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Within the applications of spatial point processes, it is increasingly becoming common
that events are labelled by marks, prompting an exploration beyond the spatial distribu-
tion of events by incorporating themarks in the undertaken analysis. In this paper, we first
consider marked spatial point processes in R2, where marks are either integer-valued,
real-valued, or object-valued, and review the state-of-the-art to analyze the spatial struc-
ture and type of interaction/correlation between marks. More specifically, we review
cross/dot-type summary characteristics, mark-weighted summary characteristics, vari-
ousmark correlation functions, and frequencydomain approaches.Wealso propose novel
cross/dot-type higher-order summary characteristics, mark-weighted summary charac-
teristics, and mark correlation functions for marked point processes on linear networks.
Through a simulation study, we show that ignoring the underlying network gives rise
to erroneous conclusions about the interaction/correlation between marks. Finally, we
consider two applications: the locations of two different proteins on the membranes of
cells infected with the influenza virus and the locations of public trees along the street
network of Vancouver, Canada, where trees are labelled by their diameters at breast
height.

Key Words: Cross-type summary characteristics; Influenza virus; Mark correlation
functions; Mark-weighted summary characteristics; Point spectra; Public street trees
.

1. INTRODUCTION

Significant advancements in data collection and storage capacities have led to vast point
pattern data availability from diverse sources, which often give access to (precise) spatial
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locations and time occurrences of events together with further valuable point-specific infor-
mation, i.e., marks. In some cases, spatial locations might be restricted by the entities of
some spatially embedded relational systems, which consequently limit where events could
occur. Thus, the state space that accommodates the events plays a vital role in advanced sta-
tistical analysis. Not surprisingly, the growing availability and accessibility of point pattern
data, which find applications in distinct scientific fields, generally stimulated an increasing
interest in developing suitable statistical/mathematical tools for the analysis of point pat-
terns.Within the literature, applications often include astronomy (Feigelson andBabu 2012),
zoology (Russell et al. 2016), ecology (Daniel et al. 2020), forestry (Gavrikov and Stoyan
1995; Yazigi et al. 2021), geology (Flagg et al. 2020), and health (Bayisa et al. 2023).Within
these applications, typical examples of marks, which are point-specific, include, e.g., the
shape of galaxies, animal sightings of (non)invasive species, the diameter of trees at breast
height (dbh), habitat characteristics, the magnitude of earthquakes, and exposure levels to
pollutants. In any such application, the interesting aim is not only to make inferences about
the spatial distribution of events and their potential interaction but also to understand the
association among the corresponding marks. For instance, in the case of forestry and ecol-
ogy, spatial variation of dbh measurements for pairs of distinct trees and spatial correlation
between sighting locations for pairs of different animal species might be interesting. Note
that understanding how the dbh values differ across spatial locations might provide valu-
able insights into tree growth patterns, resource distribution, and ecological interactions
within the forest ecosystem. Also, studying sighting locations might uncover relationships
and dependencies between animal distributions, shedding light on potential habitat pref-
erences, interspecies dynamics, and ecological coexistence patterns. These objectives are
usually addressed by employing different so-called mark summary characteristics, which
are expected to account for the specificity of the marks and, potentially, the constrained
spatial domain of the points. This paper discusses the existing methodologies and state-of-
the-art for marked spatial point processes inR2 and proposes some novelties in the context
of point processes on linear networks. Throughout the paper, we consider three types of
marks which are frequently seen in practice, namely, qualitative marks, quantitative marks,
and non-scalar marks. In what follows, these are referred to as discrete and integer-valued
marks, real-valued marks, and object-valued marks, respectively.

The literature for spatial point processes usually employs diverse exploratory tools, such
as summary characteristics, to e.g., investigate both pairwise and higher-order interactions
between points and/or marks, as well as to validate fitted models. As a general construction
principle, any such summary characteristic quantitatively assesses the average interrelation
between points and/ormarkswithin a specific interpoint distance. Initially, themain attention
was paid to unmarked stationary and homogeneous point processes, where the spatial distri-
bution of points is translation invariant, and the intensity function remains constant over the
corresponding state space, leading to the development of the K -function (Ripley 1976), used
to study the pairwise relationships between points, and the J -function (van Lieshout and
Baddeley 1999), which goes beyond the second-order analysis. Both these summary char-
acteristics are used to identify clustering and/or inhibition among points. These were later
extended to marked stationary point processes, developing cross/dot-type second/higher-
order summary characteristics for point processes with integer-valued marks (Lotwick and
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Silverman 1982; van Lieshout 2006), and mark-weighted second-order summary charac-
teristics for real-valued marks (Penttinen et al. 1992; Schlather 2001). A different line of
research focused on the pairwise association/variation of real-valued marks, including the
mark variogram (Cressie 1993; Wälder and Stoyan 1996; Stoyan and Wälder 2000), which
has similarities with the (semi-)variogram commonly used in geostatistical contexts, and
Stoyan’s mark correlation function (Stoyan and Stoyan 1994). Similar to the classic point
process characteristics, any such tool is constructed based on the marks for pairs of points
at arbitrary interpoint distances. While, in practice, points might exhibit inhomogeneity,
most of these summary characteristics for real-valued marks are only defined for stationary
point processes, and their inhomogeneous versions remain an open topic for future research.
Other approaches to investigating the dependencies between marks and spatial locations are
proposed by Schlather et al. (2004); Guan (2006); Guan and Afshartous (2007). Moreover,
some recent developments for the analysis of stationary spatial point processes, which simul-
taneously possess both integer-valued and real-valued marks, include some graphical model
approaches, and partial characteristics proposed by Eckardt andMateu (2019a,b). Instead of
considering a spatial domain perspective, they applied a frequency domain representation to
the marked points to compute different (partial) spectral density characteristics. This high-
lights the energy distribution of the point patterns over a range of frequencies, unlike the
summary characteristics, which focus on pointwise spatial interactions. Although frequency
domain methods offer a highly flexible and computationally efficient way to investigate the
structural interrelation of complex marked point processes, methodological contributions
and practical applications within the spatial point process literature remain limited.

Turning back to unmarked point processes, Baddeley et al. (2000) and van Lieshout
(2011) extended the second- and higher-order summary characteristics, i.e., the K - and
J -functions, to inhomogeneous settings for particular classes of point processes, namely
second-order intensity-reweighted stationary and intensity-reweighted moment stationary
processes; the former is a particular case of the latter. The extended versions of these sum-
mary characteristics to take marks into account are proposed by Møller and Waagepetersen
(2003);Cronie andvanLieshout (2016);Ghorbani et al. (2021).Note that one could, basedon
some rules, construct different mark subsets out of real-valued marks and employ cross/dot-
type summary characteristics (Illian et al. 2008).

In an effort to study non-integer/real-valued marks, the focus is directed toward propos-
ing novel methodologies capable of handling diverse forms of marks. More specifically,
by borrowing ideas from functional data analysis (Ramsay and Silverman 1997), exten-
sions of Stoyan’s mark correlation function (Stoyan and Stoyan 1994) to function-valued
marks are proposed by Comas et al. (2011, 2013) for stationary point processes. Ghor-
bani et al. (2021) proposed a framework for functional marked point processes together
with some mark-weighted reduced moment measures. Moreover, Eckardt et al. (2023) and
Eckardt et al. (2023) extended some summary characteristics for spatial point processes with
integer-valued marks to the case of multivariate point processes with multivariate function-
valued marks and constrained vector-valued quantities. These non-scalar valued marks are
summarized into the class of object-valuedmarks, where instead of a scalar mark, each point
is augmented by a non-scalar mark, i.e., an object-valued attribute, which lives on a suitable
mark space whose precise form depends on the object under study. Suitable choices for the
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mark space include the Banach/Hilbert space for function-valued marks and the simplex
for constrained vector-valued quantities. As in standard mark point process investigations,
these extended tools aim to explore the spatial variation/association of the specific objects,
e.g., curves, for pairs of points at arbitrary distances.

In the past two decades, significant attention has been given to point processes on lin-
ear networks, where spatial locations of events are limited to a linear network. Okabe and
Yamada (2001) and Xie and Yan (2008) proposed a network-based version of Ripley’s
K -function and a kernel-based intensity estimator, which replaced the Euclidean distance
with the shortest-path distance without taking the geometry of the underlying network into
account, leading to biased results; note that the underlying network itself often has a non-
uniform distribution. As for taking the geometry of the underlying network into account,
novelmethodologies focusing on intensity function and summary characteristicswere devel-
oped. Utilizing shortest-path distances, Ang et al. (2012) proposed geometrically corrected
second-order summary characteristics for both homogeneous and inhomogeneous point
processes on linear networks. The developed framework by Ang et al. (2012) was subse-
quently expanded to the case of multivariate/multitype point processes on linear networks,
taking integer-valued marks into account (Baddeley et al. 2014), and spatio-temporal point
processes on linear networks (Moradi and Mateu 2020). Moreover, Rakshit et al. (2017)
proposed the consideration of regular distances on linear networks and defined novel ver-
sions of the summary characteristics proposed by Ang et al. (2012) based on a more general
class of metrics. Later, employing regular distances, Cronie et al. (2020) proposed higher-
order summary characteristics for point processes on linear networks. In terms of intensity
functions, various techniques are proposed, which are either based on kernel functions
(McSwiggan et al. 2017; Moradi et al. 2018) or Voronoi tessellations (Moradi et al. 2019;
Mateu et al. 2020). Computational issues became evident on large networks, leading to a
fast kernel-based intensity estimator (Rakshit et al. 2019) and an efficient way to compute
the K -functions for point processes on linear networks (Rakshit et al. 2019). Excluding
the second-order summary characteristics for multivariate/multitype (integer-valued marks)
point processes on linear networks, proposed by Baddeley et al. (2014), and a kernel-based
smoothing approach for scalar marks on linear networks by Rakshit et al. (2019), the lit-
erature certainly lacks mark-based methodologies to analyze events occurring on linear
networks. In particular, no specific contributions go beyond integer-valued marks.

Knowing the limitations mentioned above, we propose novel methodologies for spatial
point processes on linear networks that possess either integer- or real-valued marks. More
specifically, in the case of real-valued marks, we present extensions of various marked sum-
mary characteristics, e.g., Stoyan’s mark correlation and mark-weighted summary charac-
teristics, to linear network settings. In the cases of multivariate/multitype point processes
on linear networks, we take the higher-order summary characteristics, defined by Cronie
et al. (2020), and propose their cross/dot-type versions, which are of great use to reveal the
type of interactions between points with different marks; these can also be used to study
real-valued marks by defining mark subsets. In Sect. 2, we present two motivating datasets,
one on a planar state space and one on a linear network. We then, in Sect. 3, provide a
detailed overview of the state-of-the-art for the analysis of marked spatial point processes
in R2. In particular, we start by presenting various summary characteristics for inhomo-
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geneous multivariate/multitype point processes and then present several mark summary
characteristics for stationary point processes with real-valued marks. This section further
covers mark characteristics for object-valued marks as well as distinct frequency domain
methods. Section4 starts by reviewing second-order summary characteristics for inhomoge-
neous multivariate/multitype point processes on linear networks together with defining their
mark-weighted versions and then proposes higher-order summary characteristics for such
point processes. It then extends several mark summary characteristics for point processes
with real-valued marks to settings where events happen on linear networks, accompanied
by a numerical evaluation highlighting the importance of considering the underlying net-
works. Lastly, in Sect. 5, we present the results obtained from the analysis of two considered
datasets and close the paper with a discussion in Sect. 6.

