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Testing Correlation in a Three-Level Model
Anna Szczepańska-Álvarez , Adolfo Álvarez, Artur Szwengiel,

and Dietrich von Rosen

In this paper, we present a statistical approach to evaluate the relationship between
variables observed in a two-factors experiment. We consider a three-level model with
covariance structure � ⊗ �1 ⊗ �2, where � is an arbitrary positive definite covari-
ance matrix, and �1 and �2 are both correlation matrices with a compound symmetric
structure corresponding to two different factors. The Rao’s score test is used to test the
hypotheses that observations grouped by one or two factors are uncorrelated.We analyze
a fermentation process to illustrate the results.
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1. INTRODUCTION

To analyze the influence of different factors in field experiments has been a problem
in agricultural research (and not only) for many years (see, e.g., Verdooren 2020). For
example, the influence of photoperiod and temperature into flowering responses (Imrie and
Lawn 1990); the temperature and extracts on flowering and yield in cucumber (Sarhan and
Ismael 2014); or the nutrients and salinity on the yield and growth of Faba beans (Haddad
and Abahri 2022).

The relationship between variables can be found via the analysis of the structure of the
covariance matrix (seeMieldzioc et al. 2019, 2021). In factorial experiments, the covariance
matrix can be naturally expressed as aKronecker product structure leading to less covariance
parameters to estimate. The experiments where the variable can be cross-classified by two
factors can be described by two-level models. The estimation and separability tests in these
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Figure 1. Example of response (growth curve) obtained from one well. The blue dots represent the measurements

of the growth of yeast over time, and the red curve is an approximate model of the form E(y) = ab+cxd

b+xd
(Color

figure online).

models has been widely discussed in the literature, see, e.g., Dutilleul (1999), Naik and
Rao (2001), Lu and Zimmerman (2005), Roy and Khattree (2005), Srivastava et al. (2008),
Simpson (2010), Soloveychik and Trushin (2016), Filipiak and Klein (2017), Szczepańska-
Álvarez et al. (2017), Dutilleul (2021). Chen and Liu (2018) have been testing independence
among a number of high-dimensional random samples.

Simultaneously with the development of the theory of the two-factor model, papers
related to a three-level model appeared (e.g., see Mardia and Goodall 2013; Galecki 1994;
Lu and Zimmerman 2005; Roy and Leiva 2008; Singull et al. 2012; Manceur and Dutilleul
2013; Leiva and Roy 2014).

In this paper, a three-level model is used to analyze the relationship between variables in
a two-factor experiment involving a fermentation process. The studied data were collected
during inoculation of yeast species using microplates. In the experiment, apple juice was
mixed with one of three types of yeast species {A, B,C}, (the first factor) and was or was not
supplemented by K2S2O5 (the second factor). For each combination, the growth of yeast
was observed. An example of response (growth curve) obtained from one of the wells is
given in Fig. 1. From each curve, the following characteristic variables were determined:
the time point where the growing process started, the speed of growth, and the asymptote of
the growth curve. The presented experiment can then be described by a three-level model.

The main objective of this paper is to present statistical inference about the correlation of
measurements in a two-factor design. Tests will be carried out with the help of Rao’s score
test (see Cox and Hinkley 1974; Rao 2005), since it is well known that one advantage of
using the score test is that the maximum likelihood estimators (or asymptotically equivalent
estimators) only have to be derived under the null hypothesis.

The structure of the paper is as follows: In Sect. 2, the statistical model of interest and the
tested hypotheses are introduced. The likelihood function related to the considered model
is presented in Sect. 3. In Sect. 4, maximum likelihood estimators and Rao’s score test are
applied to hypotheses about factor levels. In Sect. 5, the results are illustrated by data from
the experiment that motivated this study. In the last section, the conclusions are formulated.
Details connected to some of the calculations in the proofs are given in Appendix A and
Appendix B.
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Throughout the work, bold lower cases denote vectors, as applied above, such as
x1, . . . , xn , and bold upper cases denote matrices, e.g., X1, . . . ,Xn . The Greek alphabet
will be used to indicate parameters. Moreover, vec(·) is the usual vectorization operator,
i.e., stacking columns of a matrix starting with the last one, and as noted above ⊗ denotes
the Kronecker product. Other notations will be defined when they are introduced.

2. MODEL AND HYPOTHESES

Consider a two-factor experiment where r characteristics are measured. Let the factors
have p and q levels, respectively. At hand are n independent r-valued measurements. Each
set of independent observations can be written as a vector: for d ∈ {1, . . . , n},

xd =
p∑

i=1

q∑

j=1

r∑

k=1

(xi jk)d e3k ⊗ e2j ⊗ e1i ,

where (xi jk)d is the element of the vector xd and e3k , e
2
j , e

1
i are unit basis vectors of size

r, q, p, respectively. We assume that xd is independent of xe, d �= e, and suppose that
xd follows a multivariate normal distribution, with E[xd ] = μ: pqr × 1, and D[xd ] =
� ⊗ �1 ⊗ �2, where �: r × r is an unstructured dispersion matrix, and �1: p × p and
�2: q × q are correlation matrices. We also assume that both correlation matrices follow a
compound symmetric structure corresponding to rotational invariance. With this choice of
matrices, there is a unique parametrization and all parameters are estimable. The estimation
equations will be derived, and then, a flip-flop algorithm delivers the estimators. Note that
since �1 and �2 consist of only one unknown parameter it is a very simple case. However,
even in this case the researcher has to be careful when carrying out inference. A stochastic
representationofxd equalsxd = μ+(�1/2⊗(�1)

1/2⊗(�2)
1/2)e,where e ∼ Npqr (0, Ipqr ).

In this model, we test the correlation matrices for factor levels and specifically consider the
two null hypotheses

H1
0 : D[xd ] = � ⊗ Ip ⊗ �2, H2

0 : D[xd ] = � ⊗ Ip ⊗ Iq .

