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Using Density and Fuzzy Clustering for Data
Cleaning and Segmental Description of

Livestock Data
Torgunn Aslaug Skjerve , Gunnar Klemetsdal, Bente Aspeholen Åby,
Jon Kristian Sommerseth, Ulf Geir Indahl, and Hanne Fjerdingby Olsen

The cluster algorithms density-based clustering with noise and fuzzy c-means were
used to edit and group a large, noisy data set from a livestock herd recording scheme
consisting of slaughter records on 73,743 bulls. Density-based clustering with noise was
used for data selection with ε = 0.06 and minPts=8. The remaining data (n = 65,446)
was exposed to a fuzzy c-means analysis to partition data based on three variables: Age at
slaughter, carcass weight, and average daily carcass gain. Appropriate number of clusters
was chosen by the maximum value of the modified partition coefficient (k = 3 clusters).
Cluster validation for both hard cluster assignment and cluster membership was per-
formed with linear models and a permutation test. The three clusters had centroid values
for slaughter age and carcass weight interpreted as: Part of production systems charac-
terized by high bull turnover (Cluster 1), production systems aiming for heavy slaughter
weights (Cluster 2), and a less intensive system with higher roughage proportions (Clus-
ter 3). The results show that the approach can be successfully combined to segment
meaningful groups from large, noisy industry data, exemplified by the description of
slaughter performance records.
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1. INTRODUCTION

Large-scale field data collection in livestock production has great potential as a resource,
both in farm management and research. However, the degree to which it is utilized is often
hindered by technical challenges such as incompatible structure and data quality. Thus,
there is a need for efficient methods to explore, analyse, and transform data into compiled
summaries that can be used in communication and dissemination. To address this issue, it
is necessary to build efficient approaches to data processing (Eastwood et al. 2019; White
et al. 2021; Cravero et al. 2022).

Traditionally, data filtering has hinged on a detailed knowledge of how data are typically
distributed within a given space, an approach that relies heavily on previous experience.
There are however methods available that bypass the need for such a priori assumptions.
Implementing machine learning techniques has been proposed as a possible step towards
improving the data process. By leveraging machine learning algorithms, the industry and
researchers can effectively analyse the vast amounts of data collected, enabling them to
unlock insights that would be difficult to discern otherwise (Hudson et al. 2018). One of the
most popular and effective machine learning clustering techniques used for data analysis is
the k-means algorithm. It is however, sensitive to noise in the data, which can result in sub-
optimal clustering results (Ahmed et al. 2020). Being able to efficiently interpret clustered
observations would highly improve the data exploration process in livestock farming, but
the presence of noise is inevitable. Thus, although k-means clustering can be a useful
candidate tool for analysing livestock farming data, the method’s sensitivity to noise can
pose a significant challenge.

In livestock production, dairy farms especially have a long-standing tradition of data-
driven management, with the widespread adoption of milk recording systems dating back
to the late nineteenth century (Armitage 2007; Hudson et al. 2018). The availability of these
large generational data sets to scientists and farm advisory services has been instrumental
in the modern development of dairy production. It is, however, recognized that this data is
prone to recording error and reporter bias (e.g. Espetvedt et al. 2012; Koeck et al. 2012). As
a consequence, editing and processing represent a significant and time-consuming aspect of
working with these type of databases (Hudson et al. 2018).

The density-based clustering algorithm, Density-based Spatial Clustering of Application
with Noise (DBSCAN), was initially developed for use on spatial data. As it is based on
density, it requires no other assumptions on distribution and relies solely on the parameters’
region radius (ε) and a minimum number of points (minPts) to cluster and identify outliers
(Ester et al. 1996). This feature makes the algorithm appealing for both data editing and data
selection tasks, particularly when it is necessary to define sub-groups within the data. A few
studies applying DBSCAN on agricultural sensor farm data have proven the efficiency of
the algorithm (Ismail et al. 2019; Miao et al. 2021), but to the best of the authors’ knowledge
has yet to be employed on larger-scale population data sets, such as national herd scheme
data.