2. DATA

To illustrate the use of both the existing methodologies and our novel contributions,
we consider two spatial point pattern datasets sourced from publicly accessible open data
repositories. These datasets are locations of two different proteins on the membranes of
cells infected with the influenza virus (Fig. 1), and data concerning public street trees in
Vancouver, Canada (Fig. 2).

The influenza virus protein data are accessible through the R package spatstat.data
(Baddeley et al. 2015), provided by Chen et al. (2008). It gives replicated spatial point
patterns of the locations of two different proteins on the membranes of cells infected with
the influenza virus. The data contain 41 replicates whereinmarked point patterns concern the
association of matrix proteins and glycoproteins of the viral membrane - either on matrix
proteins 1 (M1) and 2 (M2) or M2 and the hemagglutinin (HA) proteins. While the M2
governs the pH during viral maturation and is essential for virus replication, the HA spike
protein is regularly spaced in the membrane and is the antigenic determinant of the influenza
virus. We here only focus on the 37th pattern, which consists of 845 locations of the two
proteins M2 (303 points) and HA (542 points).

Figure 2 presents the spatial distribution of public trees, excluding park trees, located
along the street network of Vancouver, Canada, in 2016. Attributes such as tree species and
their corresponding diameter at breast height (dbh) in inches are attached to each location.
The original data is sourced from the open data portal1 of Vancouver, Canada, and consists
of 136,574 places of public trees categorized into 282 different species. However, we only
consider five species Aquifolium, Arnold, Bignonioides, Involucrata, and Populus, which
together include 1045 trees with a dbh varying between 2 and 94 inches. The street network
comprises 49,928 vertices and 55,221 segments and spans a total length of 1,779.547 km.

1https://opendata.vancouver.ca

https://opendata.vancouver.ca
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Figure 1. Locations of two different proteins, M2 and HA, on the membranes of cells infected with influenza
virus.

Figure 2. Public street trees in Vancouver, Canada, in 2016. Left: different shapes show species of trees; right:
colors show diameter at breast height in inches .

3. MARKED SPATIAL POINT PROCESSES IN R2

Let x = {xi ,m(xi )}ni=1 be an observed finite marked point pattern within a window
W ⊂ R2, where xi is the spatial location of i-th event and m(xi ) is some associated mark
living on a complete separable metric spaceM. It is assumed that x has been generated by an
underlying randommechanism X , called amarked spatial point process, on the product space
R2 × M, where R2 is equipped with the spatial distance d(u, v) = ||u − v||, u, v ∈ R2,

and the Lebesgue measure | · |. There is also an appropriate reference measure on the mark
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space, most notably the counting measure when we deal with multitype point processes. For
an unmarked version of X , denoted by X̆ , it is said that X̆ is a homogeneous point process
with constant intensity λ if E[N (X̆ ∩ A)] = λ|A|, A ⊂ R2, where N is a count function.
Otherwise, X̆ is an inhomogeneous process, and

E[N (X̆ ∩ A)] =
∫
A

λ(u)du, A ⊂ R2, (1)

so that λ(·) governs the spatial distribution of points. Heuristically, λ(u)|du|, u ∈ R2, is
the probability of finding a point of X̆ within a vicinity of u of size |du|. From now on,
whenever we refer to the intensity function, we are specifically referring to the intensity
function of an unmarked point process. Furthermore, according to Campbell’s formulas, for
any non-negative measurable function f : R2m → R,

E

⎡
⎣ ∑�=

x1,...,xm∈X̆
f (x1, . . . , xm)

⎤
⎦ =

∫
R2m

f (u1, . . . , um)λ(m)(u1, . . . , um)du1 · · · dum, (2)

where λ(m)(·) is called the m-th order product intensity of X̆ , and �= means that the sum is
taken over distinctm-tuples. Note that (1) is a particular case of (2) when f (x) = 1{x ∈ A}
where 1 is an indicator function. In a similar manner, λ(m)(u1, . . . , um)

∏m
i=1 |dui | is the

probability of having points of X̆ in m infinitesimal disjoint areas around u1, . . . , um with
sizes |du1|, . . . , |dum |.

As the product intensity functions of X̆ are not designed to study the correlation among
points, if all m-th order product intensities exist, one may wish to employ the correlation
function

gm(u1, . . . , um) = λ(m)(u1, . . . , um)

λ(u1) · · · λ(um)
=

m∑
j=1

∑
D1,...,Dj

ξN (D1)

({ui : i ∈ D1}) · · · ξN (Dj )

({ui : i ∈ Dj }
)
, (3)

where
∑

D1,...,Dj
ranges over all partitions {D1, . . . , Dj }of {1, . . . ,m} into j non-empty and

disjoint sets, N (Dj ) is the cardinality of the index set Dj , and the ξ -functions are translation
invariant (van Lieshout 2011). If such, the point process X̆ is called intensity-reweighted
moment stationary. Note that, if m = 2 it reduces to the so-called second-order intensity-
reweighted stationary (Baddeley et al. 2000), where one can obtain g2(u, v) − g1(u) =
(ξ2(u, v) + 1) − 1 = ξ2(u, v), where g2(u, v) = ρ(u, v) is the so-called pair correlation
function and only depends on d(u, v). A more stringent condition, entailing that X̆ has an
identical distribution to X̆ + a = {x + a : x ∈ X̆}, a ∈ R2, meaning that the spatial
distribution of X̆ is invariant under translations, leads to the concept of stationarity.

Next, by increasing marks’ complexity, we present different summary characteristics
designed to investigate the interactions between marks subject to an interpoint distance
0 < r < ∞. Under specific assumptions, such as mark independence, these summary
characteristics have predetermined values, making them valuable benchmarks for indicat-
ing interactions between marks. Thus, they can be effectively utilized in the hypothesis
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testing framework, enabling us to draw inferences about the spatial structure of marks and
identify potential deviations from mark independence. Depending on the data in question,
null models include, e.g., the superposition of some independent point processes and the
random labelling of points generated by subsequent processes.

Throughout the paper, we consider three types of marks which are frequently seen in
practice, namely, qualitative marks, quantitative marks, and non-scalar marks. In the case
of qualitative marks, points are categorized into distinct types where each type can be
labelled by, e.g., an integer value or a letter, see the influenza virus protein data in Fig. 1;
point processes with such marks are usually called multitype/multivariate point processes.
In the case of quantitative marks, the marks live on a continuous scale, i.e., they are real
numbers; see public street trees in Fig. 2. Note that these two cases may be translated into
one another based on some rules. For instance, quantitative marks may be translated into
qualitative marks based on some data aggregation leading to subsets of marks (Illian et al.
2008; Baddeley et al. 2015). Inwhat follows, we refer to the qualitativemarks as discrete and
integer-valuedmarks and the quantitativemarks as real-valuedmarks. In amore complicated
scenario wheremarks do not belong to either of these categories, marksmay have non-scalar
forms such as functions, compositions, graphs, andmanifolds (Ghorbani et al. 2021; Eckardt
et al. 2023). All of these non-scalar marks are summarized into a generic class called object-
valued marks.

3.1. DISCRETE AND INTEGER-VALUED MARKS

Whenmarks represent a set of countably many entities, which correspond to the simplest
case of all potential marked point process settings, each point is assigned a single label
1 ≤ k ≤ n, meaning that an integer-valued quantity categorizes points. The underlying
process is called a multivariate/multitype point process in this case. More specifically, the
observed point pattern x will be denoted as a collection {x1, . . . , xk}, k ≥ 2, where for
each point pattern xi , i = 1, . . . , k, we have m(·) = i , meaning that each point pattern xi
consists of some points with a specific mark. Within the literature, multivariate/multitype
point patterns are commonly analyzed through the so-called cross/dot-type extensions of the
classical summary characteristic such as the K -functions and the pair correlation functions
ρ (Ripley 1976; Baddeley et al. 2000), the nearest-neighbor distance distribution function
H , the empty space function F , and the J -function (van Lieshout and Baddeley 1996; van
Lieshout 2011). The cross-type summary characteristics concern pairs of points with dis-
tinct marks, whereas the dot-type summary characteristics focus on the relationship between
points with a particular mark and all the remaining points. These summary characteristics
were initially developed for homogeneous marked spatial point processes (Lotwick and
Silverman 1982; Harkness and Isham 1983; van Lieshout and Baddeley 1999). However,
since, in practice, homogeneity is rarely satisfied, we here only present the inhomogeneous
versions of such summary characteristics, which reduce to their homogeneous counterparts
when intensity is constant. We note that the inhomogeneous K -functions and pair corre-
lation functions for multivariate/multitype point processes in R2 are defined for second-
order intensity-reweighted stationary processes (Møller andWaagepetersen 2003), whereas
the inhomogeneous nearest-neighbor distance distribution function H , the inhomogeneous
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empty space function F , and the inhomogeneous J -function demand intensity-reweighted
moment stationarity (Cronie and van Lieshout 2016).

For a second-order intensity-reweighted stationary multivariate/multitype point process
X in R2, the cross-type K -function is given as

K inhom
i j (r) = E

⎡
⎣ ∑
x∈X j

1{d(u, x) ≤ r}
λ j (x)

∣∣∣∣u ∈ Xi

⎤
⎦ , i, j = 1, . . . , k, r > 0, (4)

where Xi , X j are point processes with marks i, j, respectively, and λ j (·) is the intensity
function of X j . If Xi does not depend on X j , then K inhom

i j (r) = πr2, which can serve as a
criterion to discover independence between sub-processes of different types. If K inhom

i j (r) >

πr2, one can conclude that the expected number of points of type j around points of type
i , within an interpoint distance r , is more than the expected number of such points under
mark independence, indicating a tendency to occur around points of types i . On the contrary,
K inhom
i j (r) < πr2 means that points of type j tend to maintain an interpoint distance from

points of type j . Note that K inhom
i i (·) gives the K -function for Xi . Moreover, the dot-type

K -function is of the form

K inhom
i• (r) = E

⎡
⎢⎢⎣

∑
x∈X
u �=x

1{d(u, x) ≤ r}
λ(x)

∣∣∣∣u ∈ Xi

⎤
⎥⎥⎦ , i = 1, . . . , k, r > 0, (5)

where λ(·) is the intensity function of X . In practice, (5) measures the expected number of
points of any type around the points with type i . Furthermore, one could obtain the cross/dot-
type versions of both the inhomogeneous pair correlation function and the inhomogeneous

L-function asρinhom
i j (r) = ∂K inhom

i j (r)/2πr and L inhom
i j (r) =

√
K inhom
i j (r)/π ; seeBaddeley

et al. (2015, Chapter 14) for more details.
Apart from the above cross/dot-type second-order summary characteristics, when X is

further intensity-reweighted moment stationary, there exist the cross-type inhomogeneous
nearest-neighbor distance distribution function

H inhom
i j (r) = 1 − E

⎡
⎣ ∏
x∈X j

(
1 − λ̄ j

λ j (x)
1{d(u, x) ≤ r}

) ∣∣∣∣u ∈ Xi

⎤
⎦ , (6)

and the cross-type inhomogeneous J -function

J inhomi j (r) = 1 − H inhom
i j (r)

1 − F inhom
j (r)

, F inhom
j (r) �= 1, (7)

where λ̄ j = infu∈X j λ j (u), and

F inhom
j (r) = 1 − E

⎡
⎣ ∏
x∈X j

(
1 − λ̄ j

λ j (x)
1{d(u, x) ≤ r}

)⎤
⎦ , u ∈ R2, (8)
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which is the inhomogeneous empty space function of X j and does not depend on the choice
u (Cronie and van Lieshout 2016). Note that these functions are not symmetric in i and j
meaning that, e.g., H inhom

i j (r) �= H inhom
j i (r), and by setting j = i in (6) and (7) one obtains

the nearest-neighbor distance distribution function and the J -function of Xi . Furthermore,

H inhom
i• (r) = 1 − E

⎡
⎢⎢⎣

∏
x∈X
u �=x

(
1 − λ̄

λ(x)
1{d(u, x) ≤ r}

) ∣∣∣∣u ∈ Xi

⎤
⎥⎥⎦ , (9)

J inhomi• (r) = 1 − H inhom
i• (r)

1 − F inhom(r)
, F inhom(r) �= 1, (10)

where F inhom(r) is the inhomogeneous empty space function of X . Due to the properties
of J -functions under superposition of stationary and independent processes, van Lieshout
and Baddeley (1999) introduced the I -function, which its analogous for inhomogeneous
processes becomes I inhom(r) = ∑k

i=1 pi J
inhom
i (r) − J inhom(r) where pi is the probability

of type i , and J inhomi and J inhom(r) are J -functions of the point process of type i , and the
entire process ignoring marks, respectively. Under independence of marks, the I -function
becomes zero, whereas deviations from zero suggest either positive or negative associations
among the components.