Thus, the interest is to test hypothesis about a subset of the unknown parameters and Rao’s
score statistic (e.g., see Rao 2005) is going to be used.

In general, consider θ = (ξ ′,ψ ′)′ as the vector of unknown parameters, where ξ : t × 1,
ψ : (s − t) × 1 and we would like to test H0 : ξ = ξ0. In this case, Rao’s score statistic is
given by

Ws = sξ (̃θξ0
)′[I1.2(̃θξ0

)]−1sξ (̃θξ0
),

where θ̃ ξ0
is the maximum likelihood estimator of θ under the null hypothesis and the score

sξ = ∂ ln L
∂ξ

: t × 1 is the gradient of the log likelihood function. The matrix I1.2 = I11 −
I12(I22)−1I ′

12 is the partial information matrix for ξ , where I11: t × t , I12: t × (s − t), I22:
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(s− t)×(s− t) are the partitions of the information matrix for θ , given by Iθ =
[
I11 I12
I ′
12 I22

]
.

Rao’s score test statistic follows asymptotically a Chi-square distribution with t degrees of
freedom.

3. LIKELIHOOD FUNCTION

To study the model, we will determine the maximum likelihood estimator of μ and of
the parameters in the dispersion matrix � ⊗ �1 ⊗ �2. Let

G�
i = eie′

i , ei : � × 1. (1)

As it has been noted, the correlation matrices �1 and �2 are supposed to have a compound
symmetric structure: �1 = (1 − φ1)Ip + φ11p1′

p and �2 = (1 − φ2)Iq + φ21q1′
q , where

φ1 and φ2 are unknown parameters. The eigendecompositions (spectral decomposition) of
these matrices equal �1 = �1�1(φ1)�

′
1 and �2 = �2�2(φ2)�

′
2, where

�1(φ1) = (1 + (p − 1)φ1)G
p
1 + (1 − φ1)

p∑

i=2

Gp
i , (2)

�2(φ2) = (1 + (q − 1)φ2)G
q
1 + (1 − φ2)

q∑

i=2

Gq
i . (3)

Because of the compound symmetric structure, the eigenvector matrices �1 : p × p and
�2 : q × q are completely known.

The correlation matrices �1,�2 and the vector of observations xd can be jointly trans-
formed to yd ∼ Npqr (ξ ,� ⊗ �1(φ1) ⊗ �2(φ2)), where

ξ = (Ir ⊗ �1 ⊗ �2)
−1μ,

yd = (Ir ⊗ �1 ⊗ �2)
−1xd .

Moreover, by rearranging the elements in yd amatrixYd ∼ Npq,r (	,�1(φ1)⊗�2(φ2),�),
appears where 	 is obtained by restructuring ξ and

vec	 = (Ir ⊗ �1 ⊗ �2)
−1μ, vecYd = (Ir ⊗ �1 ⊗ �2)

−1xd .

In the lemma below, the log likelihood function for Yd is presented.

Lemma 1. Let Yd ∼ Npq,r (	,�1(φ1) ⊗ �2(φ2),�), d ∈ {1, . . . , n}, be independent
and identically distributed observations, where 	 : pq × r is the mean, � is unknown
covariance matrix and �1(φ1), �2(φ2) are unknown diagonal matrices. The log likelihood
function can be written

ln(L(	,�, φ1, φ2)) = 1
2qrn ln | �1(φ1) |−1 +1

2
prn ln | �2(φ2) |−1
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+ 1
2 pqn ln | � |−1 − 1

2 tr{(�1(φ1) ⊗ �2(φ2))
−1A},

where A = ∑n
d=1(Yd − 	)�−1(Yd − 	)′.

4. SOLVING THE LIKELIHOOD EQUATIONS AND TESTING

We use the Rao score statistic which is based on the maximum likelihood estimators (or
asymptotically equivalent estimators) derived under the null hypothesis.

In the next lemma, we formulate the likelihood equations corresponding to the likelihood
in Lemma 1. Let λk[i, i] be the ith diagonal element in �k , k ∈ {1, 2}.

Lemma 2. Let Yd ∼ Npq,r (	,�1(φ1) ⊗ �2(φ2),�), d ∈ {1, . . . , n}, be independent
and identically distributed observations, where 	 : pq × r is the mean, � is an unknown
dispersion matrix and �1(φ1), �2(φ2) are unknown diagonal matrices with elements:
λ1[1, 1] = 1+(p−1)φ1, λ1[i, i] = 1−φ1 for i ∈ {2, . . . , p}, and λ2[1, 1] = 1+(q−1)φ2,
λ2[ j, j] = 1 − φ2 for j ∈ {2, . . . , q}, respectively. Let L = L(	,�, φ1, φ2) denote the
likelihood function. Then, the likelihood equations can be written:

d ln L

d	
: vec[(�1(φ1) ⊗ �2(φ2))

−1
n∑

d=1

Yd�
−1]

−nvec[(�1(φ1) ⊗ �2(φ2))
−1	�−1] = 0, (4)

d ln L

d(�−1)�
: pqn

2 Hrvec� − 1

2
Hrvec

[
n∑

d=1

Y′
d(�1(φ1) ⊗ �2(φ2))

−1Yd

−2
n∑

d=1

Y′
d(�1(φ1) ⊗ �2(φ2))

−1	 + n	′(�1(φ1) ⊗ �2(φ2))
−1	

]

= 0, (5)
d ln L

dφ1
: qrn(p−1)

2 ( 1
1−φ1

− 1
1+(p−1)φ1

) + (p−1)
2(1+(p−1)φ1)2

tr{(Gp
1 ⊗ [�2(φ2)]−1)A}

− 1
2

p∑

i=2

1
(1−φ1)2

tr{(Gp
i ⊗ [�2(φ2)]−1)A} = 0, (6)

d ln L

dφ2
: prn(q−1)

