times in a 50s interval. Bottom: histogram of cue times (each bin is about 160s long). Note that barely any cues
are emitted when the whale is on the surface .

frequency during ascents and virtually never when the whale was at the surface, as the lower
panel of Fig. 2 clearly shows. Cues are clearly clustered, see Fig. 6; this is most obvious
during the ascent where there were several bursts followed by longer periods of silence.

3.2. MODELLING ACOUSTIC CUE RATES

Letting d(t) be the dive depth in kilometres at time t (i.e. d(t) > 0 when the whale is
underwater, available at a frequency of 1Hz), r(t) denotes the rate of descent calculated
using numerical differentiation (i.e. r(t) > 0 when descending), and s(t) = 0 if d(t) > 0.02
(i.e. > 20 metres below the surface), s(t) = 1; otherwise, we set μ(t; ·) in Eq. (6) to be

μ(t; η) = exp(η0 + η1s(t) + η2d(t) + η3r(t)). (13)

Here each η j ( j = 0, ..., 3) is a coefficient of the inhomogeneous baseline rate of cues. As in
Eq. (6) the parameter α is the instantaneous increase in intensity when an event occurs and β

is the decay over time of this self-exciting effect. The branching ratio of events is now α/β,
and we have β ≥ α so that α/β ≤ 1. We also set a constraint η1 > 0 so that the baseline
rate when the whale is at the surface (s(t) = 0) is less than when it is underwater (s(t) = 1).
Similar to other studies, we excluded the first complete dive from the point pattern; this
is to avoid possible short-term behaviour changes induced by the tagging process (Barlow
et al. 2013; Hildebrand et al. 2015). Estimated parameter values for this model are given in
Sect. 3.3.
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Table 3. Parameter priors, posterior means and 95% credible intervals for the baseline rate parameters in Eq. (13),
the self-excitement parameters from Eq. (6) and the Weibull parameters of Eq. (11) and Eq. (12)

Model Weibull Weibull mixture
Parameter Prior Posterior mean 95% CI Posterior mean 95% CI

η0 U(−30,0) −13.2 (−16.2, −9.8) −13.01 (−14.8,−9.63)
η1 U(0,100) 9.16 (5.79, 12.2) 8.74 (5.33,10.4)
η2 U(−20,20) 2.72 (2.48, 2.98) 0.0254 (−0.125,0.172)
η3 U(−1000,1000) 620 (576, 663) 148 (114,180)
α
β U(0,1) 0.923 (0.916, 0.930) 0.990 (0.987,0.992)

β U(10−20,10) 1.08 (1.06, 1.10) 4.17 (4.13,4.21)
k1 U(0.01,100) 1.53 (1.52, 1.54) 41.9 (41.1,42.7)
k2 U(0.01,100) – – 1.43 (1.40,1.45)
p U(0.5,1) – – 0.892 (0.888,0.895)
m1 U(0,1) – – 0.880 (0.876,0.884)

3.3. MODELLING RESULTS

We fitted our model to the whale cue data in both frequentist and Bayesian frameworks.
For the frequentist results, see AppendixE. To perform model fitting in a Bayesian frame-
work, we used the R package NIMBLE (de Valpine et al. 2017) to run Markov chain Monte
Carlo (MCMC) chains. We fitted both the single Weibull and Weibull mixture model in
NIMBLE for 50,000 MCMC iterations. We set a burn-in of 10,000 iterations and thinned
the chain so that every 4th iteration was retained; thus, we finished with 10,000 samples.
This required 58min of compute time on the NeSI server.

The estimates for both models and the priors we used for Bayesian inference are shown
in Table3. The estimates for η are broadly concordant. At the surface, the cue rate (exp(η0))
is close to zero and jumps up when the whale dives below the surface. Estimates of the effect
of being underwater (η1), depth (η2) and rate of descent (η3) differ, but are all of the same
sign, though the mixture model estimate for η2 is indistinguishable from zero.