If point processes Xi and X j are independent, then one expects to have J inhomi j (r) = 1,
at least for small distances, while J inhomi j (r) > 1 points to a tendency for point of type
j to happen near points of type i , and J inhomi j (r) < 1 means that points of type j prefer
not to occur close to points of type i showing an inhibition between the two types (van
Lieshout 2011; Cronie and van Lieshout 2016). It is worth mentioning that Cronie and van
Lieshout (2016) further extended the Lotwick-Silverman test for random labelling (Lotwick
and Silverman 1982) to inhomogeneous settings; see Baddeley et al. (2015, Chapter 14.7)
for details on the practical use of cross/dot-type summary characteristics for testing random
labelling and mark independence. In general terms, cross-type summary characteristics are
employed to examine whether the presence of a specific type can influence the occurrence
of points belonging to another type.

3.1.1. Mark Connection and Mingling Functions

Within the context of discrete/integer-valued marks, a variety of more accessible empir-
ical summary characteristics are available for stationary point processes. For instance, the
mark connection functions pi j (r) = pi p jρi j (r)/ρ(r), where pi is the probability of type
i and ρ(·) is the pair correlation function, can be intuitively interpreted as the conditional
probability that two points at a distance r > 0 from each other possess marks i and j
provided that these points belong to the point process X ; under the independence of Xi and
X j , we have pi j (r) = pi p j (Stoyan and Stoyan 1994; Illian et al. 2008; Baddeley 2010).
For pi j (r) > pi p j , the mark connection function indicates a tendency of aggregation of
components i and j around each other while pi j (r) < pi p j suggests repulsion. Moreover,
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the normalized mark mingling function is given by

ν(r) = 1

c
E

⎡
⎣

�=∑
x,y∈X

1{m(x) �= m(y)}1{d(x, y) ≤ r}
⎤
⎦ , (11)

where c = ∑k
i=1(ni (n − ni ))/(n(n − 1)) is a normalizing constant, ni is the number of

points of type i , and
∑ �= means that points are distinct (Lewandowski and Pommerening

1997; Pommerening et al. 2011; Hui and Pommerening 2014). The mark mingling function
ν(r) may be used to disclose aggregation of points with (dis)similar marks so that under
the mark independence we have ν(r) ≈ 1, while ν(r) > 1 indicates heterospecific attrac-
tion, and ν(r) < 1 suggests conspecific attraction. Note that the main difference between
the mingling function and the cross/dot-type summary characteristics is that the mingling
function quantifies the general closeness of points with distinct types.

3.2. REAL-VALUED MARKS

Unlike discrete/integer-valued marks, which are investigated by reformulating a marked
point process into k > 1 components, real-valued marks are commonly analyzed through
a test function t f : M × M → R+, which is usually a function of the marks of two
points located at a distance of r > 0 from each other (Penttinen and Stoyan 1989; Schlather
2001). Moreover, in contrast to the presented summary characteristics in Sect. 3.1, which
address the aggregation/repulsion between points of different types, test functions t f analyze
numerical differences between the marks of distinct points as a function of distance. For
instance, neighboring points may exhibit (dis)similar mark values and specific points might
exert dominance over themarks of neighboring points, having largemarkswhile other points
in their vicinity possess smaller marks (Illian et al. 2008, Chapter 5).

For stationary point processes, the t f -correlation function κt f (r) is given as

κt f (r) = E
[
t f (m(x),m(y))

∣∣x, y ∈ X
]

ct f
, d(x, y) = r, (12)

where ct f is a normalizing factor; note that the numerator in (12) is a conditional expectation
with respect to the joint distribution of marks. Thus, one can see how marks of the points,
located at a distance r from each other, interact in comparison to the average behavior of
marks (Penttinen and Stoyan 1989; Baddeley 2010). Indeed, the explicit form of these mark
characteristics relies on the choice of test functions, which often account for the spatial
variation of marks as well as their pairwise relationships. Within the literature, denoting the
average and the variance of all marks asμm and σ 2

m , different test functions and normalizing
factors are proposed, which are given in Table 1. We note that Stoyan and Stoyan (1994)
proposed the so-called nearest-neighbor indexes, which are similarly constructed through
different test functions but only accounting for the marks at a point x ∈ X and its nearest-
neighbor, rather than considering all potential pairs of points within a distance r from x .

The mark variogram γmm(r) (Cressie 1993;Wälder and Stoyan 1996; Stoyan andWälder
2000) measures the local half-squared differences among marks of a pair of points while
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Table 1. Common test functions for point processes with real-valued marks. For Schlather’s I ,μm (r) is the mean
of the marks for all points located at a distance r from x , and for the mark differentiation function
c�t f = 1− (2/n(n−1))

∑n
i=1 Ri /m(x(i)) wherem(x(i)) is the i-th increasingly-ordered mark, R1 = 0

and Ri = ∑i−1
j=1 m(x( j)), for 2 ≤ i ≤ n

Name of the function Symbol Test function (t f ) Normalizing
factor (ct f )

Mark variogram γmm (r) 0.5[m(x) − m(y)]2 σ 2
m

Stoyan’s mark correlation function κmm (r) m(x)m(y) μ2
m

r-mark correlation function κm•(r) m(x) μm
r-mark correlation function κ•m (r) m(y) μm
Beisbart/Kerscher’s κmm (r) κBeimm (r) m(x) + m(y) 2μm
Isham’s κmm (r) κIshmm (r) m(x)m(y) −μ2

m σ 2
m

Stoyan’s mark covariance function Covmm (r) m(x)m(y) − μ2
m 1

Schlather’s I Imm (r) (m(x) − μm (r))(m(y) − μm (r)) σ 2
m

Shimanti’s I IShimm (r) (m(x) − μm )(m(y) − μm ) σ 2
m

Mark differentiation function �mm (r) 1 − min(m(x),m(y))
max(m(x),m(y)) c�t f

Stoyan’smark correlation function κmm(r) (Stoyan and Stoyan 1994) focuses on themean of
the local product of such marks. In other terms, the objective of the mark variogram γmm(r)
is to assess the pairwise differences between the marks associated with a pair of points
separated by adistance r ,which canprovide valuable insights into the spatial relationship and
variability of marks within a specified distance range. Concerning Stoyan’s mark correlation
function κmm(r), the pairwise product is expected to coincide with the global squared mean
of the marks μ2

m under the independence assumption such that κmm(r) = 1. If nearby
points have smaller (larger) marks, their average product will also be small (large) and
deviate from 1. We note that Stoyan’s mark covariance functionCovmm(r) (Stoyan 1984) is
indeed a linear transformation of his mark correlation function such that bothCovmm(r) and
κmm(r) essentially convey the same message (Schlather 2001). Regarding the use of r-mark
correlation functions, κm•(r) and κ•m(r), both reflect the average of the mark for either
of the two considered points with respect to a distance r . Except for mark independence,
the averaged r-mark correlation will not be equal to the overall mark mean since either the
mark of the first or second point is chosen. Shedding some light on Beisbart’s and Kerscher’s
version of κmm(r), to have a large contribution in (12), only one of the points is required
to have a large mark. However, under mark independence, this mark correlation function
coincides with twice themarkmean yielding κBei

mm(r) = 1. In contrast to κmm(r) and κBei
mm(r),

Isham’s function κ Ish
mm(r) reveals a Pearson-type correlation for marks. Schlather’s function

Imm(r) gives insight into how marks, for a pair of points with an interpoint distance r , are
related to each other (Schlather et al. 2004). Basically, this function centers each mark by
the conditional mean mark μm(r), i.e., the r-mark correlation function, and normalizes the
product by the mark variance σ 2

m . Shimanti’s function Imm(r) is constructed similarly but
uses the global mark mean instead of the conditional mark mean (Shimatani 2002). Finally,
the mark differentiation function �mm(r) shows how the ratio of marks varies with respect
to a distance r . In the case of mark independence, the minimum and the maximum of marks
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are assumed to be, on average, similar such that the proportion becomes 1, i.e.,�mm(r) = 0
(Pommerening et al. 2011; Hui and Pommerening 2014).

Aiming at defining a K -function for stationary point processes with real-valued marks
and a constant intensity λ, which accounts for the correlation between points as well as
between marks, Penttinen et al. (1992) proposed a mark-weighted K -function as

Kt f (r) = 1

λct f
E

⎡
⎢⎢⎣

∑
x∈X
u �=x

t f (m(u),m(x)) 1{d(u, x) ≤ r}
∣∣∣∣u ∈ X

⎤
⎥⎥⎦ , (13)

where ct f is the expected value of t f (·) under mark independence for which Kt f (r) reduces
to the so-called Ripley’s K -function (Baddeley et al. 2015, Chapter 15); (13) has already
been extended to inhomogeneous cases (Ghorbani et al. 2021). Penttinen et al. (1992) ini-
tially considered the Stoyan’s mark correlation function in (13), i.e., t f (·) = κmm(·), and
commonly denoted Kt f (·) as Kmm(·), however, one may use any of the test functions pre-
sented in Table 1. Note that, in the case of Kmm(·), by taking the pairwise product of marks
as weight into the original (not-mark-weighted) K -function, the estimated curves become
scaled versions of the original K -function, except under mark independence. More specifi-
cally, for pairwise positively correlated marks, i.e., if the pairwise product of marks exceeds
the overall expected value, the empirical curves are up-scaled versions of K -function. Oth-
erwise, they are down-scaled. To better understand the impact of marks, it is advisable to
compare the original K -functions with their mark-weighted counterparts. Further, normal-
izing Kt f (r) by its unmarked counterpart, i.e., the Ripley’s K -function, one can obtain a
cumulative mark correlation function corresponding to the mean value of the employed test
function for a pair of points with an interpoint distance r (Wiegand and Moloney 2013).
We note that D’Angelo et al. (2023) recently discussed local mark-weighted cumulative
summary statistics, which account for the contribution of each marked point to the global
second-order summary characteristics.