2 ( 1
1−φ2

− 1
1+(q−1)φ2

) + (q−1)
2(1+(q−1)φ2)2

tr{([�1(φ1)]−1 ⊗ Gq
1)A}

− 1
2

q∑

i=2

1
(1−φ2)2

tr{([�1(φ1)]−1 ⊗ Gq
i )A} = 0, (7)

where (�−1)� denotes the upper triangle of �−1, Hr = Vr (Ir2 + Kr,r − (Kr,r )d), Vr :
1
2r(r+1)×r2, is a blockpartitionedmatrix,Vr = ([V11], . . . , [Vrr ])[d],Vi i = (e1, . . . , ei )′,
i = {1, 2, . . . , r}, ei is the ith unit base vector,Kr,r is the commutation matrix, (Kr,r )d is the
diagonal matrix obtained fromKr,r (for details see Kollo and von Rosen 2005, p. 79, p. 99)
and A = ∑n

d=1(Yd − 	)�−1(Yd − 	)′.

Proof. When with the help of the derivatives given in Appendix A, differentiating the
log likelihood function, presented in Lemma 1, establish the likelihood equations. �	



262 A. Szczepańska- Álvarez et al.

Lemma 3. Let Yd ∼ Npq,r (	,�1(φ1) ⊗ �2(φ2),�), where d ∈ {1, . . . , n}. Then,

tr
[
(�1(φ̂1) ⊗ �2(φ̂2))

−1A
]

= pqrn,

where A = ∑n
d=1(Yd − 	)�−1(Yd − 	)′ and φ̂1 and φ̂2 satisfy (6) and (7).

Proof. Lemma 2 yields d ln L
d(�−1)� = 0,

pqn
2 Hrvec� − 1

2Hrvec

[
n∑

d=1

Y′
d(�1(φ1) ⊗ �2(φ2))

−1Yd

−2
n∑

d=1

Y′
d(�1(φ1) ⊗ �2(φ2))

−1	 + n	′(�1(φ1) ⊗ �2(φ2))
−1	

]
= 0,

which is equivalent to

pqn� =
n∑

d=1

Y′
d(�1(φ1) ⊗ �2(φ2))

−1Yd − 2
n∑

d=1

Y′
d(�1(φ1) ⊗ �2(φ2))

−1	

+n	′(�1(φ1) ⊗ �2(φ2))
−1	.

Multiplying by �−1 and taking the trace we get

pqnr = tr

[
n∑

d=1

�−1Y′
d(�1(φ1) ⊗ �2(φ2))

−1Yd

−2
n∑

d=1

�−1Y′
d(�1(φ1) ⊗ �2(φ2))

−1	 + n�−1	′(�1(φ1) ⊗ �2(φ2))
−1	

]
.

pqnr = tr

[
(�1(φ1) ⊗ �2(φ2))

−1
n∑

d=1

Yd�
−1Y′

d

]

−2tr

[
(�1(φ1) ⊗ �2(φ2))

−1
n∑

d=1

	�−1Y′
d

]

+ntr
[
(�1(φ1) ⊗ �2(φ2))

−1	�−1	′] .

After some calculations, the statement of the lemma is obtained. �	
Now, necessary preparations have been taking place and likelihood equations are presented
which can serve as a basis for estimation when, for example, the flip-flop algorithm is
applied.

Theorem 1. Let Yd ∼ Npq,r (	,�1(φ1) ⊗ �2(φ2),�), d ∈ {1, . . . , n}, with its likeli-
hood given in Lemma 1. Then, the maximum likelihood estimators satisfy:

	̂ = 1

n

n∑

d=1

Yd ,
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pqn�̂ =
n∑

d=1

Y′
d(�1(φ̂1) ⊗ �2(φ̂2))

−1Yd − n	̂
′
(�1(φ̂1) ⊗ �2(φ̂2))

−1	̂,

φ̂1 = 1
p−1

(p−1)tr
[
(Gp

1 ⊗[�2(φ̂2)]−1)Â
]−∑p

i=2 tr
[
(Gp

i ⊗[�2(φ̂2)]−1)Â
]

tr
[
(Ip⊗[�2(φ̂2)]−1)Â

] ,

φ̂2 = 1

q − 1

(q − 1)tr
[
([�1(φ̂1)]−1 ⊗ Gq

1)Â
] − ∑q

i=2 tr
[
([�1(φ̂1)]−1 ⊗ Gq

i )Â
]

tr
[
([�1(φ̂1)]−1 ⊗ Iq)Â

] ,

where Â = ∑n
d=1(Yd − 	̂)�̂

−1
(Yd − 	̂)′.

Proof. Notice that solving (4) and (5) given in Lemma 2 yields

	̂ = 1

n

n∑

d=1

Yd ,

pqn�̂ =
n∑

d=1

Y′
d(�1(φ̂1) ⊗ �2(φ̂2))

−1Yd − n	̂
′
(�1(φ̂1) ⊗ �2(φ̂2))

−1	̂.

The result of Lemma 3 can be rewritten in several ways. For example,

pqnr = 1
1+(p−1)φ1

tr
[
(Gp

1 ⊗ [�2(φ2)]−1)A
]

+ 1
1−φ1

p∑

i=2

tr
[
(Gp

i ⊗ [�2(φ2)]−1)A
]
, (8)

or
pqnr = 1

1+(q−1)φ2
tr

[
([�1(φ1)]−1 ⊗ Gq

1)A
]

+ 1
1−φ2

q∑

i=2

tr
[
([�1(φ1)]−1 ⊗ Gq

i )A
]
. (9)

Putting (8) into (6) and after some calculations, we obtain

(p−1)φ1
(1−φ1)(1+(p−1)φ1)

[
1

1+(p−1)φ1
tr

[
(Gp

1 ⊗ [�2(φ2)]−1)A
]

+ 1
1−φ1

p∑

i=2

tr
[
(Gp

i ⊗ [�2(φ2)]−1)A
]]

+ (p−1)
(1+(p−1)φ1)2

tr
[
(Gp

1 ⊗ [�2(φ2)]−1)A
]

−
p∑

i=2

1
(1−φ1)2

tr
[
(Gp

i ⊗ [�2(φ2)]−1)A
]

= 0.