A further challenge of applying k-means to livestock farming data is the abrupt way the
observations are assigned a classification. Although there may be cases where this approach
is appropriate,much of the data is likely to overlap. This can be addressed by fuzzy set theory,
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which introduces the concept of uncertainty in membership through a membership function
(Zadeh 1965). The clustering algorithm fuzzy c-means, as proposed by Bezdek (1981), is
the fuzzy counterpart of k-means and has been applied in livestock farming research for
tasks such as recognizing body attributes and monitoring animal welfare (Zhang et al. 2018;
Ojo et al. 2022). It assigns membership degrees rather than membership akin to assigning
a probability of each observation belonging to a particular cluster.

One example highlighting the challenges posed by livestock farming data is the data col-
lection process on the bulls of the Norwegian red breed (NR). In Norway, a large proportion
of domestic beef is produced by combined dairy- and beef enterprises. Most dairy farms
participate in the Norwegian Dairy Herd Recording System (NDHRS), which focuses on
data of importance to dairy production, used by advisory services, breeding organizations,
and research. Finisher bull rearing strategy, production goals of age at slaughter and carcass
weight are important both for the environmental and economic outcomes (Nguyen et al.
2010; Bonesmo and Randby 2011). However, this information is usually unavailable in the
large NDHRS data sets, making detailed production analysis of NR finisher bulls challeng-
ing. The NDHRS slaughter performance records feature a high volume of records, but low
degree of details and significant levels of noise, and discerning finisher rearing bull strategy
in these data sets are therefore well-suited as a test case for new data exploration approaches.

In this study, we aimed to assess the combined approach of utilizing DBSCAN and
fuzzy c-means clustering algorithms to clean and categorize a large data set on livestock
production, using slaughter performance data on NR bulls as an example.

2. DATA

Yearly domestic beef production in Norway is made up of 86 000 tons of slaughter
approved for human consumption (Statistics Norway 2017–2021). Approximately 300 000
animals are slaughtered each year, of which 46% are of the slaughter category “young
bull” (bulls between 301 and 730 days of age.) Most bulls come from combined dairy-beef
operations (Animalia 2017–2021; Tine Rådgivning 2017–2021; Statistics Norway 2017–
2021). Rearing strategies onfinisher bulls in combined dairy- and beef production are usually
based on varying amounts of silage and concentrate. The choice of rearing strategy, the goal
for slaughter weight, slaughter age, and concentrate levels depends on the availability and
price of feed resources (Bonesmo and Randby 2011).

The NHRDS covers approximately 97% of all dairy herds in the country. Through its
large proportion of NR, with 88% of the roughly 500 000 animals active in the recording
system (Rådgivning 2022), it is also the largest source of data on the NR bulls. The system
stores on-farm data from all participating herds, in addition to data from advisory services,
slaughterhouses, milk laboratories, the breeding company Geno, accountancy data, and
Dyrehelseportalen, a nationwide database for animal health records used by veterinarians
and farmers. NDHRS is owned by the company Mimiro, which manages a large proportion
of large-scale field data recordings in Norwegian agriculture. The data collected are used
for various purposes, such as research, breeding evaluations, and governmental reporting.
It is organized into several tables based on the source of the reporter and the theme of the
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record. These tables are linked using unique identity keys for the farm, owner, or animal, or
a combination of all three, as well as specific table identifiers.

In this study, a data set of slaughter performance records on 76 293 bulls slaughtered in
the year 2017 was used. The sources for this information are farmers and slaughterhouses.
The data were edited based on the three variables, namely slaughter age (Age), carcass
weight (CW) and average daily carcass gain (ADCG), with initial corrections for recorded
slaughter category and gender. In finisher bull rearing, average daily gain is an important
factor, as age and average daily gain are the twomain determinants of the animal’s nutritional
requirements. Average daily gain is defined as (Live weight at slaughter – birthweight)/(Age
at start of period – Age at end of period). It is composed of growth in all tissues, including
bone and organs. ADCG is based on carcass weight and can be used as approximation when
live weight is not recorded as is the case data set used for this study.