As is evident in Fig. 3, modelling the compensator differences as a single Weibull distri-
bution results in a poor fit, albeit still much better than an exponential. This can be explained
by there being a few influential outliers (the maximum value of ˆδ�i is 46.71), which neces-
sitate that the value of k be smaller (i.e. a higher variance) than what would be a good fit
around the centre of the distribution. With k̂ = 1.53, we expect ∼ 1.8× 10−8 compensator
differences over 10, but we observe 156 such values. When two Weibull distributions are
used, the fit is much improved, with about 90% of the mixture being very sharply peaked
(k1 = 41.9) and the remaining weight being more dispersed so as to capture the tail. The
tail is now much less extreme, with the maximum value of ˆδ�i a more reasonable 16.12.
However this model does make two markedly different conclusions. Firstly, the estimate
of η2 is now indistinguishable from zero, i.e. holding the whale’s vertical speed constant,
depth may have no direct impact on cue production rate so as long as the whale is at least
20ms deep. The second is that α

β
is now much closer to one. In the first model, the expected

number of descendants of each cue, β̂/(β̂ − α̂), is 12.0, whereas in the second model it is
around 100. This insight from the secondmodel would imply that only about 1% of the cues
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Figure 3. Compensator differences (δ�i ) of the whales cues for both the Weibull and Weibull-Mixture models.
The red line is the density of the fitted compensator difference distributions. For the model using a single Weibull
distribution, a very long tail, with the maximum value being 46.71, necessitates a lower value of k̂ than what would
be the best fit around the centre of the distribution (Color figure online).

are baseline, with the rest as the result of self-excitement. It is worth noting, however, that
these models do not perform stochastic declustering and therefore we cannot make direct
inferences about which cues are baseline and which cues triggered/caused the others.

4. DISCUSSION

Hawkes processes are typically the model of choice for self-exciting event-type data.
The trend renewal process introduced by Lindqvist et al. (2003) is a temporal point process
that can assume any positive distribution for the waiting times of events; however, there is
generally no self-exciting component to the event arrivals. Our proposed Weibull–Hawkes
models incorporate both self-excitement and under- or overdispersion in the waiting times,
combining these two insights into one integrated framework that adds flexibility to the
Hawkes process by applying a specific case of the trend renewal process.

Our simulation studies confirm our model is correctly formulated and that parameter
recovery by MLE is feasible and works well. We simulated both under- and overdispersion,
different rates of decay of the self-excitement and different branching ratios and got broadly
the same results with respect to bias for all these scenarios. While some bias was seen even
in the samples with T = 6250, it should be pointed out that the whales dataset is about
an order of magnitude larger, so any issues related to small sample sizes observed in the
simulations should not affect our results in Sect. 3.3 to the same degree.

Our model improves upon previous studies of whale cues by using the exact cue times,
as opposed to aggregated counts. This additional information makes discerning the level
of self-excitement far easier; it is possible to fit Hawkes processes to binned data but this
poses various challenges (Shlomovich et al. 2022). Use of deaggregated data also means
that it is possible to explore the level of dispersion in the waiting times. Understanding the



A. B. M. Van Helsdingen et al.

fine scale details of the sound producing mechanisms may shed light into the ways whales
explore and interact with their surroundings. We are able to explore the effects of depth and
rate of descent directly, as parameters in the model, rather than more informally through
comparing cue rates at different values of d(t) and r(t).

Our extensions to the Hawkes process are only a first step and could be refined in many
ways. Various different formulations for all three of the baseline rate, self-exciting kernel
and compensator differences are imaginable. We have only considered a log-linear baseline
intensity function for simplicity, but any other strictly positive function could be consid-
ered, for example, nonlinear relationships or the incorporation of other covariates. The
self-exciting kernel need not be exponential, though any other function (e.g. a gamma dis-
tribution) would prove computationally costly as it would be of O(N 2) time complexity
rather than O(N ). Finally, functions other than the exponential, Weibull and mixtures of
twoWeibulls could be used. We have demonstrated that theWeibull distribution can be used
as a part of trend renewal process for self-exciting data, but this does not preclude the use
of other distributions for both this dataset and more generally.