A further summary statistics for a stationary point process X , with an intensity function
λ and pair correlation ρ(·), is

U (r) = λ2ρ(r)κt f (r)|dx ||dy|, (14)

where |dx |, |dy| are sizes of two infinitesimal small areas around x and y separated by a
distance r . In a similar manner as Kt f (r) in (13), U (·) considers the correlation between
points and between marks. Since under complete spatial randomness ρ(·) = 1, and for
independent marks κt f (·) = 1, thus, in the combination of those cases, U (·) reduces to
the second-order product density of X (Capobianco and Renshaw 1998; Renshaw 2002).
If at least one of these two does not vanish, then U (·) is a version of the second-order
product density of X weighted by the spatial interaction between the points via ρ(·) and/or
association between the marks via κt f (·). We note that further summary characteristics,
considered within the literature, include the (non)cumulative density correlation functions
(Fedriani et al. 2015).
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Turning to the case where each data point has two distinct marks mi (·), i = 1, 2, by
considering a bivariate test function t f (m1(x),m2(y)) = m1(x)m2(y), x, y ∈ X , Stoyan
(1987) proposed a bivariate mark correlation function with a normalizing constant μ1μ2

where μi , i = 1, 2, is the mean of mark mi (·), i = 1, 2; see also (Raventós et al. 2011;
Wiegand and Moloney 2013). Note that such an idea can be used to construct other bivari-
ate and multivariate (nearest-neighbor-based) test functions (Pommerening and Grabarnik
2019; Eckardt et al. 2023). In addition, the cross/dot-type pair correlation function and the
bivariate/multivariate mark summary characteristics can also be used to derive cross/dot-
type andmultivariate versions ofU (r) (Eckardt andMateu 2019a; Eckardt et al. 2021). Such
extended versions not only help to investigate the interrelations between different types of
points but also allow to understand the association between different real-valued quantities
over space.

3.3. FREQUENCY DOMAIN APPROACHES

Next, we discuss characterizations of marked spatial point processes through frequency
domain methods, all of which could be translated into their corresponding distance-based
characteristics, e.g., U (·), given in (14), by using the inverse Fourier theorem. This close
relationship of the frequency and distance-based approaches allows to derive planar partial
mark characteristics which reflect the interrelation between two components Xi , X j , i, j =
1, . . . , k, conditional on all the remaining types.

3.3.1. Frequency Domain Approaches for Discrete and Integer-Valued Marks

In contrast to previous marked summary characteristics, frequency domain characteris-
tics for marked spatial point processes have received limited attention. Bartlett’s complete
covariance density function (Bartlett 1964) is given as Ki j (u, v) = λi (u)δi j (u − v) +
ϑi j (u, v), i, j = 1, . . . , k, where ϑi j (·) is a covariance density function (Mugglestone and
Renshaw 1996, Equation 2) and δi j (·) is a two-dimensional Dirac delta-function. Similar
to the covariance density function, Ki j (u, v) may be used to describe the cross-second-
order behavior of points within the corresponding space. However, unlike the covariance
function, it controls for multiple coincident points via δi j . Under stationarity, for the compo-
nents Xi , X j , i, j = 1, . . . , k, and at frequencies ω = (ω1, ω2), Mugglestone and Renshaw
(1996), using a discrete Fourier transform representation, introduced the cross-spectral den-
sity function fi j (ω) as

fi j (ω) =
∫ ∞

−∞
Ki j (r) exp(−ıω�r)dr, Ki j (r) = λiδi j (r) + ϑi j (r),

where r = d(u, v), u, v ∈ R2, ω� is the transpose of ω, and ı = √−1. Note that, in
this case, Ki j (·) only depends on distances between points. Two components are said to
be independent if the cross-spectral density function equals zero for all frequencies. We
note that by applying Theorem 8.3.1 of Brillinger (1981), the above spectrum could be
translated into a partial version fi j |X\{i, j}(ω), i.e., computing the Schur complement of the
cross-spectral densities (Eckardt and Mateu 2019a).



Marked Spatial Point Processes...

The cross-spectral function fi j (·) further leads to the definition of some interesting spec-
tral functions, including the spectral coherence function R2

i j (ω) = f 2i j (ω)/
(
fii (ω) f j j (ω)

)
,

the cross-amplitude spectrum ζi j (ω) = mod { fi j (ω)}, the cross-phase spectrum℘i j (ω) =
arg( fi j (ω)), the gain function Gi | j (ω) = √

( fi j (ω)Ri j (ω))/ fi (ω), and also their corre-
sponding partial versions (Mugglestone and Renshaw 1996; Eckardt and Mateu 2019b).
To offer some insight into these functions, the cross-phase spectrum ℘(ω) measures the
similarity between two point patterns to see if the spectrum of one pattern is a linear shift
of that of the other one, while the cross-amplitude spectrum ζi j (ω) encodes the relative
magnitude of frequencies for two point patterns. Thus, both functions are useful tools to
investigate the characteristics of the empirical spectrum with respect to the frequencies ω.
The gain spectrum Gi | j (ω), in contrast, can be interpreted as a regression coefficient in
a linear regression at frequency ω, for two corresponding components. Additionally, one
could make directional inferences by transforming the spectral density functions into the
polar form; see e.g., Renshaw and Ford (1983, 1984).

3.3.2. Frequency Domain Approaches for Real-Valued Marks

The accessibility of frequency domain approaches for real-valued marks is more con-
strained than that of discretemarks. The auto/cross-spectral density functions for real-valued
marks, at frequencies ω = (ω1, ω2), can be obtained from a discrete Fourier transformation
of the corresponding U (r) functions, as

f mi i (ω) =
∫

Uii (r) exp(−ıω�r)dr, f mi j (ω) =
∫

Ui j (r) exp(−ıω�r)dr,

whereUii (r) andUi j (r) are the auto/cross-type versions of (14), respectively; see Renshaw
(2002); Eckardt and Mateu (2019a) for more details. Analogous to the multivariate spatial
point processes, the marked spectra can be transformed into partial versions using the results
of Theorem 8.3.1 of Brillinger (1981).

As of some recent development, Eckardt and Mateu (2019a), using a re-scaled version
of the partial spectral coherence, defined a spatial dependence graph model for multivariate
point processes with, potentially, real-valued marks, according to which different compo-
nents are represented as nodes and the conditional independence structure among the k
components is reflected by missing edges.

3.4. OBJECT-VALUED MARKS

We now discuss mark summary characteristics for an observed point pattern x =
{xi , o(xi )}ni=1 inwhich each point xi is augmented by a non-scalar quantity o(xi ). Apart from
the function-valued mark settings (Comas et al. 2008, 2011, 2013; Ghorbani et al. 2021;
Eckardt et al. 2023), this newly introduced class of marked spatial point processes further
includes the cases where marks are constrained arrays or inherently structured quantities
(Eckardt et al. 2023).

Focusing explicitly on function-valued mark scenarios, where for each point xi the corre-
sponding mark o(xi ) is a function-valued quantity g(xi ) on F(T ) with T = (a, b),−∞ ≤
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Table 2. Pointwise test functions for point processes with function-valued marks

Name of the function Symbol Test function (t f ) Normalizing
factor (ct f )

Mark variogram γgg(r, t) 0.5[gx (t) − gy(t)]2 σ 2
g (t)

Stoyan’s mark correlation function κgg(r, t) gx (t)gy(t) μ2
g(t)

r-mark correlation function κg•(r, t) gx (t) μg(t)
r-mark correlation function κ•g(r, t) gy(t) μg(t)
Beisbart and Kerscher’s κgg(r, t) κBeigg (r, t) gx (t) + gy(t) 2μg(t)
Isham’s κgg(r, t) κIshgg (r, t) gx (t)gy(t) −μg(t)2 σ 2

g (t)
Stoyan’s mark covariance function Covgg(r, t) gx (t)gy(t) − μ2

g(t) 1
Schlather’s I Igg(r, t) (gx (t) − μg(r, t))(gy(t) − μg(r, t)) σ 2

g (t)
Shimanti’s I IShigg (r, t) (gx (t) − μg(t))(gy(t) − μg(t)) σ 2

g (t)

a ≤ b ≤ ∞ and g(xi ) : T ⊆ R �→ R, different mark summary characteristics, similarly
to Sect. 3.2, can be defined through an extended test function t f : F × F → R+. Starting
with a pointwise specification, Eckardt et al. (2023) proposed a generalized version of the
t f -correlation function in (12), given as

κt f (r, t) = E
[
t f

(
gx (t), gy(t)

) ∣∣x, y ∈ X
]

ct f (t)
, d(x, y) = r, (15)

where gx (t) is the mark of x at t ∈ T , and ct f (t) is, for a fixed t ∈ T , a pointwise
normalizing constant corresponding to the expectation of the test function when r tends
to infinity. Denoting the mean and variance of all marks at t ∈ T by μg(t) and σ 2

g (t), a
summary of the extended test functions is presented in Table 2. As of example, normalizing

E
[
0.5

(
gx (t) − gy(t)

)2 ∣∣x, y ∈ X
]
by σ 2

g (t) gives the pointwise mark variogram γgg(r, t),
and, to obtain a pointwise version of Stoyan’s mark correlation function, the expectation
E

[
gx (t)gy(t)

∣∣x, y ∈ X
]
needs to be divided by μ2

g(t) (Eckardt et al. 2023).
While all the test functions presented in Table 2, with respect to the argument t , have

similar interpretations as those in Table 1, they do not convey any information on the overall
pairwise interrelation between the function-valued quantities under study. The desired global
mark characteristics, however, can be constructed from their pointwise versions by the
integration of the normalized expectation of t f (gx (t), gy(t)) over T . In this respect, e.g.,
the pointwise mark variogram and mark correlation functions translate into global versions

γgg(r) =
∫
T
E

[
0.5

(
gx (t) − gy(t)

)2 ∣∣∣x, y ∈ X
]
dt =:

∫
T

γgg(r, t)dt,

κgg(r) =
∫
T
E

[
gx (t)gy(t)

∣∣∣x, y ∈ X
]
dt =:

∫
T

κgg(r, t)dt.

Then, any such global characteristic allows, in a L2 sense, for a similar interpretation as
discussed for Table 1. In other words, the global mark variogram γgg(r) gives the average
variability over distinct pairs of functions for two points with an interpoint distance r . Under
mark independence, the average differences among the curves are expected to coincide with
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the functional variance such that γgg(r) = 1. Likewise, κgg(r) assesses the product of any
two function-valued quantities with respect to the interpoint distance of points x, y ∈ X ,
where κgg(r) = 1 for independent marks. Unlike κgg(r), both r-mark correlation functions
κg•(r) and κ•g(r) concern the average of the function-valued point attribute of either the first
or the second point subject to a distance r . This usually differs from μg except under mark
independence settings. Similarly to Beisbart andKerscher’s original version, κBei

gg (r) reflects
the average pairwise sum, i.e., the perturbation, of any two functions for a pair of points at a
distance r from each other, which is expected to coincide with twice the functional meanμg

if marks are independent. If two functions of two nearby locations vary strongly from the
functional average, the sum of both would also be, on average, different from the expected
case, leading to κBei

gg (r) �= 1. Lastly, in both function-valued versions of Schlather’s and
Shimanti’s I -functions, marks are centered by the conditional and unconditional functional
means squared, respectively, and scaled by the functional variance. We note that the same
ideas can also be applied to the mark-weighted K -function Kt f (·), given in (13), and the
function U (r), given in (14), leading to Kt f (r) = ∫

Kt f (r, t)dt and U (r) = ∫
U (r, t)dt .

The extensions of the above summary characteristics to multivariate spatial point pro-
cesses, including cross-type, cross-function and cross-type cross-function mark summary
characteristics are discussed by Eckardt et al. (2023). While the cross-type characteristics
reveal the interrelation of mark g(·) for points x ∈ Xi and y ∈ X j , the cross-function
versions are defined for function-valued marks g1(·) �= g2(·) on F2 at locations x, y ∈ X .
These ideas are also extended to multi-function versions for the sets {xi , g(xi )}ni=1, with
g(xi ) ∈ Fs, s > 2, see (Eckardt et al. 2023) for details.