3. METHODS

3.1. DATA COMPILATION AND PRE-PROCESSING OF RAW DATA

Slaughter records are reported by the slaughterhouse and stored by NDHRS, including
date of slaughter, CW, EUROP carcass and fat classification, and slaughter category. In
addition, to determine the animals’ age, registered breed, and gender, birth information was
obtained from the Birth Information table from the NDHRS, which contains data reported
by producers. Information regarding the primary cause of culling and the farm at the time
of slaughter was extracted from the Animal History table, which is a chronological record
of all the times and reasons a farmer changed an animal’s status in the NHDRS registration
systems. The date when the animal was first recorded in NDHRS is also recorded. In most
cases, this date correspondswith the birth date given inNDHRS, but there are a few instances
where it differs significantly. However, this was not the case for any of the slaughter records
used in this analysis.

All data editing of the raw data was done using DATA STEP and PROC SORT in
SAS�9.4 (SAS Institute Inc 2013). Age at slaughter (Age) was calculated as the dif-
ference between date of birth and date of slaughter. ADCG was estimated as (CW-(birth
weight/2)/Age). As birthweight is not recorded inNDHRS, it was put at 43.5 kg,which is the
five-year average forNR in theNorwegianBeefCattleHerdRecording System for the period
2015–2019 (Animalia, 2015–2019; n = 749). Only records with the event categorized as
“Out to Slaughter” for animals slaughtered in 2017 were kept (n = 201,162). Of these,
77,955 were recorded with gender “male” in their birth record, where of 106 were classified
in a slaughter category for female animals (“Cow”, “Young Cow” or “Heifer”). The latter
group was most likely erroneously reported to NDHRS and was therefore excluded. The
slaughter category “Steer” was also excluded (n = 1234). Finally, animals dead for other
reasons than slaughter were eliminated by the recorded reason for the update in the database
(n = 294), and by primary reason for culling indicating disease (n = 28). Thus, the data
used in the DBSCAN analysis consisted of 76,293 records from 5424 farms, with 2 550
being reported as “bull”, 5943 as “calf” and 67,800 as “young bull”. Plots were generated
using the ggplot2-package in RStudio (Wickham 2016).
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Figure 1. Raw data distribution of the variables A age in number of days at slaughter (Age), B carcass weight
(CW) in kg,C average daily carcass gain (ADCG) in g/day, and D a scatterplot of Age and CW, with, respectively,
216, 324, 144 and 4 extreme observations removed for visibility.

Age andCWwere bimodally distributedwith a smaller peak for the period corresponding
to the age andweight of rose veal slaughter (Age<301days) and ahigher peak corresponding
to the age and weight of bull slaughter (Fig. 1A, B). The modality shifted at approximately
300 days of age and approximately 180kg carcassweight. Figure 1Cdisplays the distribution
of the ADCG. The scatterplot of Age and CW (Fig. 1D) indicates non-collinearity as the
variation around the regression line, which is a close proximate of ADCG, is considerable.
Nevertheless, it is important to note that Age and CW exhibited a strong positive correlation
with a coefficient of 0.74. The correlation betweenAge andADCG (r = −0.25)wasweaker,
whereas CW and ADCG had a moderately strong correlation (r = 0.41).

The mean value of Age, CW, and ADCG was 525 days, 299kg, and 534g/day, respec-
tively, with minimum and maximum values of 6 and 5505 days, 18 and 668kg (CW), and
−208 and 4271g/day (ADCG).