In many cases, passive acoustic monitoring studies have been interested in a single whale
population density estimate for a given time period and area. In that case, a single average
cue rate that applies to that time period may be sufficient, even if it might be difficult to
estimate the applicable cue rate (Marques et al. 2023). However, if one is interested in
making comparisons across time or space, understanding spatio-temporal differences in cue
rates is crucial, as assuming a constant cue rate when that is not the case could result in
biased inferences, with existing differences in population density being masked, or with
spurious differences in density being found. Our model makes progress in this direction by
making the cue rate variable across time.

We have presented amodel for purely temporal point processes. Thus, spatial information
from spatial-temporal point patterns is discarded when using our framework. We anticipate
however that our model could be extended to a spatiotemporal point process so that the
waiting times between events are under- or overdispersed. This would prove a useful exten-
sion to spatiotemporal Hawkes processes (Reinhart 2018) and be especially useful in fields
such as agriculture and biology where most point pattern data is spatiotemporal rather than
purely temporal.

In conclusion, we have presented a new class of Hawkes processes that relax the Poisson
assumptions made in all previous versions of the Hawkes process. Our model has potential
to be useful in fields where Poisson assumptions are unrealistic including many natural and
environmental sciences. By using our model, researchers can verify if clustering is the result
of self-excitement or overdispersion. Conversely, our model can expose self-excitement that
might be obscured by the more regular spacing of an underdispersed point pattern.
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A. INTERARRIVAL TIMES OF ECHOLOCATION CLICKS

Figure4 shows the rawwaiting times between cues. The distribution is clearly not consistent
with an exponential distribution. A main peak at about 0.5 s can be seen, a second peak at
about 0.05 s, and a small third peak at about 0.3 s. Evidently, a homogeneous Poisson process
will be inadequate for this data.

Figure5 shows the compensator differences after fitting a traditional Hawkes process.
The distribution has a sharp peak around 1 and is completely inconsistentwith an exponential
distribution with mean 1 as assumed by the random time change theorem (Daley and Vere-
Jones 2003).

https://www.nesi.org.nz
http://creativecommons.org/licenses/by/4.0/
https://github.com/ABMvanHelsdingen/WHP
https://github.com/ABMvanHelsdingen/WHP
https://doi.org/10.5281/zenodo.11136815
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Figure 4. Interclick intervals, with an exponential distribution of the same mean overlaid (red line). The expo-
nential has a much fatter tail than the observed intervals (Color figure online).
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Figure 5. Compensator differences (δ�i ) when a conventional Hawkes process is fitted to the data. The red line
is the density of the assumed exponential distribution (Color figure online).

B. DEPTHS AND CUE TIMES

Figure6 shows a more granular view of the whale’s behaviour. It is based on Fig. 2, and
shows a single, typical dive of the whale, allowing for a closer inspection of how cue rate
varies across the dive cycle. Note the clustering evident in the rug plot.

C. SIMULATION METHODOLOGY

Our simulation method has two steps at each iteration i in order to generate an event time
τi .

1. Generate a random value wi for the compensator difference of the current interval.

2. Choose a value for τi so that wi = δ�i = ∫ τi
τi−1

λ(t) dt

Step 1
To simulate from the Weibull distribution, we generate ui ∼ Uniform (0, 1). We then

compute wi = g(k) (−log(ui ))1/k where g(k) = 	(1+1/k) as defined in Sect. 2.2.1. This
can be easily adapted for a mixture of two Weibull distributions, by generating a further
variable vi ∼ Uniform (0, 1) to determine which of the twoWeibull distributions the current
interval comes from.

Step 2—constant μ(t)
The equation in Step 2 must be solved numerically. We denote the constant baseline rate

μ(t) as μ. We start by noting that in the period between τi−1 and τi the minimum possible
value of λ(t) is μ and the maximum value occurs immediately after τi−1, which we shall
designate as λ(τi−1 + ε). For convenience, we use the notation T = τi − τi−1.
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Figure 6. Top: depths of the whale against time for one of the dives middle: rug plot showing cue times with inset
bottom: histogram of cue times. Note that virtually no cues are emitted when the whale is on the surface .

Using these minimum and maximum values of λ(t), we can say that T <
wi
μ

and

T >
wi

λ(τi−1+ε)
. Denote these lower and upper bounds for T as T (1)

L and T (1)
U respectively.