4. MARKED SPATIAL POINT PROCESSES ON LINEAR
NETWORKS

In certain point process applications, the spatial distribution of events may become con-
fined within an underlying structure such as a linear network. Instances of relevant applica-
tions include the study of street crimes, traffic accidents, trees positioned alongside roads,
and various other scenarios where spatial locations are restricted to a linear network.

A linear network L ⊂ R2 is considered as a finite union of some line segments, i.e.,
L = ⋃k

i=1 li where li = [ui , vi ] = {tui + (1− t)vi : 0 ≤ t ≤ 1}, ui �= vi ∈ R2. The linear
network L is equipped with a regular distance metric dL, with the shortest-path distance
being an example of it (Rakshit et al. 2017).Moreover, no over/under-pass is assumedwithin
L, meaning that each intersection of segments is a node. The total length of L is denoted by
|L| = ∑k

i=1 |li | where |li | = dL(ui , vi ) = d(ui , vi ). We denote a marked point process on
L by XL for which an observed point pattern is denoted by xL, and similarly to (1), if we
let X̆L be the unmarked version of XL, then

E[N (X̆L ∩ A)] =
∫
A

λL(u)d1u, A ⊂ L, (16)

where λL(·) is the intensity function of X̆L, and d1 stands for integration with respect to arc
length on the network. In this case, the intensity function λL(u) gives the expected number
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of points per unit length of the network in the vicinity of a location u ∈ L (Baddeley et al.
2021). Similarly to (2) and (3), for any non-negativemeasurable function f (·) on the product
space Lm ,

E

⎡
⎣ ∑ �=

x1,...,xm∈X̆L

f (x1, . . . , xm)

⎤
⎦ =

∫
Lm

f (u1, . . . , um)λ
(m)
L (u1, . . . , um)d1u1 · · · d1um,

(17)

and

gLm(u1, . . . , um) = λ
(m)
L (u1, . . . , um)

λL(u1) · · · λL(um)
=

m∑
j=1

∑
D1,...,Dj

ξLN (D1)

({ui : i ∈ D1}) · · · ξLN (Dj )

({ui : i ∈ Dj }
)
, (18)

where λ
(m)
L (·) is the m-order product intensity of XL,

∑
D1,...,Dj

ranges over all partitions
{D1, . . . , Dj } of {1, . . . ,m} into j non-empty and disjoint sets, and N (Dj ) is the cardinality
of the index set Dj (Cronie et al. 2020). In order to propose marked summary characteristics
for point processes on linear networks, similarly to Sect. 3,we need some formof stationarity.
However, addressing this challenge has proven to be quite complex (Baddeley et al. 2017),
as, currently, there is no transformation that can transform points on a linear network with
the guarantee that the shifted point will remain on the same network. Cronie et al. (2020)
proposed different notions of stationarity on linear networks, according to which whenever
the product intensities λ

(m)
L (·), 1 ≤ m ≤ k, exist, λ̄L = infu∈L λL(u) > 0, and for any

m ∈ {2, . . . , k} the correlation function gLm(·) satisfies

gLm(u1, . . . , um) = ḡLm(dL(u, u1), . . . , dL(u, um)), (19)

for any u ∈ L and some function ḡLm : [0,∞)m → [0,∞), they said that X̆L is k-th order
intensity-reweighted pseudostationary (with respect to a regular distance dL); X̆L is called
intensity reweighted moment pseudostationary (IRMPS) when this holds for any order
k ≥ 2. Moreover, a homogeneous point process X̆L, which is also k-th order intensity-
reweighted pseudostationary, is called k-th order pseudostationary; if this holds for any
order k ≥ 2, then X̆L is moment pseudostationary. Finally, a moment pseudostationary
point process X̆L is considered (strongly) pseudostationary if its moments completely and
uniquely characterize its distribution.

4.1. DISCRETE AND INTEGER-VALUED MARKS

We now consider the case where XL can be decomposed into 1 < k ≤ n compo-
nents according to a discrete/integer-valued mark. In this case, XL is called a multivari-
ate/multitype spatial point process on a linear network L, and xL is denoted as a collection
of k distinct point patterns {xL1 , . . . , xLk }, k ≥ 2. Marked summary characteristics for multi-
variate/multitype point processes on linear networks can be naturally proposed bymimicking
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the underlying principles presented in Sect. 3.1. However, despite the growing availability of
multivariate/multitype spatial network-constrained point processes, there exist only a few of
such extensions (Spooner et al. 2004; Baddeley et al. 2014; Eckardt andMateu 2018, 2021).
In particular, most attention is paid to the pair correlation function and the K -function,
for which, by following (Ang et al. 2012; Baddeley et al. 2014; Rakshit et al. 2017), for
a second-order pseudostationary (dL-correlated in the language of Rakshit et al. (2017))
marked point process XL, we have

KL,inhom
i j (u, rL) = E

⎡
⎢⎣ ∑
x∈XL

j

1{dL(u, x) ≤ rL}∇{u, dL(u, x)}
λLj (x)

∣∣∣∣∣∣∣
u ∈ XL

i

⎤
⎥⎦ ,

i, j = 1, . . . , k, rL > 0, (20)

and

KL,inhom
i• (u, rL) = E

⎡
⎢⎢⎣

∑
x∈XL

u �=x

1{dL(u, x) ≤ rL}∇{u, dL(u, x)}
λL(x)

∣∣∣∣∣∣∣∣
u ∈ XL

i

⎤
⎥⎥⎦ ,

i = 1, . . . , k, rL > 0, (21)

where ∇(·) acts as an edge correction factor, and λLj (·) is the intensity function of the j-
th component. If the employed metric is the shortest-path distance, then ∇{u, dL(u, x)}
becomes the reciprocal of the number of points lying exactly dL(u, x) units from u ∈ Xi .
As for some interpretation, if XL

i does not depend on XL
j , then KL,inhom

i j (u, rL) = rL,
which serves as a criterion to discover independence between processes of different types.
If KL,inhom

i j (u, rL) > rL, one can conclude that the expected number of points of type j
around points of type i , within an interpoint distance rL, is more than the expected number
of such points under mark independence, indicating a tendency to occur around points of
types i . On the contrary, KL,inhom

i j (u, rL) < rL means that points of type j tend to maintain
an interpoint distance from points of type j . In a similar manner, one could obtain the
cross/dot-type versions of the inhomogeneous pair correlation function.

4.1.1. Mark Connection and Mingling Function

For homogeneous point processes on linear networks, Baddeley et al. (2014) presented
the network-based versions of the mark connection and mark equality functions as

pLi j (rL) = λLi λLj ρ
L
i j (rL)

[λL]2ρL(rL)
, pL(rL) =

k∑
i=1

pLi i (rL), (22)

where ρL
i j (·) is the cross-pair correlation function for the processes with types i, j and ρL(·)

is the pair correlation of the full process. Given the presence of a pair of points separated by
a distance rL, the mark connection function pLi j (rL) is intuitively the conditional probability
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that those points are of types i, j . Similarly, pL(rL) is the conditional probability that those
two points, separated by a distance rL, have the same type.

Next, we propose the counterpart of the normalized mingling function (11) for homoge-
neous point processes on linear networks as

νL(rL) = 1

c
E

⎡
⎣

�=∑
x,y∈XL

1{m(x) �= m(y)}1{dL(x, y) ≤ rL}
⎤
⎦ , (23)

where c is the same normalizing factor as in (11). Similarly, νL(·) may be used to discover
aggregation/repulsion between points of different types subject to an interpoint distance rL.
Note that, unlike the cross/dot-type summary characteristics, the mingling functions (11)
and (23) quantify the aggregation and/or repulsion tendencies between any given types,
rather than focusing on the interaction between two specific types or comparing a single
type against all other types.

4.1.2. Higher-Order Marked Inhomogeneous Summary Characteristics

Next, for IRMPS point processes, we extend the inhomogeneous higher-order summary
characteristics of Cronie et al. (2020) to multivariate/multitype settings. In particular, we
have the following cross-type summary characteristics

HL,inhom
i j (u, rL) = 1 − E

⎡
⎢⎣ ∏
x∈XL

j

(
1 − λ̄Lj 1{dL(u, x) ≤ r}

λLj (x)
∇{u, dL(u, x)}

) ∣∣∣∣u ∈ XL
i

⎤
⎥⎦ ,

(24)

JL,inhom
i j (u, rL) = 1 − HL,inhom

i j (u, rL)

1 − FL,inhom
j (u, rL)

, FL,inhom
j (u, rL) �= 1, (25)

FL,inhom
j (u, rL) = 1 − E

⎡
⎢⎣ ∏
x∈XL

j

(
1 − λ̄Lj 1{dL(u, x) ≤ r}

λLj (x)
∇{u, dL(u, x)}

)⎤
⎥⎦ , (26)

and the dot-type ones

HL,inhom
i• (u, rL) = 1 − E

⎡
⎢⎢⎣

∏
x∈XL

u �=x

(
1 − λ̄L1{dL(u, x) ≤ r}

λL(x)
∇{u, dL(u, x)}

) ∣∣∣∣u ∈ XL
i

⎤
⎥⎥⎦ ,

(27)

JL,inhom
i• (u, rL) = 1 − HL,inhom

i• (u, rL)

1 − FL,inhom(u, rL)
, FL,inhom(u, rL) �= 1, (28)

where FL,inhom(u, rL) and FL,inhom
j (u, rL) are the inhomogeneous empty space functions

of XL and XL
j , respectively. For any two fixed types i, j , JL,inhom

i j (·) = 1 means points
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of type j are randomly distributed around points of type i , JL,inhom
i j (·) > 1 means that

points of type j tend to happen around points of type i , and JL,inhom
i j (·) < 1 indicates that

points of type j prefer to maintain a distance from points of type i . Turning to the dot-type
J -function, if JL,inhomi•(·) = 1, it implies that points of different types than i exhibit no
interaction with points of type i . When JL,inhomi•(·) > 1, it signifies a propensity for other
types to appear in proximity to points of type i . Conversely, JL,inhom

i• (·) < 1 suggests a
preference for other types to hold a distance from points of type i . Note that these higher-
order marked summary characteristics are expected to provide a deeper understanding of
the spatial patterns and clustering/repulsion behavior among points of different types since
they go beyond pairwise interactions, providing information about interactions involving
more than two points.

4.2. REAL-VALUED MARKS

We now turn to a situation where points are labelled by real-valued marks. By taking the
presented methods in Sect. 3.2 into account, we present novel mark summary characteristics
that account for the geometry of the underlying network.

4.2.1. Mark Correlation Functions and Mark-Weighted Summary Characteristics

Generalizing the t f -correlation functions in (12) to the present setting, the tLf -correlation
function for point processes on linear networks is of the form

κL

tLf
(rL) =

E
[
tLf (m(x),m(y))

∣∣x, y ∈ XL
]

ctLf
, dL(x, y) = rL, (29)

where ctLf
is a normalizing factor; the superscript L emphasizes that the t f -correlation

functionwill be evaluated over the linear networkL. The numerator in (29) is the conditional
expectation of a given test function evaluated over a pair of marks whose corresponding
spatial locations are rL distances away, given that the two points belong to the point process
XL. The denominator ctLf

is the expected value of the considered test function under the

mark independence assumption. Applying the same principles as in Sect. 3.2, the specific
linear-network-based mark characteristic depends on the explicit formulation of the test
function. A summary of potential test functions for point processes on linear networks and
their notations is given in Table 3.