Multiplying the above equation by (1+ (p−1)φ1)
2(1−φ1)

2 and then, some manipulations
yield

φ̂1 = 1
p−1

(p−1)tr
[
(Gp

1 ⊗[�2(φ̂2)]−1)Â
]−∑p

i=2 tr
[
(Gp

i ⊗[�2(φ̂2)]−1)Â
]

tr
[
(Ip⊗[�2(φ̂2)]−1)Â

] .
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Similarly, putting (9) into (7), it follows that

φ̂2 = 1
q−1

(q−1)tr
[
([�1(φ̂1)]−1⊗Gq

1 )Â
]−∑q

i=2 tr
[
([�1(φ̂1)]−1⊗Gq

i )Â
]

tr
[
([�1(φ̂1)]−1⊗Iq )Â

] . �	

4.1. H1
0 : D[yd] = � ⊗ Ip ⊗ �2(φ2)

Consider the hypothesis that the measurements grouped by the “first” factor levels are
not correlated, i.e., H1

0 : D[yd ] = � ⊗ Ip ⊗ �2(φ2). The hypothesis is identical to the
assumption φ1 = 0 and also means that the diagonal elements of matrix �1(φ1) equal 1.
Under the null hypothesis, the score vector is given by

sφ1 = ∂ ln L(	,�, φ1, φ2)

∂φ1

∣∣∣∣
	=	̃,�=�̃,φ2=φ̃2,φ1=0

, (10)

where 	̃, �̃ , φ̃2 are maximum likelihood estimators under the restriction φ1 = 0. Utilizing
Theorem 1, these estimators can be formulated as follows:

Corollary 1. (of Theorem 1) Let Yd ∼ Npq,r (	,�1(φ1) ⊗ �2(φ2),�), d ∈
{1, . . . , n}, with its likelihood given in Lemma 1. Moreover, �1(φ1) = Ip and �2(φ2)

is an unknown diagonal matrix with elements: λ2[1, 1] = 1+ (q −1)φ2, λ2[ j, j] = 1−φ2,
j ∈ {2, . . . , q}. Then, the maximum likelihood estimates of the parameters satisfy the fol-
lowing equations:

	̃ = 1
n

n∑

d=1

Yd ,

pqn�̃ =
n∑

d=1

Y′
d(Ip ⊗ �2(φ̃2))

−1Yd − n	̃
′
(Ip ⊗ �2(φ̃2))

−1	̃,

φ̃2 = 1
q−1

(q − 1)tr
[
(Ip ⊗ Gq

1)Ã
] − ∑q

i=2 tr
[
(Ip ⊗ Gq

i )Ã
]

trÃ
,

where Ã = ∑n
d=1(Yd − 	̃)�̃

−1
(Yd − 	̃)′.

The information matrix for all parameters is given by I = −E
(

∂2 ln L(θ)

∂θ2

)
, where θ =

{	,�, φ1, φ2} and I : (pqr + r2 + 2) × (pqr + r2 + 2).
The first and second derivatives of the log likelihood function are presented in Appendix

A. Moreover, the details involved in determining the information matrix are given in
Appendix B. Under H1

0 and with assumption {	̃, �̃
−1

, φ1 = 0, φ̃2}, the information matrix
for θ = {	,�, φ1, φ2} can be expressed as

I =

⎡

⎢⎢⎢⎣

B 0 0 0
0 C 0 d
0 0 e 0
0 d′ 0 g

⎤

⎥⎥⎥⎦ ,
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where

B = −E[d
2 ln L

d	2 ] = n[�̃−1 ⊗ (Ip ⊗ �̃2)
−1],

C = −E[ d2 ln L

d[(�−1)�]2 ] = pqn

2
Hr (�̃ ⊗ �̃)Hr ,

d = −E[ d2 ln L

d(�−1)�dφ2
] = np(q−1)

2

[
1

1+(q−1)φ̃2
− 1

1−φ̃2

]
Hrvec�̃,

e = −E[ d2 ln L
dφ1

2 ] = 1

2
qrn(p − 1)p,

g = −E[ d2 ln L
dφ2

2 ] = prn(q−1)
2

[
1

(1−φ̃2)2
+ q−1

(1+(q−1)φ̃2)2

]
. (11)

Thus, Rao’s score test statistic for testing H1
0 : D[yd ] = � ⊗ Ip ⊗ �2(φ2) equals

Ws = s2φ1I−1
1.2 , (12)

where I−1
1.2 is the inverse of the partial information matrix for φ1, i.e.,

I−1
1.2 = 1/e,

and the score s2φ1 is presented in (10). Rao’s score test statistic for testing the relationship
between observations for the “first” factor follows asymptotically a Chi-square distribution
with 1 degree of freedom.

In the next theorem, Rao’s score test statistic for testing H1
0 : D[yd ] = � ⊗ Ip ⊗�2(φ2)

is formulated.

Theorem 2. Let Yd ∼ Npq,r (	,�1(φ1) ⊗ �2(φ2),�), with its likelihood given in
Lemma 1. Then, Rao’s score test statistic for testing the hypothesis H1

0 : D[yd] = � ⊗ Ip ⊗
�2(φ2) equals

Ws =
{
(p−1)tr

[
(Gp

1 ⊗[�2(φ̃2)]−1)Ã
]−∑p

i=2 tr
[
(Gp

i ⊗[�2(φ̃2)]−1)Ã
]}2

2pqrn(p−1) ,

where φ̃2 and Ã are given in Corollary 1. The test statistic is asymptotically Chi-square
distributed with 1 degree of freedom.