3.2. NOISE REMOVAL, DATA SELECTION AND GROUPING BY CLUSTERING

DBSCAN was used for noise removal and to separate the lowest and the highest peak
in the distribution of Age and CW, using the package dbscan in RStudio. Data were scaled
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using the scale() function prior to clustering (Hahsler et al. 2019; RStudio Team, 2022).
The DBSCAN algorithm relies on density estimation, which involves counting the number
of data points within a specified radius (ε) from each data point. A region is designated
as dense if it meets the minimum number of points requirement (minPts) (Schubert et al.
2017). Based on the structure of the raw data and purpose of the analysis, the following
priors were used for setting the sensitivity of the DBSCAN parameters:

1. The bimodality of the distribution of Age and CW will create two distinct density
clusters. The density cluster formed around the higher density peaks in Fig. 1 (upper
panels) relates to bull slaughter, the density cluster formed around the lower relates
to rose veal slaughter.

2. For further analysis, the two clusters must be clearly separated.

In Sander et al. (1998), the authors conclude that the choice of minPts is not very crucial
for the DBSCAN algorithm and propose a default value of 2*dimensions -1. The ε-value
was therefore set by examining the separation of the two density clusters around the Age
and CW density peaks with minPts = 5 (Fig. 2A). MinPts was then adjusted to ensure a clear
separation and avoid classifying noise as natural variation, following the recommendations
by Schubert et al. (2017) for noisy data sets. The largest DBSCAN cluster (n = 65,438) and
a smaller cluster nested within the largest (n = 8) were retained for further consideration
and subject to the subsequent fuzzy c-means cluster analysis. For more details on DBSCAN,
see Supplementary material 1.

The selected data set consisted in total of 65 446 records on bulls slaughtered from 326 to
809 days of age, collected from 4 600 farms with a total of 13 063 distinct slaughter groups
(bulls slaughtered from the same farm on the same day). Fuzzy c-means cluster modelling
with the variables Age, CW, and ADCGwas executed using the fclust package in R (Ferraro
et al. 2019). The Modified Partition Coefficient (MPC) as suggested by Davé (1996) was
used to decide the number of clusters (k = 3). The fuzzifier value of the algorithm was
taken to be 2, as recommended by Bezdek (1981) for fuzzy clustering.

3.3. CLUSTER VALIDATION

Effects of hard cluster assignment were tested with linear regression. The highest mem-
bership value was used as criterion for hard cluster assignment for each individual bull.
Effect on EUROP carcass conformation class, EUROP carcass fatness class and carcass
value (NOK per carcass) was estimated using PROC GLM in SAS� 9.4 (SAS Institute Inc
2013) according to the model

yi j = μ + cli + ei j (1)

where yi j is EUROP carcass confirmation, EUROP carcass fatness classification or carcass
value of the individual bull j in cluster i , cli is the fixed effect of the individual cluster assign-
ment of the bull, and ei j is the random residual term for the jth bull in cluster i ∼ N (0, σ 2).
Prior to analysis, EUROP classifications were transformed to a 15-point numerical scale as
done in Hickey et al. (2007).
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For carcass value, the explanatory effect of hard cluster assignment of bulls from the same
farm slaughtered at same date (slaughter group) was compared to a model only including
the random effect of slaughter group by the means of log-likelihood ratio testing. In these
analyses, slaughter groups with less than 4 slaughtered bulls were excluded (n = 5 389
slaughter groups). The number of slaughter groups retained, described and analysed was 7
684 from 3 378 different farms, with 55 818 bulls. The following three models were run:

yi = μ + ei (2)

yi j = μ + cli + ei j (3)

yi j = μ + sli + ei j (4)

where y is the EUROP carcass confirmation, EUROP carcass fatness classification or carcass
value for bull i, cli is the randomeffect of the individual cluster assignmentwith∼ N (0, σ 2

cl),
sli is the random effect of slaughter group ∼ N (0, σ 2

sl ), and e is the random residual term
for the jth bull in cluster i ∼ N (0, σ 2

e ). Significance of the random effects was tested with a
log-likelihood ratio test, using the following test statistics: D = -2[log-likelihood full model
– log-likelihood of the simple model] with one degree of freedom. The log-likelihood values
were obtained by PROC MIXED in SAS� 9.4 (SAS Institute Inc 2013).