Taking the geometry of linear networks into account and employing a regular metric
(Rakshit et al. 2017), the mark variogram γL

mm(rL) quantifies the variability of marks for
pairs of points with an interpoint distance rL. Note that, in contrast to the classic mark
variogram γmm(r), given in Table 1, which disregards the underlying geometry of the linear
network L and, thus, may yield biased outcomes and potentially mislead interpretations
(see Sect. 4.2.2), the mark variogram γL

mm(rL) takes the specific properties of the linear net-
work into account and provide more accurate outcomes. The large/small local differences,
i.e., high/low local variation, between marks give rise to large/small values for the mark
variogram function, deviating from the mark independence assumption. Similarly, the geo-
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Table 3. Test functions for point processes on linear networks with real-valued marks. The average and variance
of all marks are denoted by μm,L and σ 2

m,L
, and μm,L(rL) is the conditional mean of the marks for

points with an interpoint distance rL

Name of the function Symbol Test function (tLf ) Normalizing

factor (c
tLf

)

Mark variogram γL
mm (rL) 0.5[m(x) − m(y)]2 σ 2

m,L

Stoyan’s mark correlation function κLmm (rL) m(x)m(y) μ2
m,L

rL-mark correlation function κLm•(rL) m(x) μm,L

rL-mark correlation function κL•m (rL) m(y) μm,L

Beisbart and Kerscher’s κLmm(rL) κ
Bei,L
mm (rL) m(x) + m(y) 2μm,L

Isham’s κLmm (rL) κ
Ish,L
mm (rL) m(x)m(y) −(μm,L)2 σ 2

m,L

Stoyan’s mark covariance function CovLmm (rL) m(x)m(y) − (μm,L)2 1
Schlather’s I ILmm (rL) (m(x) − μm,L(rL))(m(y) − μm,L(rL)) σ 2

m,L

Shimanti’s I IShi,Lmm (rL) (m(x) − μm,L)(m(y) − μm,L) σ 2
m,L

metrically corrected version of Stoyan’s mark correlation κL
mm(rL) quantifies the average

pairwise product of marks for points separated by a distance rL along the linear network
L. If marks are independent, it coincides with the mark mean squared μ2

m,L providing that
κL
mm(rL) = 1. If marks for nearby points on a linear network differ from the expected mark
under independence, their averagewould also be different fromμ2

m,L and thus κL
mm(rL) �= 1.

Similarly, the rL-mark correlation functions would only coincide with the mark mean if the
marks are independent subject to a distance rL. Consequently, any deviations of rL-mark
correlation functions from one indicate the existence of a structure in the distribution of
marks. The geometrically corrected version of Beisbart and Kerscher’s mark correlation
κ
Bei,L
mm (rL) expects that the average pairwise sum of marks is expected to be equal to twice
the mark mean under independence. Thus, deviations of κ

Bei,L
mm from unity highlight local

dependencies and the existence of a particular structure among marks. In a similar manner,
one may describe other mark characteristics presented in Table 3.

In addition to the above test functions, we further, for a homogeneous point process XL

with constant intensity λL, extend the mark-weighted K -functions Kt f (r), given in (13), to
the linear network settings, and propose its counterpart as

KL

tLf
(rL) = E

⎡
⎢⎢⎣ 1

ctLf
λL

∑
x∈XL

u �=x

tLf (m(x),m(u))1{dL(x, u) ≤ rL}∇(u, dL(u, x))
∣∣∣u ∈ XL

⎤
⎥⎥⎦ ,

(30)

which becomes

KL,inhom
tLf

(rL) = E

⎡
⎢⎢⎣ 1

ctLf

∑
x∈XL

u �=x

tLf (m(x),m(u))
1{dL(x, u) ≤ rL}∇(u, dL(u, x))

λL(x)

∣∣∣u ∈ XL

⎤
⎥⎥⎦

(31)
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for inhomogeneous point processes. Implementing the test function tLf (·) as a weight in
the geometrically corrected K -function for spatial point processes on linear networks as
in (30) and (31), gives rise to scaled versions of the original K -functions. In particular,
since the implemented weight becomes one if marks are independent, the up/down-scaled
version of the original K -function highlights some interaction between marks. Under the
assumption that points are generated from a Poisson process with independent marks, the
above mark-weighted K -functions possess a known value denoted by rL. However, due to
the presence of two sources re-scaling the K -function, namely pairwise interaction between
points and between marks, it is advisable to compute both the weighted and unweighted
versions for amore comprehensive understanding. Note that the weighting idea is applicable
to other summary characteristics such as the inhomogeneous empty space function, the
inhomogeneous nearest-neighbor distance distribution function, and the inhomogeneous
J -function.

Next, for a homogeneous point process XL with the pair correlation ρL(·), we propose
an extension of (14) as

UL(rL) = [λL]2ρL(rL)κL

tLf
(rL)|d1x ||d1y|, (32)

where |d1x | and |d1y| are the sizes of two infinitesimal segments around the points x, y ∈ L;
similar interpretation, as the planar case, holds for UL(rL).

4.2.2. Numerical Evaluation

This section is devoted to evaluating the performance of the proposed linear-network-
based mark characteristics and investigating potential variations between the classic planar
mark correlation functions and those that take the underlying linear network into account.
In terms of the spatial distribution of points, following the assumptions concerning the def-
inition of mark correlation functions, we consider homogeneous point patterns, with 100
uniformly distributed points, on a dendrite network, which is previously used in Jammala-
madaka et al. (2013); Baddeley et al. (2014). Next, to convert the simulated point patterns
into marked point patterns, we generate real-valued quantities according to three distinct
scenarios, called models I, II, and III, and assign the simulated marks to points. In model
I, marks follow the function f (x, y) = (x + y)/5000, having a trend from bottom-left to
top-right of the network; in model II, marks are the shortest-path distance from each point to
the dendrite’s border, and in model III marks are the number of points which have a distance
less than 80 units to a target point, i.e., the number of nearest neighbor points. Figure3
shows examples of the considered models. Note that within all three considered models,
there is a clear structure for the marks on the dendrite network.

From each model, we simulate 199 patterns, and then, for each simulated point pattern,
we calculate the Stoyan’s mark correlation function κmm(r) and our proposed network-
based mark correlation function κL

mm(rL); we let dL be the shortest-path distance. We also
let rL = 1.25r (Rakshit et al. 2019), leading to κmm(r) and κL

mm(rL) being evaluated over
distances r ∈ [0, 200] and rL ∈ [0, 250], respectively. Based on the 199 estimated mark
correlation functions, we obtain 95% pointwise critical envelopes to compare the general
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Figure 3. Examples of simulated marked point patterns. From left to right: Models I, II, and III. Colours show
mark values.

Figure 4. 95% pointwise critical envelopes for the Stoyan’s mark correlation function κmm (r) and our proposed
network-based mark correlation function κLmm (rL) based on 199 simulated patterns from Models I, II, and III.
From left to right: κmm(r), κLmm (rL), and their average. From top to bottom: Model I, Model II, and Model III .

behaviors of κmm(r) and κL
mm(rL) when the data are generated on a dendrite network. Fig-

ure4 shows the estimated Stoyan’s mark correlation functions for all models together with
their 95% pointwise envelopes and average behavior. Looking at the top row of Fig. 4, show-



Marked Spatial Point Processes...

ing the results for the model I, while the structure of the marks is not revealed by Stoyan’s
mark correlation function κmm(r) (left panel), indicating mark independence, our proposed
linear-network-based Stoyan’s mark correlation functions κL

mm(rL) (central panel) clearly
reveals a positive mark correlation for shortest-path distances up to around 175 units. For
larger distances, the mark correlation becomes less than one, which means that the average
product of marks for points that are apart by a distance higher than 175 units is smaller
than the squared mark mean value. To better compare the average behavior of κmm(r) and
κL
mm(rL), the averaged mark correlation functions are displayed in the right panel. Sim-
ilarly, model II (middle row) and model III (bottom row) show apparent dissimilarities
between the planar and the linear network mark correlation functions. Looking at the mid-
dle row and the presented results for model II, one can see a similar tendency of having
a high mark correlation for smaller distances, which turns out to be lower than the corre-
lation value under mark independence for larger distances. However, the clear difference
between the two is that κmm(r) turns from positive to negative quickly, around r = 100,
whereas κL

mm(rL) maintain values higher than the expected value under mark independence
up to rL = 200. Note that as the shortest-path distances from the points at the border to
the central point on the dendrite network increase in value, central points are surrounded
mainly by higher mark values. In contrast, very small marks appeared only very close to
the dendrite’s border. Even though both κmm(r) and κL

mm(rL) may show a positive cor-
relation for smaller distances and a negative correlation for larger distances, their main
difference is in the degree of positiveness/negativeness and further on the turning point
from positive to negative. This impression also holds for the obtained results for model III
displayed in the bottom row. While the κL

mm(rL) clearly show the structure of the marks
for small distances, increasing until rL = 50 and then decreasing, κmm(r) entirely show a
decreasing trend from small to large distances. Note also the difference between the turning
points.

Upon further comparison between κmm(r) and κL
mm(rL), we proceed by selecting a single

realization from each model. We then compare Stoyan’s mark correlation function of these
realizations to a 95% pointwise envelope under random labelling. This envelope is con-
structed using 199 point patterns with randomly allocated marks derived from the original
pattern. Looking at Fig. 5, a clear difference between the envelopes for κmm(r) and κL

mm(rL)

is that κmm(r) shows a quite higher variation for larger distances compared to κL
mm(rL),

especially for model II displayed in the middle column. Another significant distinction is
the overall fluctuation pattern of κL

mm(rL) compared to κmm(r), particularly with respect to
their containment within the envelopes, indicating different conclusions. By joining the find-
ings from both Figs. 4 and 5, it becomes evident that disregarding the impact of underlying
linear networks could potentially lead to inaccurate conclusions.

5. REAL DATA ANALYSIS

We now study the mark structure for two real data presented in Sect. 2. For the case of
influenza virus proteins, we further let the data points be labelled by the intensities so that we
can make use of both cross-type and mark correlation functions in our analysis. Intensities
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Figure 5. 95% pointwise critical envelopes for Stoyan’s mark correlation function κmm (r) and our proposed
network-based mark correlation function κLmm (rL), under random labelling, based on 199 simulated patterns. The
solid curves show κmm(r) and κLmm (rL). From left to right: model I, II, and III .

are, separately for each type, estimated via the non-parametric Jones-Diggle kernel-based
estimators (Jones 1993) after employing Scott’s rule of thumb for bandwidth selection
(Scott 2015). In the case of public street trees in Vancouver, Canada, we only make use of
our proposed version of Stoyan’s mark correlation function for point processes on linear
networks and make an additional comparison with its counterpart for point processes inR2

in the case of real datasets. We point out that all two real datasets exhibit inhomogeneity,
which is expectedwhen dealingwith real phenomena. However, we believemark correlation
functions can serve as good indicators for discovering interactions between marks, although
they are developed for stationary and homogeneous point processes.