Proof. The derivative dlnL
dφ1

in Lemma 2, under the hypothesis H0 : D[yd ] = � ⊗ Ip ⊗
�2(φ2) with estimators given in Corollary 1, can be written

dlnL

dφ1
= p−1

2 tr
[
(Gp

1 ⊗ [�2(φ̃2)]−1)Ã
]

− 1
2

p∑

i=2

tr
[
(Gp

i ⊗ [�2(φ̃2)]−1)Ã
]
.

Using (11) and (12) and performing some calculations, the result is established. �	

Note that based on the results obtained for testing the hypothesis H1
0 , it is easy to formulate

the test statistic for D[yd ] = � ⊗ �1(φ1) ⊗ Iq .
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Corollary 2. Let Yd ∼ Npq,r (	,�1(φ1) ⊗ �2(φ2),�), with its likelihood given in
Lemma 1. Then, Rao’s score test statistic for testing the hypothesis H0 : D[yd] = � ⊗
�1(φ1) ⊗ Iq equals

Ws =
{
(q−1)tr

[
([�1(φ̃1)]−1⊗Gq

1 )Ã
]−∑q

i=2 tr
[
([�1(φ̃1)]−1⊗Gq

i )Ã
]}2

2pqrn(q−1) ,

where

	̃ = 1
n

n∑

d=1

Yd ,

pqn�̃ =
n∑

d=1

Y′
d(�1(φ̃1) ⊗ Iq)−1Yd − n	̃

′
(�1(φ̃1) ⊗ Iq)−1	̃,

φ̃1 = 1
p−1

(p − 1)tr
[
(Gp

1 ⊗ Iq)Ã
] − ∑p

i=2 tr
[
(Gp

i ⊗ Iq)Ã
]

trÃ
,

where Ã = ∑n
d=1(Yd − 	̃)�̃

−1
(Yd − 	̃)′. The test statistic is asymptotically Chi-square

distributed with 1 degree of freedom.

4.2. H2
0 : D[yd] = � ⊗ Ip ⊗ Iq

Now, a test statistic for testing correlation between observations grouped by levels of
the first factor and the second factor is considered simultaneously. According to the null

hypothesis, φ1 = 0 and φ2 = 0. In this case, the score vector s′{φ1,ϕ2} =
[

∂lnL
∂φ1

, ∂lnL
∂φ2

]
is

determined for {	̃, �̃
−1 |ϕ1=0,φ2=0}, where 	̃ and �̃

−1
are maximum likelihood estimators

under the hypothesis H2
0 . The estimators are presented in Corollary 3.

Corollary 3. (of Theorem 1) Let Yd ∼ Npq,r (	,�1(φ1) ⊗ �2(φ2),�), d ∈
{1, . . . , n}, with its likelihood given in Lemma 1. Moreover, �1(φ1) = Ip and �2(φ2) = Iq .
Then, the maximum likelihood estimates of the parameters satisfy:

	̃ = 1
n

n∑

d=1

Yd ,

pqn�̃ =
n∑

d=1

Y′
dYd − n	̃

′
	̃.

It follows from Corollary 3 that maximum likelihood estimators are obtained explicitly. The
information matrix for estimation of all parameters under the hypothesis H2

0 can be written

I =

⎡

⎢⎢⎢⎣

B 0 0 0
0 C 0 0
0 0 e 0
0 0 0 g

⎤

⎥⎥⎥⎦ ,
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where

B = −E[d
2 ln L

d	2 ] = n[�̃−1 ⊗ Ipq ],

C = −E[ d2 ln L

d[(�−1)�]2 ] = pqn

2
Hr (�̃ ⊗ �̃)H′

r ,

e = −E[d
2 ln L

dφ1
2 ] = qrn(p − 1)p

2
, (13)

g = −E[d
2 ln L

dφ2
2 ] = −E[d

2 ln L

dφ2
2 ] = prn(q − 1)q

2
. (14)

Rao’s score test statistic equals

Ws = s′{φ1,φ2}I−1
1.2 s{φ1,φ2}, (15)

where I−1
1.2 is the inverse of the partial information matrix

I1.2 =
[
e 0
0 g

]
, (16)

and the score vector is defined in (10).
In the next theorem, we formulate Rao’s score test statistic for testing H2

0 : D[yd ] =
� ⊗ Ip ⊗ Iq :

Theorem 3. LetYd ∼ Npq,r (	,�1(φ1)⊗�2(φ2),�), d ∈ {1, . . . , n}, be independent
and identically distributed observations, where 	 : pq × r is the mean, � is an unknown
dispersion matrix and �1(φ1) and �2(φ2) are unknown diagonal matrices with elements:
λ1[1, 1] = 1 + (p − 1)φ1, λ1[i, i] = 1 − φ1, i ∈ {2, . . . , p}, λ2[1, 1] = 1 + (q − 1)φ2,
λ2[ j, j] = 1−φ2, j ∈ {2, . . . , q}. Then, Rao’s score test statistic for testing the hypothesis
H2
0 : D[yd] = � ⊗ Ip ⊗ Iq can be written

Ws = 1
2(p−1)pqrn

[
(p − 1)tr

[
(Gp

1 ⊗ Iq)Ã
] −

p∑

i=2

tr
[
(Gp

i ⊗ Iq)Ã
]
]2

+ 1
2(q−1)pqrn

[
(q − 1)tr

[
(Ip ⊗ Gq

1)Ã
] −

q∑

i=2

tr
[
(Ip ⊗ Gq

i )Ã
]
]2

,

where Ã = ∑n
d=1(Yd − 	̃)�̃

−1
(Yd − 	̃)′ and estimators 	̃, �̃ are given in Corollary 3.

The test statistic is asymptotically Chi-square distributed with 2 degrees of freedom.