Finally, cluster membership was explored using a permutation test. Effect of country
region on cluster membership was explored using a permutation test of 5000 repetitions on
regional means, executed in R Studio using package dplyr (Wickham et al. 2023) and base
R (R Core Team 2023). Regions based on geographic location and production conditions,
as defined by the Survey of Account Statistics for Agriculture and Forestry (the Norwegian
Farm accountancy data network), were used. The regions are geographically distributed
throughout the country, and certain production conditions are indicated. They are named as
follows: “Southwest Marginal”, “Southwest”, “East marginal”, “East Lowlands”, “North”,
“Central Marginal”, “Central Lowlands” and “West”. Lowlands and the region “Southwest”
are areas with relatively favourable production conditions, whereas “marginal” indicates the
opposite. A map of the regions can be found as Fig. S1.1 in Supplementary material 1. For
each permutation, region identity was shuffled randomly between the 65 446 bulls in the
original data set, and average cluster membership for each region was calculated, resulting
in a data set of 5000 permutated region means. Euclidean distance between the permutated
and realized regionmeans towards the averagemean cluster memberships of the data set was
calculated and tested with the H0-hypothesis: Euclidean distance between regional average
cluster membership and overall data set average cluster memberships is equal to 0. Detailed
description and programs for the permutation test can be found in Supplementary material
1.

The descriptive statistics were generated usingMicrosoft�Excel. Plots weremade using
R base plot (R Core Team 2023) and ggplot2(Wickham 2016).
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4. RESULTS

4.1. CLUSTERING

The DBSCAN parameters were set by testing the separation of two larger clusters based
on two peaks in the density distribution of Age and CW, where the largest of the two was
assumed to correspond to bull slaughter and the smaller rose veal slaughter. The default
value suggested by Sander et al. (1998) for minPts (2*dimensions -1) was used to define
the ε-region. To allow for the greatest possible age span within the clusters, ε was set to
0.06 which is the largest value at which the clusters separate in the 3D-space. The minPts
parameter was then adjusted to avoid noise classified as natural variation by the more
generous ε-value (minPts = 8). Figure 2 depicts the changes in number of clusters, number
of noise points, number of observations in the largest cluster, and number of observations
in the smaller cluster at the default minPts = 5 (Panel A) and the adjusted minPts = 8 (Panel
B). Notably, increasing minPts to 8 increases the value of ε where the two clusters re-merge
to 0.07, indicating a very low density in the region between the two. The lower number
of clusters forming also indicates that less nonsensical clusters are formed, avoiding the
misclassification of noise in the data.

The DBSCAN resulted in a total of 106 clusters and 5 017 noise points. Among these
clusters, only the two largest clusters hadmore than 45 observations, with the smaller cluster
containing 4 372 observations and the larger cluster containing 65 438 observations. To
visualize the clustering results, scatter plots of Age versus CW and Age versus ADCGwere
generated and coloured by cluster, as shown in Fig. 3. Based on these plots, the largest cluster
and a smaller one nested within it were selected for further analysis. Notably, correlations
between the three variables changed, where the correlation between Age and CW decreased
(r = 0.54), whereas the correlations between ADCG and Age (r = −0.48) and ADCG
and CW (r = 0.48) increased. The decrease in correlation between Age and CW and the
increase between Age and ADCG indicate that the data selection was successful, as the
variable ADCG is the factor that will directly differentiate the feed rations.

The modified partition coefficient (MPC) for k = 1 to k = 10 was calculated, and its
highest value was reached at k = 3 (value = 0.37). For cluster 1, the average membership for
observations in the data set was 0.328, while for cluster 2 it was 0.367, and for cluster 3, it
was 0.305. Overall, 8 880 of the observations had an unclear cluster assignment, determined
as membership degree <0.5, with the highest proportion in cluster 3 (0.15) and the lowest
in cluster 2 (0.12). The scatter plot in Fig. 4 shows the relationship between Age and CW,
coloured by cluster membership with cluster centroids shown as yellow diamonds.