5.1. INFLUENZA VIRUS PROTEINS

Figure 6 shows the cross-type summary characteristics and Stoyan’s mark correlation
function concerning the locations of twodifferent proteins on themembranes of cells infected
with the influenza virus, namely M2 and HA. In the cross-type inhomogeneous K -function
case, we only use its estimator with an isotropic edge correction. For small distances (r ≤
400), the cross-type inhomogeneous K -function moves around its theoretical value for
Poisson processes, meaning that the two types of proteins HA and M2 are uncorrelated,
which in turn may mean a diverse and widespread attachment of the virus to host cell
surfaces.However, for larger distances, the cross-type inhomogeneous K -function lies below
its theoretical value for Poisson processes, indicating that, at those distances, the number
of proteins of type HA around those of type M2 is smaller than that of complete spatial
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Figure 6. Mark summary characteristics for locations of two different proteins on the membranes of cells infected
with the influenza virus, namely M2 and HA. From left to right, cross-type inhomogeneous K -function (values
are multiplied by 0.01 for graphical reasons), cross-type inhomogeneous J -function, Stoyan’s mark correlation
function for influenza virus proteins HA, and Stoyan’s mark correlation function for influenza virus proteins M2.
In the case of Stoyan’s mark correlation function, envelopes are 95% pointwise critical envelopes based on 199
simulated patterns under random labelling .

randomness. The reduced presence of HA proteins around M2 at these distances might
signify a spatial rearrangement during a later phase, highlighting the dynamic interplay
between these viral proteins throughout the infection process. A similarmessage is conveyed
by the cross-type inhomogeneous J -function.

Turning to Stoyan’s mark correlation function κmm(r), we first obtain 199 point patterns
for each type of Protein by randomly allocating marks. Then, we compare Stoyan’s mark
correlation function κmm(r) for each type of Proteinwith their corresponding 95%pointwise
critical envelopes obtained from the 199 patterns under random labelling. We can see that
regardless of distance r , κmm(r) for HA stays above the envelope, indicating that the average
product of intensity is higher than the expected average under random labelling; this behavior
is stronger for smaller distances. In the case of M2, κmm(r) similarly remains above the
envelope for small to moderate distances and then stays below the envelope for distances
larger than approximately 700.

5.2. PUBLIC STREET TREES IN VANCOUVER, CANADA

Now we employ Stoyan’s mark correlation function κmm(r) and our proposed network-
based version κL

mm(rL) to investigate the distribution of diameter at breast height (dbh) for
the five species of public trees planted along the street network of Vancouver, Canada. Our
aim is to uncover potential interactions among dbh values for trees of the same species.
Similarly, we rely on 95% pointwise envelopes obtained from 199 point patterns where
spatial locations are the same as the original data, but dbh values are randomly allocated.
Looking at Fig. 7, one can evidently see that κmm(r) and κL

mm(rL) give rise to different
conclusions, highlighting the importance of taking the underlying network into account. In
the case of trees of type Arnold, both κmm(r) and κL

mm(rL) stay above the envelope but
with different degrees and turning points, highlighting that for a pair of nearby trees, at
least one of them has a large dbh. Interestingly, for distances around r = 3km, κmm(r)
stays below the corresponding envelope, while this is not the case for κL

mm(rL), pointing to
different conclusions. Similar conclusions hold for trees of type Populus; on the one hand
κL
mm(rL) stays above the corresponding envelope for distances around rL = 2km while this
is not the case for κmm(r), on the other hand, κmm(r) stays below the envelope for distances
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Figure 7. Stoyan’smark correlation function for the five species of trees alongside the street network ofVancouver,
Canada; the mark is dbh of trees. From left to right: Arnold, Populus, Involucrata, Aquifolium, Bignonioides. The
top row considers the network; the bottom row ignores it .

r = 2.5km while κL
mm(rL) remains inside its envelope. Similar conclusions hold for other

species, pointing to the impact of the underlying network. The main difference between
the distribution of dbh values for the considered species might be the fact that, for small
interpoint distances, mark correlation functions for all species have larger values than the
expected value under mark independence, except type Populus, for which mark correlation
functions stay below the corresponding envelopes for very small interpoint distances. Note
that this means for a pair of trees of the type Populus with very small interpoint distances,
the dbh value for at least one of them is pretty small.

6. DISCUSSION

Methods for analyzing spatial point processes, when each point is augmented by some
auxiliary quantity, have recently witnessed impressive developments. Apart from some
extensions of the current methodological toolboxes to the case of point processes with
events on linear networks/graphs (Jammalamadaka et al. 2013; Baddeley et al. 2014), parts
of the recent literature proposed generalizations to more challenging scenarios where marks
are non-scalar. Extensions to the settings where marks are function-valued were considered,
followed by some recent contributions covering functional characteristics, where marks are
inherently structured objects including compositions, densities, and graphs (Ghorbani et al.
2021; Eckardt et al. 2023, 2024). In this paper, we have restricted our focus to general
marked summary characteristics when points live on either planar spaces or linear networks
and marks are integer/real/object-valued. By combining the general marked characteristic
ideaswith linear network settings,we have not only reviewed the current summary character-
istics for point processes inR2 but, in particular, introduced novel summary characteristics
for marked point processes on linear networks.We point out that the literature further covers
some extensions of general point process models to marked settings. We here have not cov-
ered models for marked point processes, however, the discussed summary characteristics
are valuable tools as initial steps within the model formulation.
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Despite allmethodological progress, the study ofmarked inhomogeneous point processes
is still in its infancy. Note that (i) it is quite rare to have stationary point processes in practice,
and (ii) stationarity for point processes on linear networks is quite limited and challenging
(Baddeley et al. 2017; Cronie et al. 2020). In fact, among all developed methods, only
the cross/dot-type summary characteristics and mark-weighted summary characteristics are
defined for both homogeneous and inhomogeneous point processes. Note further that one
may create mark subsets out of the real-values marks and then employ cross/dot-type sum-
mary characteristics. These could potentially limit the analysis of marked point processes,
especially when marks are real-valued and/or object-valued (Eckardt et al. 2023). Further,
the growing availability of complex point patterns calls for suitable methods to investi-
gate the dependencies between different types of object-valued marks, e.g., compositions
and shapes, which, in practice, is not available under the present methodological toolbox.
Besides, there are various introduced local indicators of spatial association (LISA) in the
literature (Anselin 1995; Cressie and Collins 2001), but their extensions for marked point
processes have not been established so far; current mark characteristics do not disclose
local behaviors. In addition, although still recognized within a small niche of research, spa-
tial frequency domain methods might become useful tools for modern mark scenarios and
help avoid burdensome computations. It would also be interesting to account for possible
directional behaviors of marks; note the availability of (second-order) directional analysis
of spatial point processes on both planar spaces and linear networks (Rajala et al. 2018;
Moradi et al. 2021).

Apart from the clear lack of suitable mark summary characteristics for inhomogeneous
marked point processes, there is also a need for extensions of any such method to spatio-
temporal processes; an application of such a case is trajectories (Moradi 2018) where,
depending on the application, spatial locations of points might be network-limited or not.
We note that Iftimi et al. (2019) proposed some marked second-order reduced moment
measures and K -functions for inhomogeneous point processes with particular focus on
space-time settings where spatial locations are in R2.

Further, in the case of function-valuedmarks, marksmight undergo abrupt and/or gradual
changes, which may not be accounted for in the current settings (Moradi et al. 2023). Apart
from the discussed methods, suitable extensions of point-to-mark tools (Schlather et al.
2004) to more challenging state spaces and/or mark settings have not been established. We
further highlight the lack of methods for marked point processes on a sphere. As a final note,
it would also be interesting to develop methodologies and test functions that can incorporate
negative marks.

ACKNOWLEDGEMENTS

The authors are grateful to the review team for comments that improved this manuscript. The authors also
gratefully acknowledge financial support through the German Research Association and the Stochastic Group of
the German Mathematical Society. Matthias Eckardt was funded by the Walter Benjamin grant 467634837 from
the German Research Foundation. Mehdi Moradi received travel support from the Stochastic Group of the German
Mathematical Society. Our datasets, R codes used concerning the mark correlation functions for point processes
on linear networks, all R codes used for simulation studies and real data analysis, all R outputs and plots, are
publicly available at https://github.com/Moradii/Marklpp.

https://github.com/Moradii/Marklpp


M. Eckardt and M. Moradi

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and
indicate if changes were made. The images or other third party material in this article are included in the article’s
Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds
the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Funding Open access funding provided by Umea University.

Declarations

Conflict of interest The authors have no conflicts of interest to declare.

[Received September 2023. Revised January 2024. Accepted January 2024.]

REFERENCES

Ang W, Baddeley A, Nair G (2012) Geometrically corrected second order analysis of events on a linear network,
with applications to ecology and criminology. Scand J Stat 39:591–617

Anselin L (1995) Local indicators of spatial association - LISA. Geol Anal 27(2):93–115

Baddeley A (2010)Multivariate and marked point processes. In: Gelfand AE, Diggle P, Fuentes M, Guttorp P (eds)
Handbook of spatial statistics. Chapman & Hall/CRC, pp 371–402

Baddeley A, Jammalamadaka A, Nair G (2014) Multitype point process analysis of spines on the dendrite network
of a neuron. J Royal Stat Soc Ser C (Appl Stat) 63(5):673–694

Baddeley A, Møller J, Waagepetersen R (2000) Non-and semi-parametric estimation of interaction in inhomoge-
neous point patterns. Stat Neerl 54(3):329–350

BaddeleyA,Nair G, Rakshit S,McSwigganG (2017) Stationary point processes are uncommon on linear networks.
Stat 6(1):68–78

BaddeleyA, Nair G, Rakshit S,McSwigganG, Davies TM (2021) Analysing point patterns on networks—a review.
Spat Stat 42:100435

Baddeley A, Rubak E, Turner R (2015) Spatial point patterns: methodology and applications with R. CRC Press

Bartlett MS (1964) The spectral analysis of two-dimensional point processes. Biometrika 51:299–311

ayisa FL, Ådahl M, Rydén P, Cronie O (2023) Regularised semi-parametric composite likelihood intensity mod-
elling of a swedish spatial ambulance call point pattern. J Agric Biol Environ Stat 1–20

Brillinger D (1981) Time series: data analysis and theory. Holt, Rinchart and Winston, New York

Capobianco R, Renshaw E (1998) The autocovariance function for marked point processes: a comparison between
two different approaches. Biom J 40(4):431–446

Chen BJ, Leser GP, Jackson D, Lamb RA (2008) The influenza virus m2 protein cytoplasmic tail interacts with
the m1 protein and influences virus assembly at the site of virus budding. J Virol 82(20):10059–10070

ComasC,DelicadoP,Mateu J (2008)Analysing spatial point patternswith associated functional data. In:D.Cocchi,
J. Mateu, F. Montes, E. Otranto, E. Porcu, and A. Usai (Eds.), Statistics for Spatio-temporal modelling.

Proceedings of the 4th international workshop on spatio-temporal modelling (METMA-4), pp 157–163

Comas C, Delicado P, Mateu J (2011) A second order approach to analyse spatial point patterns with functional
marks. Test 20(3):503–523

Comas C, Mehtätalo L, Miina J (2013) Analysing space-time tree interdependencies based on individual tree
growth functions. Stoch Environ Res Risk Assess 27(7):1673–1681

Cressie N (1993) Statistics for spatial data. Wiley

http://creativecommons.org/licenses/by/4.0/


Marked Spatial Point Processes...