Proof. The derivatives dlnL
dφ1

and dlnL
dφ2

in Lemma 2, under the hypothesis H2
0 : D[yd ] =

� ⊗ Ip ⊗ Iq , equal

dlnL

dφ1
= p−1

2 tr
[
(Gp

1 ⊗ Iq)A
] − 1

2

p∑

i=2

tr
[
(Gp

i ⊗ Iq)A
]
,
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Figure 2. Growth curves obtained from the 96 wells. For each combination of yeast species (A,B,C), and sup-
plement (Y for yes, N for no), 16 wells are presented .

dlnL

dφ2
= q−1

2 tr
[
(Ip ⊗ Gq

1)A
] − 1

2

q∑

j=2

tr
[
(Ip ⊗ Gq

j )A
]
.

Using (13)–(16), and performing some calculations establish the result. �	

5. EXPERIMENTAL RESULTS

Consider the experiment presented in the Introduction, where the mixture of apple juice
is affected by two factors: three types of yeast, p = 3, and the supplementation by K2S2O5

(yes/no), q = 2. The samples were poured manually on a multiwell with 96 wells. Each
of the wells was filled by the apple juice with given types of yeast and with or without
supplementation, the growth of yeast was observed, and measurements were taken every
20 min during 45h. In Fig. 2, the growth curves of yeast from each well is shown.

From each of the growth curve, three characteristics (r = 3) were measured: the time
point where the growing process started, the speed of growth, and the asymptote of the
growth curve. The matrices �1 and �2 used to transform the data are given by
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�1 =

⎡

⎢⎢⎣

1√
3

0 − 2√
6

1√
3

1√
2

1√
6

1√
3

− 1√
2

1√
6

⎤

⎥⎥⎦ , �2 = 1√
2

[
1 1
1 −1

]
.

Let us test the hypothesis H1
0 : D[yd ] = � ⊗ Ip ⊗ �2(φ2) given in Sect. 4.1. Using the

flip-flop algorithm, the estimators given in Corollary 1 equal

	̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

4.2562 0.0738 0.5954
−0.2851 −0.0106 −0.1667
−0.0465 0.0018 0.0171
0.0149 0.0006 0.0015

−0.0307 0.0185 −0.0303
0.0148 −0.0175 0.0361

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

�̃ =
⎡

⎢⎣
4.45 · 10−4 6.8 · 10−5 2.75 · 10−4

6.8 · 10−5 8.7 · 10−5 3.51 · 10−4

2.75 · 10−4 3.51 · 10−4 4.35 · 10−3

⎤

⎥⎦ ,

�̃2(φ2) =
[
1.2576 0

0 0.7423

]
.

Rao’s score test statistics given inTheorem2equalsWS = 0.7098which is approximately
Chi-square distributed with 1 degree of freedom. Assuming the significance level 0.05, there
is not enough evidence to reject the null hypothesis (p-value=0.3995).
Testing correlation between the measurements grouped by second factor H0 : D[yd ] =
� ⊗ �1(φ1) ⊗ Iq (Corollary 2), the estimators are as follows:

	̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

4.2562 0.0738 0.5954
−0.2851 −0.0106 −0.1667
−0.0465 0.0018 0.0171
0.0149 0.0006 0.0015

−0.0307 0.0185 −0.0303
0.0148 −0.0175 0.0361

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

�̃ =
⎡

⎢⎣
4.45 · 10−4 6.11 · 10−5 2.65 · 10−4

6.11 · 10−5 8.43 · 10−5 3.57 · 10−4

2.65 · 10−4 3.57 · 10−4 4.45 · 10−3

⎤

⎥⎦ ,

�1(φ1) =
⎡

⎢⎣
1.0859 0 0

0 0.9570 0
0 0 0.9570

⎤

⎥⎦ .

Rao’s score test statistics given in Corollary 2 equals WS = 11.33 which is approximately
Chi-square distributed with 1 degree of freedom. Assuming the significance level 0.05, the
null hypothesis rejected (p-value=0.0007). Thus, there is an effect of supplementation by
K2S2o3.
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Now, consider the test given in Sect. 4.2 H2
0 : D[yd ] = � ⊗ Ip ⊗ Iq . In this case, the

explicit estimators given in Corollary 3 equal

	̃ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

4.2562 0.0738 0.5954
−0.2851 −0.0106 −0.1667
−0.0465 0.0018 0.0171
0.0149 0.0006 0.0015

−0.0307 0.0185 −0.0303
0.0148 −0.0175 0.0361

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

�̃ =
⎡

⎢⎣
4.46 · 10−4 5.93 · 10−5 2.42 · 10−4

5.93 · 10−5 8.40 · 10−5 3.63 · 10−4

2.42 · 10−4 3.63 · 10−4 4.49 · 10−3

⎤

⎥⎦

and Rao’s score statistic given in Theorem 3 takes the value Ws = 7.409 which is approx-
imately Chi-square distributed with 2 degrees of freedom. Assuming the significance level
0.05 the null hypothesis is rejected (p-value=0.025).

The analysis was performed using R 4.2.2, and both data and code will be available as
supplementary material.