4.2. CLUSTER VALIDATION

To evaluate the performance of the approach, descriptive statistics were examined to
identify relevant patterns, and effects were tested in several statistical models, both for hard
clustering assignment and cluster membership patterns. Based on the descriptive statistics
in Table 1, the three clusters can be described as follows: Cluster 1 (red): “Early Age and
low CW”, Cluster 2 (blue): “Medium Age and high CW”, and Cluster 3 (green): “Late Age
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Figure 2. Number of formed clusters, number of noise points and number of observations in the largest and the
smallest cluster for ε-values between 0.01 and 0.1, at A minPts = (2*dimensions—1) and B minPts = 8. The red
dotted lines indicate the ε-values where the two larger clusters first separate and remerge at the default minPts-value
suggested by Sander et al. (1998) (Color figure online).

and Medium CW”. Bulls with the highest cluster membership to Cluster 1 falls within the
interval 326 to 622 days with CW ranging between 177 and 315kg. Likewise, bulls with the
highest membership to Cluster 2 falls within the interval 370 to 690 days, with CW ranging
between 276 and 448kg, and bulls with the highest membership to Cluster 3 finally ranging
between 552 to 809 days, with CW ranging between 232 and 442kg.

The distribution of clusters within farm slaughter groups was explored with hard cluster
assignment. Of the slaughter groups, 22.7 % had bulls all within one cluster, 57.6 % had all
bulls within two clusters, and the remaining had bulls spread across all clusters. Slaughter
groups with individuals assigned to Clusters 1 and 2 were the most prevalent, making up
32.5 % of the slaughter groups. Average membership for individual bulls in single-cluster
slaughter groups ranged between 0.70 and 0.71, for two-cluster slaughter groups the range
was between 0.41 and 0.47 for the two clusters in question, and three-cluster groups between
0.30 – 0.32.

The effect of the clusters on slaughter return, EUROP carcass confirmation classification,
and EUROP carcass fatness classification was found to be significant, with the most promi-
nent effect on slaughter returns with R2 at 0.45 (Table 2). When the effect of the cluster was
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Figure 3. Scatter plots of age at slaughter (Age) and Carcass weight (CW) (A and C) and Age and Average daily
carcass gain (ADCG) (B and D), with noise points (A and B, n = 76,287) and without noise points (C and D,
n = 71,276), showing the main cluster (yellow; n = 65,438), lateral cluster (red; n = 4372), a small cluster
nested within the main cluster (orange; n = 8), noise clusters (blue; n = 1458), and outliers (grey, n = 5017)
(Color figure online).

Figure 4. Scatter plot of age at slaughter (Age) and carcass weight (CW), where the colours indicate the obser-
vations’ belonging to clusters 1–3. Cluster centroids are marked with yellow diamonds (Color figure online).
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Table 1. Cluster information and cluster central values for age at slaughter (Age), carcass weight (CW), average
daily carcass gain (ADCG) and average carcass quality measures for Clusters 1 to 3

Variables Cluster 1 Cluster 2 Cluster 3

Cluster size1

N observations 21,521 24,401 19,524
Average membership degree 0.69 0.71 0.69

Centroid values
CW (kg) 277 341 331
ADCG (g/day) 520 606 494

Mean economic measures1

EUROP carcass conformation class2 4.89 5.72 5.36
EUROP carcass fat classification2 6.23 6.62 7.14
Carcass value (NOK) 13,211 16,678 16,229

1Hard cluster assignment based on highest membership degree
2EUROP class transformed to a 15-point numerical, linear scale according to Hickey et al. (2007)