By applying the Newton–Raphson method, we can write:

T (k+1)
L = T (k)

L −

⎛

⎜⎜⎝

τi−1+T (k)
L∫

τi−1

λ(t) dt − wi

⎞

⎟⎟⎠ / λ
(
τi−1 + T (k)

L

)
(14)

This equation updates our lower bound, bringing it closer to the true value of T . A similar
equation can be written for the upper bound estimates.

If we continually iterate through Eq. (14) for both the lower and upper bounds, eventually
T k
L and T k

U get extremely close. In our experience it often takes ten or fewer iterations for the
difference between the bounds to be indistinguishable from zero. The code used to run the
simulation study in Sect. 2.3 runs Newton’s method for 10 iterations, and if the difference
exceeds a tolerance (10−8) runs further batches of 10 iterations until the difference is less
than the tolerance.

This works because λ(t) is strictly decreasing between events, ensuring that the lower
bound is always an underestimate and the upper bound always an overestimate. The two
bounds can never cross.

At iteration 1, this method converges immediately (since λ(t) = μ and thus is constant),
giving τ1 = w1/μ.
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Step 2—variable μ(t)
When μ(t) is not constant, we cannot use the Newton–Raphson method, as λ(t) may

increase without an event occurring. But since �(t) is strictly increasing, we can use the
Bisection method to numerically solve for τi .

As before, we need maximum and minimum values of T , and we can write T >
wi

max μ(t)+λ(τi−1+ε)−μ(τi−1)
and T <

wi
min μ(t) . As before we denote these as T (1)

L and T (1)
U ,

respectively. Note that our method requires μ(t) to be strictly positive.
At each iteration we compute the mean, which we denote as x , of T (k)

U and T (k)
L , and then∫ x

τi−1
λ(t) dt . If this integral exceedswi , we know x > T and we set T (k+1)

U = x . Otherwise,

T (k+1)
L = x . Iterations continue until the difference is less than a tolerance (10−9). Because

the difference halves at each iteration, the number of iterations needed can be calculated in
advance.

D. ADDITIONAL SIMULATION STUDY RESULTS

Figures7, 8, 9 and 10 show, respectively, the bias in estimates of k and α/β for the first
simulation study, and the bias in k1 and in α/β for the second simulation study.

Figure 7. Bias in maximum likelihood estimates of k (y-axes) for the four different time periods across the four
values of k used in the first simulation study. The estimates appear to be asymptotically unbiased and efficient .
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Figure 8. Bias in maximum likelihood estimates of α
β (y-axes) for the four different time periods across the four

values of k used in the first simulation study. The y-axis is truncated at 200% .

Figure 9. Bias in maximum likelihood estimates of k1 (y-axes) for the four different time periods across the three
values of k1 used in the second simulation study. The estimates are negatively biased in smaller sample sizes, but
have little bias in the largest samples (T = 6250) .
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Figure 10. Bias in maximum likelihood estimates of α
β (y-axes) for the four different time periods across the

three values of k1 used in the second simulation study. The estimates are unbiased but have a negative skew .

E. FREQUENTIST ANALYSIS

We fitted both a conventional Hawkes process and the model with a single Weibull
distribution for the compensator differences in a frequentist framework as well as a Bayesian
framework. For our frequentist analysis, wemaximised the log-likelihood from500 different
starting points. As with our simulation study, we used the NeSI server and required 59min
of compute time. The maximised log-likelihood was l = −7119 for the Weibull–Hawkes
process and l = −13042 for a conventional Hawkes process.

Parameters for theWeibull–Hawkesmodel are given in Table4. The estimates are broadly
concordant with the Bayesian analysis presented in Sect. 3, especially for k, α and β. Esti-
mates for the parameters of the baseline intensity function η were less consistent but similar.

Table 4. Parameter MLEs and standard errors for the baseline rate parameters in Eq. (13), the self-excitement
parameters from Eq. (6) and the dispersion parameter of Eq. (11)

Parameter MLE SE

η0 −9.80 0.221
η1 4.67 NA
η2 4.25 0.477
η3 175 78.2
α
β 0.930 NA

β 1.13 0.0117
k 1.56 0.00523

NA indicates that the value could not be computed
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