6. CONCLUSIONS

In this paper, we use Rao’s score to test the relationship between measurements in two-
factor experiments. We have proposed a solution for testing the hypothesis that there is no
correlation between observations grouped with respect to factors. We transform the original
data as xd ∼ Npqr (μ,� ⊗ �1 ⊗ �2), d ∈ {1, . . . , n}, where �: r × r is an unstructured
dispersionmatrix for characteristics, and�1: p× p and�2: q×q are correlationmatrices for
the factors and have the compound symmetric structure to modelYd ∼ Npq,r (	,�1(φ1)⊗
�2(φ2),�), d ∈ {1, . . . , n}, where	 : pq×r is the mean,� is unknown covariance matrix
and �1(φ1), �2(φ2) are unknown diagonal matrices. The given test statistics are based on
the transformed observations Yd . We have applied our results to a data set obtained from a
fermentation process.
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APPENDIX A

In this paper, the derivative of the matrix Y : r × s with respect to the matrix X : p × q
is defined as (see Kollo and von Rosen 2005, p. 127)

dY
dX

= ∂

vecX
vec′Y

where

∂

vecX
=

(
∂

∂x11
, . . . ,

∂

∂xp1
,

∂

∂x12
, . . . ,

∂

∂xp2
, . . . ,

∂

∂x1q
, . . . ,

∂

∂xpq

)′

and vec(·) denotes the vec-operator from Rp×q to Rpq , putting columns underneath, starting
with the first one. Moreover,

d2Y
dX2 = ∂

vecX
vec′ dY

dX

(see Kollo and von Rosen 2005, p. 138). To determine the needed derivatives, the following
lemma is used.

Lemma 4. Kollo and von Rosen (2005 p. 79,p. 99,pp. 128–133) Let A and B be con-
stants, and let X� denote the upper triangle of X. Moreover, let Hr = Vr (Ir2 + Kr,r −
(Kr,r )d), whereVr : 1

2r(r+1)×r2 is a block partitionedmatrix,Vr = ([V11], . . . , [Vrr ])[d],
Vi i = (e1, . . . , ei )′, i ∈ {1, 2, . . . , r}, ei is the ith unit basis vector,Kr,r is the commutation
matrix, and (Kr,r )d is the diagonal matrix obtained from Kr,r . Then,

(i)

dX
dX

= Ip, if X : p × q is unstructured,

dX
dX� = Hp, if X : p × p is symmetric;

(ii)

d ln | X |
dX� = Hpvec(X−1) if X: p × p, is symmetric;

(iii)

dtr(A′X)

dX
= vecA if X : p × q, is unstructured,

dtr(A′X)

dX� = HpvecA ifX : p × p, is symmetric;
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(iv)

dtr(X′AXB)

dX

=
{
vec(A′XB′) + vec(AXB), if X : p × q, is unstructured,
Hp[vec(A′XB′) + vec(AXB)], if X : p × p, is symmetric;

(v)

d(A′vecX)

dX
= d(vec′XA)

dX
= A;

(vi)

dX−1

dX� = −Hr (X−1 ⊗ X′−1
).

The first derivatives of the log likelihood function, ln(L(	,�,�1(φ1),�2(φ2))) given in
Lemma 1 equal:

d ln L

d	
= vec[(�1(φ1) ⊗ �2(φ2))

−1
n∑

d=1

Yd�
−1 − n(�1(φ1) ⊗ �2(φ2))

−1	�−1],

d ln L

d(�−1)�
= pqn

2 Hrvec� − 1

2
Hrvec

[
n∑

d=1

Y′
d(�1(φ1) ⊗ �2(φ2))

−1Yd

−2
n∑

d=1

Y′
d(�1(φ1) ⊗ �2(φ2))

−1	 + n	′(�1(φ1) ⊗ �2(φ2))
−1	

]
,

d ln L

dφ1
= 1

2qrn(p − 1)( 1
1−φ1

− 1
1+(p−1)φ1

)

+ 1
2

(p−1)
(1+(p−1)φ1)2

tr
[
(Gp

1 ⊗ [�2(φ2)]−1)A
]

− 1
2

p∑

i=2

1
(1−φ1)2

tr
[
(Gp

i ⊗ [�2(φ2)]−1)A
]
,

d ln L

dφ2
= 1

2 prn(q − 1)( 1
1−φ2

− 1
1+(q−1)φ2

)

+ 1
2

(q−1)
(1+(q−1)φ2)2

tr
[
([�1(φ1)]−1 ⊗ Gq

1)A
]

− 1
2

q∑

i=2

1
(1−φ2)2

tr
[
([�1(φ1)]−1 ⊗ Gq

i )A
]
.

Now, using a property of the vec-operator and (v) of Lemma 4 we obtain

d2 ln L

d	2 = −n[�−1 ⊗ (�1(φ1) ⊗ �2(φ2))
−1].
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Using (v) from Lemma 4

d2 ln L

d	d(�−1)�
= Hr {Ir ⊗ [(

n∑

d=1

Y′
d − n	′)(�1(φ1) ⊗ �2(φ2))

−1]}.

From (iii) and (iv) of Lemma 4, and after some transformations,

d2 ln L

d	dφ1
= (p−1)

(1+(p−1)φ1)2
vec

[(
Gp

1 ⊗ [�2(φ2)]−1
) (

n	 −
n∑

d=1

Yd

)
�−1

]

−
p∑

i=2

1
(1−φ1)2

vec

[(
Gp

i ⊗ [�2(φ2)]−1
) (

n	 −
n∑

d=1

Yd

)
�−1

]
,

and

d2 ln L

d	dφ2
= (q−1)

(1+(q−1)φ2)2
vec

[(
[�1(φ1)]−1 ⊗ Gq

1

) (
n	 −

n∑

d=1

Yd

)
�−1

]

−
q∑

i=2

1
(1−φ2)2

vec

[(
[�1(φ1)]−1 ⊗ Gq

i

)(
n	 −

n∑

d=1

Yd

)
�−1

]
.

From (v) and (vi) of Lemma 4, it follows that

d2 ln L

d[(�−1)�]2 = − pqn
2 Hr (� ⊗ �)H′

r .