Table 2. Estimated test statistics (F- and P-values) as well as coefficient of determination (R2) of individual
cluster assignment on EUROP carcass classification, EUROP fatness classification and carcass value;
likelihood ratio test statistics (D) of the random effect of cluster and slaughter group on carcass value in
NOK

F P R2 D

Fixed model
EUROP carcass conformation class1 6 864.3 < 0.001 0.17
EUROP carcass fatness class1 3 971.9 < 0.001 0.11
Carcass value (NOK) 27 315 < 0.001 0.45

Random model
Carcass value (NOK) as effect of cluster 33 097.7
Carcass value (NOK) as effect of slaughter group 29 070.6

1EUROP class transformed to a 15-point numerical, linear scale as in Hickey et al. (2007)

Hard cluster assignment is according to highest membership degree

compared with effect of slaughter group as random effects, the log-likelihood test statistics
were in favour of the cluster model (Table 2). An example of how the scatter plot in Fig.
4 can be used in a real-life sense, as graphic feedback to the farmer on the performance of
the slaughter group compared to the rest of the population can be found in Supplementary
material.

The permutation test results are visualized in Fig. 5. For all but two regions, the realized
Euclidean distance for the region mean from the overall mean in the data set (shown in the
figure as a dotted red line) fell significantly above any of the permutated values. For the
remaining two regions, theNorth and theCentral Lowlands, the permutatedmeanswere 19.6
% and 45.2 % higher, respectively. The largest distance was found for the regions Southwest
and East Lowlands, where membership to the clusters with heavy slaughter weights (Cluster
2 and 3) was higher, andWest where membership leaned towards Cluster 1 (early slaughter)
(Table S1.1 in Supplementary material 1).
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Figure 5. Histogram of regional means for 8 agricultural regions from the permutation test of 5000 permutations
with random shuffling of region identity of 65,466 bulls from the data set. The red dotted line is the realized regional
mean for each separate region (Color figure online).

5. DISCUSSION

Looking at the results, the approach of sequential DBSCAN and fuzzy c-means on the
test case data set performed well. Cluster validation also showed that the resulting fuzzy
clusters can be useful in a real-life context. The DBSCAN algorithm was developed to
efficiently handle large databases where information in and about the data is limited (Ester
et al. 1996). While used in a variety of fields, including precision farming, auto-detection
of crop quality, and plant development (Ismail et al. 2019; Miao et al. 2021), it has to the
authors’ knowledgenever been applied to large-scalefielddata in livestockproduction.There
may be several advantages to using DBSCAN compared to heuristic frameworks based on
preconceptions or apparent data distributions. For one, it allows for an effective definition of
the typical space of data points, exemplified by the largest cluster representing bull slaughter.
Furthermore, DBSCAN identifies outliers in n-dimensional space, rather than from a one-
dimensional variable distribution. Consequently, single variable values that would be within
the expected limits on their own, but combined with other variable values, make little sense
and can be easily detected. DBSCAN was also tested on a 30-year older data set from 1993
consisting of more heterogeneous data than the one used in this study. After the required
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adjustment of the minPts and ε parameters, the algorithm effectively distinguished between
a calf and a bull slaughter cluster. This demonstrates that the algorithm is effective also with
older data produced under different conditions. A perceivable disadvantage is the arbitrary
nature of deciding on the ε and minPts parameters. For both tested data sets, we used the
density distribution of two variables (Age and CW)with the goal of isolating twomodalities,
already being aware of the presence of two distinct periods for slaughter in Norwegian bull
slaughter production. Where this kind of a priori knowledge is lacking, guidance to minPts
and ε can be difficult. However, the algorithm is under constant development, and even
today some versions exist that can be used if the data itself does not give a clear indication
of parameter choice (Karami and Johansson 2014).