Cressie N, Collins LB (2001) Analysis of spatial point patterns using bundles of product density LISA functions.
J Agric Biol Environ Stat 6(1):118–135

Cronie O, Moradi M,Mateu J (2020) Inhomogeneous higher-order summary statistics for point processes on linear
networks. Stat Comput 30(5):1221–1239

Cronie O, van Lieshout MNM (2016) Summary statistics for inhomogeneous marked point processes. Ann Inst
Stat Math 68:905–928

D’Angelo N, Adelfio G, Mateu J, Cronie O (2023) Local inhomogeneous weighted summary statistics for marked
point processes. J Comput Graph Stat 1–15. https://doi.org/10.1080/10618600.2023.2206441

Daniel J, Horrocks J, Umphrey GJ (2020) Efficient modelling of presence-only species data via local background
sampling. J Agric Biol Environ Stat 25:90–111

Eckardt M, Comas C, Mateu J (2023) Summary characteristics for multivariate function-valued spatial point
process attributes. Submitted for publication

Eckardt M, Ghorbanpour F, Särkkä A (2024) Second-order characteristics for spatial point processes with graph-
valued mark. Submitted for publication

Eckardt M, Gonzáles J, Mateu J (2021) Graphical modelling and partial characteristics for multitype and
multivariate-marked spatio-temporal point processes. Comput Stat Data Anal 156:107139

Eckardt M, Greven S, Myllymäki M, (2023) On spatial point processes with composition-valued marks. Submitted
for publication

Eckardt M, Mateu J (2018) Point patterns occurring on complex structures in space and space-time: an alternative
network approach. J Comput Graph Stat 27(2):312–322

Eckardt M, Mateu J (2019) Analysing multivariate spatial point processes with continuous marks: a graphical
modelling approach. Int Stat Rev 87(1):44–67

Eckardt M, Mateu J (2019) Partial characteristics for marked spatial point processes. Environmetrics 30(6):e2565

Eckardt M, Mateu J (2021) Second-order and local characteristics of network intensity functions. Test 30(2):318–
340

Fedriani JM, Wiegand T, Calvo G, Suárez-Esteban A, Jácome M, Zywiec M, Delibes M (2015) Unravelling
conflicting density- and distance-dependent effects on plant reproduction using a spatially explicit approach.
J Ecol 103(5):1344–1353

Feigelson ED, Babu GJ (2012) Modern statistical methods for astronomy: with R applications. Cambridge Uni-
versity Press

Flagg KA, Hoegh A, Borkowski JJ (2020) Modeling partially surveyed point process data: inferring spatial point
intensity of geomagnetic anomalies. J Agric Biol Environ Stat 25:186–205

Gavrikov V, Stoyan D (1995) The use of marked point processes in ecological and environmental forest studies.
Environ Ecol Stat 2(4):331–344

Ghorbani M, Cronie O, Mateu J, Yu J (2021) Functional marked point processes: a natural structure to unify
spatio-temporal frameworks and to analyse dependent functional data. Test 30:529–568

GuanY (2006) Tests for independence betweenmarks and points of amarked point process. Biometrics 62(1):126–
134

Guan Y, Afshartous DR (2007) Test for independence between marks and points of marked point processes: a
subsampling approach. Environ Ecol Stat 14:101–111

Harkness RD, Isham V (1983) A bivariate spatial point pattern of ants’ nests. J Royal Stat Soc Ser C (Appl Stat)
32(3):293–303

Hui G, Pommerening A (2014) Analysing tree species and size diversity patterns in multi-species uneven-aged
forests of northern China. For Ecol Manag 316:125–138

Iftimi A, Cronie O, Montes F (2019) Second-order analysis of marked inhomogeneous spatiotemporal point
processes: applications to earthquake data. Scand J Stat 46(3):661–685

Illian J, Penttinen A, Stoyan H, Stoyan D (2008) Statistical analysis and modelling of spatial point patterns. John
Wiley & Sons, New York

https://doi.org/10.1080/10618600.2023.2206441


M. Eckardt and M. Moradi

JammalamadakaA, Banerjee S,Manjunath BS, Kosik KS (2013) Statistical analysis of dendritic spine distributions
in rat hippocampal cultures. BMC Bioinf 14:1–19

Jones MC (1993) Simple boundary correction for kernel density estimation. Stat Comput 3:135–146

Lewandowski A, Pommerening A (1997) Zur Beschreibung der Waldstruktur – Erwartete und beobachtete
Arten-Durchmischung. Forstwissenschaftliches Centralblatt vereinigt mit Tharandter forstliches Jahrbuch
116(1):129–139

Lotwick HW, Silverman BW (1982) Methods for analysing spatial processes of several types of points. J Royal
Stat Soc Ser B (Methodological) 44(3):406–413

Mateu J,MoradiM, Cronie O (2020) Spatio-temporal point patterns on linear networks: pseudo-separable intensity
estimation. Spat Stat 37:100400

McSwiggan G, Baddeley A, Nair G (2017) Kernel density estimation on a linear network. Scand J Stat 44(2):324–
345

Møller J, Waagepetersen R (2003) Statistical inference and simulation for spatial point processes. Chapman and
Hall/CRC Boca Raton

MoradiM (2018) Spatial and spatio-temporal point patterns on linear networks. PhD dissertation, University Jaume
I

Moradi M, Cronie O, Pérez-Goya U, Mateu J (2023) Hierarchical spatio-temporal change-point detection. The
American statistician, 1–11

Moradi M, Cronie O, Rubak E, Lachieze-Rey R, Mateu J, Baddeley A (2019) Resample-smoothing of Voronoi
intensity estimators. Stat Comput 29(5):995–1010

Moradi M, Mateu J (2020) First- and second-order characteristics of spatio-temporal point processes on linear
networks. J Comput Graph Stat 29(3):432–443

Moradi M, Mateu J, Comas C (2021) Directional analysis for point patterns on linear networks. Stat 10(1):e323

Moradi M, Rodriguez-Cortes F, Mateu J (2018) On kernel-based intensity estimation of spatial point patterns on
linear networks. J Comput Graph Stat 27(2):302–311

MugglestoneMA, RenshawE (1996) The exploratory analysis of bivariate spatial point pattern using cross-spectra.
Environmetrics 7:361–377

Okabe A, Yamada I (2001) The K -function method on a network and its computational implementation. Geograph
Anal 33(3):271–290

Penttinen A, Stoyan D (1989) Statistical analysis for a class of line segment processes. Scand J Stat 16(2):153–168

Penttinen A, Stoyan D, Henttonen HM (1992) Marked point processes in forest statistics. For Sci 38(4):806–824

Pommerening A, Gonçalves AC, Rodríguez-Soalleiro R (2011) Species mingling and diameter differentiation as
second-order characteristics. Allgemeine Forst- und Jagdzeitung 182(7/8):115–129

Pommerening A, Grabarnik P (2019) Individual-basedmethods in forest ecology andmanagement. Springer Cham

Rajala T, Redenbach C, Särkkä A, Sormani M (2018) A review on anisotropy analysis of spatial point patterns.
Spat Stat 28:141–168

Rakshit S, Baddeley A, Nair G (2019) Efficient code for second order analysis of events on a linear network. J Stat
Softw 90:1–37

Rakshit S, Davies TM, Moradi M, McSwiggan G, Nair G, Mateu J, Baddeley A (2019) Fast kernel smoothing of
point patterns on a large network using two-dimensional convolution. Int Stat Rev 87(3):531–556

Rakshit S, Nair G, Baddeley A (2017) Second-order analysis of point patterns on a network using any distance
metric. Spat Stat 22:129–154

Ramsay J, Silverman B (1997) Functional data analysis. Springer

Raventós J, Mujica E, Wiegand T, Bonet A (2011) Analyzing the spatial structure of broughtonia cubensis (orchi-
daceae) populations in the dry forests of Guanahacabibes Cuba. Biotropica 43(2):173–182

Renshaw E (2002) Two-dimensional spectral analysis for marked point processes. Biom J 44:718–745

Renshaw E, Ford E (1984) The description of spatial pattern using two-dimensional spectral analysis. Vegetatio
56:75–85



Marked Spatial Point Processes...

Renshaw E, Ford ED (1983) The interpretation of process from pattern using two-dimensional spectral analysis:
methods and problems of interpretation. Appl Stat 32:51–63

Ripley BD (1976) The second-order analysis of stationary point processes. J Appl Probab 13:255–266

Russell JC, Hanks EM, Haran M (2016) Dynamic models of animal movement with spatial point process interac-
tions. J Agric Biol Environ Stat 21:22–40

Schlather M (2001) On the second-order characteristics of marked point processes. Bernoulli 7(1):99–117

Schlather M, Riberio P, Diggle P (2004) Detecting dependence between marks and locations of marked point
processes. J Royal Stat Soc Ser B (Methodological) 66:79–93

Scott DW (2015) Multivariate density estimation: theory, practice, and visualization. John Wiley & Sons

Shimatani K (2002) Point processes for fine-scale spatial genetics and molecular ecology. Biom J 44(3):325–352

Spooner PG, Lunt ID, Okabe A, Shiode S (2004) Spatial analysis of roadside acacia populations on a road network
using the network k-function. Landsc Ecol 19(5):491–499

Stoyan D (1984) Correlations of the marks of marked point processes - statistical inference and simple models.
Elektronische Informationsverarbeitung und Kybernetik 20(5/6):285–294

Stoyan D (1987) Statistical analysis of spatial point processes: a soft-core model and cross-correlations of marks.
Biom J 29(8):971–980

Stoyan D, Stoyan H (1994) Fractals, random shapes, and point fields: methods of geometrical statistics. Wiley,
Chichester, New York

Stoyan D, Wälder O (2000) On variograms in point process statistics, ii: models for markings and ecological
interpretation. Biom J 42:171–187

van Lieshout MNM (2006) A J-function for marked point patterns. Ann Inst Stat Math 58(2):235–259

van Lieshout MNM (2011) A J-function for inhomogeneous point processes. Stat Neerl 65(2):183–201

van Lieshout MNM, Baddeley A (1996) A nonparametric measure of spatial interaction in point patterns. Stat
Neerl 50(3):344–361

van Lieshout MNM, Baddeley A (1999) Indices of dependence between types in multivariate point patterns. Scand
J Stat 26(4):511–532

Wälder O, Stoyan D (1996) On variograms in point process statistics. Biom J 38(8):895–905

Wiegand T, Moloney KA (2013) Handbook of spatial point-pattern analysis in ecology. Chapman and Hall/CRC

Xie Z, Yan J (2008) Kernel density estimation of traffic accidents in a network space. Comput Environ Urban Syst
32(5):396–406

Yazigi A, Penttinen A, Ylitalo A-K, Maltamo M, Packalen P, Mehtätalo L (2021) Modeling forest tree data using
sequential spatial point processes. J Agric Biol Environ Stat 27:1–21

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.


	Marked Spatial Point Processes: Current State and Extensions to Point Processes on Linear Networks
	1. Introduction
	2. Data
	3. Marked Spatial Point Processes in R2
	3.1. Discrete and Integer-Valued Marks
	3.1.1. Mark Connection and Mingling Functions

	3.2. Real-Valued Marks
	3.3. Frequency Domain Approaches
	3.3.1. Frequency Domain Approaches for Discrete and Integer-Valued Marks
	3.3.2. Frequency Domain Approaches for Real-Valued Marks

	3.4. Object-Valued Marks

	4. Marked Spatial Point Processes on Linear Networks
	4.1. Discrete and Integer-Valued Marks
	4.1.1. Mark Connection and Mingling Function
	4.1.2. Higher-Order Marked Inhomogeneous Summary Characteristics

	4.2. Real-Valued Marks
	4.2.1. Mark Correlation Functions and Mark-Weighted Summary Characteristics
	4.2.2. Numerical Evaluation


	5. Real Data Analysis
	5.1. Influenza Virus Proteins
	5.2. Public Street Trees in Vancouver, Canada

	6. Discussion
	Acknowledgements
	References