Using Lemma 4 (iii), and after some transformations,

d2 ln L

d(�−1)�dφ1

= 1
2

(p − 1)

(1 + (p − 1)φ1)2
Hrvec

[
n∑

d=1

(Yd − 	)′
(
Gp

1 ⊗ [�2(φ2)]−1
)

(Yd − 	)

]

− 1
2Hr

p∑

i=2

1
(1−φ1)2

vec

[
n∑

d=1

(Yd − 	)′
(
Gp

i ⊗ [�2(φ2)]−1
)

(Yd − 	)

]
,

and

d2 ln L

d(�−1)�dφ2

= 1
2

(q−1)
(1+(q−1)φ2)2

Hrvec

[
n∑

d=1

(Yd − 	)′
(
[�1(φ1)]−1 ⊗ Gq

1

)
(Yd − 	)

]

− 1
2

q∑

i=2

Hr

p∑

i=2

1
(1−φ2)2

vec

[
n∑

d=1

(Yd − 	)′
(
[�1(φ1)]−1 ⊗ Gq

i

)
(Yd − 	)

]
.
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Moreover,

d2 ln L

dφ2
1

= 1
2qrn(p − 1)

[
1

(1−φ1)2
+ p−1

(1+(p−1)φ1)2

]

− (p−1)2(1+(p−1)φ1)

(1+(p−1)φ1)4
tr

[(
Gp

1 ⊗ [�2(φ2)]−1
)
A

]

−
p∑

i=2

(1−φ1)

(1−φ1)4
tr

[(
Gp

i ⊗ [�2(φ2)]−1
)
A

]
,

d2 ln L

dφ1dφ2
= 1

2
(q−1)

(1+(q−1)φ2)2
tr

[(
V ⊗ Gq

1

)
A

] − 1
2

q∑

i=2

1
(1−φ2)2

tr
[(
V ⊗ Gq

i

)
A

]
,

where

V = −(p−1)
(1+(p−1)φ1)2

Gp
1 +

p∑

j=2

1
(1−φ1)2

Gp
j ,

d2 ln L

dφ2
2

= prn(q − 1)

2

(
1

(1−φ2)2
+ q−1

(1+(q−1)φ2)2

)

− (q−1)2

(1+(q−1)φ2)3
tr

[
([�1(φ1)]−1 ⊗ Gq

1)A
]

− 1
(1−φ2)3

q∑

i=2

tr
[
([�1(φ1)]−1 ⊗ Gq

i )A
]
.

APPENDIX B

To determine entries of the information matrix, the following well known lemma is used.

Lemma 5. Let X ∼ Np,n(μ,�,�). Then,

E[XAX′] = tr(�A)� + μAμ′.

Assuming that Yd ∼ Npq,r (	,�1(φ1) ⊗ �2(φ2),�), d ∈ {1, . . . , n}, using Lemma 5,

E

[
n∑

d=1

(Yd − 	)�−1(Yd − 	)′
]

= nr(�1(φ1) ⊗ �2(φ2)),

E

[
n∑

d=1

(Yd − 	)′(Gp
1 ⊗ [�2(φ2)]−1)(Yd − 	)

]
= nq(1 + (p − 1)φ1)�,

p∑

i=2

E

[
n∑

d=1

(Yd − 	)′(Gp
i ⊗ [�2(φ2)]−1)(Yd − 	)

]
= nq(p − 1)(1 − φ1)�,

E

[
n∑

d=1

(Yd − 	)′([�1(φ1)]−1 ⊗ Gq
1)(Yd − 	)

]
= np(1 + (q − 1)φ2)�,
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q∑

i=2

E

[
n∑

d=1

(Yd − 	)′([�1(φ1)]−1 ⊗ Gq
i )(Yd − 	)

]
= np(q − 1)(1 − φ2)�.

The above formulas can be used to determine E
[

d2 ln L
d(�−1)�dφ1

]
, E

[
d2 ln L

d(�−1)�dφ2

]
, E

[
d2 ln L
dφ1

2

]
,

E
[
d2 ln L
dφ2

2

]
and E

[
d2 ln L
dφ1dφ2

]
.

The information matrix for the estimation {	,�−1, φ1, φ2} equals

I(	,�−1, φ1, φ2) =

⎡

⎢⎢⎢⎢⎢⎢⎣

−E
[
d2 ln L
d	2

]

−E
[

d2 ln L
d	d(�−1)�

]
−E

[
d2 ln L

d((�−1)�)2

]

−E
[
d2 ln L
d	dφ1

]
−E

[
d2 ln L

d(�−1)�dφ1

]
−E

[
d2 ln L
dφ1

2

]

−E
[
d2 ln L
d	dφ2

]
−E

[
d2 ln L

d(�−1)�dφ2

]
−E

[
d2 ln L
dφ1dφ2

]
−E

[
d2 ln L
dφ2

2

]

⎤

⎥⎥⎥⎥⎥⎥⎦
,

where

−E

[
d2 ln L

d	2

]
= n

[
�−1 ⊗ (�1(φ1) ⊗ �2(φ2))

−1
]
,

−E

[
d2 ln L

d	d(�−1)�

]
= 0, −E

[
d2 ln L

d	dφ1

]
= 0, −E

[
d2 ln L

d	dφ2

]
= 0,

−E

[
d2 ln L

d
(
(�−1)�

)2

]
= pqn

2 Hr (� ⊗ �)Hr ,

−E

[
d2 ln L

d(�−1)�dφ1

]
= −nq(p−1)

2

[
1

1+(p−1)φ1
− 1

1−φ1

]
Hrvec�,

−E

[
d2 ln L

d(�−1)�dφ2

]
= −np(q−1)

2

[
1

1+(q−1)φ2
− 1

1−φ2

]
Hrvec�,

−E

[
d2 ln L

dφ1
2

]
= 1

2qrn(p − 1)
[

1
(1−φ1)2

+ p−1
(1+(p−1)φ1)2

]
,

−E

[
d2 ln L

dφ1dφ2

]
= − 1

2nr(p − 1)(q − 1) −pφ1
(1+(p−1)φ1)(1−φ1)

qφ2
(1−φ2)(1+(q−1)φ2)

,

−E

[
d2 ln L

dφ2
2

]
= prn(q−1)

2

[
1

(1−φ2)2
+ q−1

(1+(q−1)φ2)2

]
.
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