To extract classification clusters from this particular data set, a fuzzy logic approach was
chosen over clear-cut algorithms that assign absolute identities to each observation. Fuzzy
logic is frequently utilized for agricultural data analysis, for the same reason as it was used
here: the absolute classification is most likely unsuitable or too complex, but exploring the
relative relationships can give nuanced insight and meaningful support in decision-making
(e.g. Dutta et al. 2015; Mota et al. 2018; Heiß et al. 2021). The fuzzy c-means analysis on
the slaughter records yielded a pattern that makes sense for real-life finisher bull rearing
strategies, with rationales based either on bull turn-over (Cluster 1; Age 494 days and CW
281kg), slaughter weight (Cluster 2; Age 529 days and CW 342kg) or a less intensive
production with higher roughage proportion (Cluster 3; Age 639 days and CW 332kg). A
similar cluster patternwas also identified in the 1993 data set used for testing the applicability
of DBSCAN, demonstrating that the approach can be used when data are collected under
different production conditions with similar results.

The degree of separation between the clusters was not very large, which is a result of
the fuzzy logic approach. If the aim was to define strongly contrasted groups, a clear-
cut cluster assignment obtained from the regular k-means algorithm would have done a
better job. However, in this case, the goal was to discern farming practices that commonly
overlap. The likelihood of multiple practices being present in the same space is also an issue.
Thus, the emphasis was put towards similarity to ground truth, rather than contrasting and
clear classification. This approach to data analysis is more appropriate for complex issues
often encountered in agriculture and agricultural research, as overlapping classifications
can often provide a more accurate representation than a rigid class assignment. Several
studies have demonstrated the efficacy of fuzzy classification for a range of agricultural
issues. For instance, Ji and Wu (2022) proposed an application that monitors the severity of
black measles infestation in grapes. Similarly, an approach that enables the monitoring of
irrigation requirements for alfalfa was demonstrated by Li et al. (2019).

As examples of how the proposed approach can be applied, clusters were evaluated on
both clear-cut cluster assignments and cluster memberships. In a log-likelihood comparison,
the effect of the main cluster assignment explained as much as 45% of the variation in
carcass value, and when compared with the explanatory value of slaughter groups (bulls
slaughtered from the same farm on the same day), the latter was outcompeted (Table 2).
These verification analyses indicate that the clusters can absorb considerable information
about production intensity, as well as a potential for advisory services at the farm level. To
explore its validity on a larger scale, the difference in cluster membership of agricultural
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regions was examined by the measure of Euclidean distance. As the assumption is that a
farm adjusts its strategy to the given production conditions, it was expected to find these
differences reflected in the cluster memberships. Using a permutation test on the distance
of region means towards the overall mean, overlap was found for only two of the eight
regions, showing that the realized region differences were indeed significant. Furthermore,
membership to Cluster 1, with the assumed high bull turnover strategy, was found relatively
higher in regions with restricted access to roughage, while membership to Clusters 2 and 3
was found relatively higher in regions where feed is presumably less of a concern.

Using herd recording scheme-type data is a quick way of obtaining population infor-
mation, but there is a limit to how much information it is reasonable to ask contributors to
include. As an alternative, this study demonstrates that partitioning clustering techniques
such as fuzzy c-means can improve the interpretability of data without any additional con-
tributions from reporters. It is, however, important to keep in mind that one specific analysis
does not give the final answer to all questions. Several other clustering techniques than
the one used here could provide interesting insights into the data, although not necessarily
useful for the question in mind (Mota et al. 2018; Rodriguez et al. 2019).

6. CONCLUSION

In summary, using DBSCAN and partitioning clustering algorithms has the potential to
improve and expand the usability of large-scale field recordings from the industry and other
databases. This study shows how the approach can be applied to slaughter performance data
to form real-life applicable groups. However, this is not the only purpose for which this type
of processing is relevant. In research, the approach can be a cost-effective way of addressing
detail concerns with large data sets, and potentially improve different modelling tasks, such
as modelling of farm emissions and economy.

SUPPLEMENTARY INFORMATION

Additional analysis and R code are included in Supplementary material 1. Examples of
intended use of analysis in advisory services can be found in Supplementary material 2.
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