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A Nonparametric Bootstrap Method for
Heteroscedastic Functional Data

Rubén Fernández-Casal, Sergio Castillo-Páez, and Miguel Flores

The objective is to provide a nonparametric bootstrap method for functional data that
consists of independent realizations of a continuous one-dimensional process. The pro-
cess is assumed to be nonstationary, with a functional mean and a functional variance,
and dependent. The resamplingmethod is based on nonparametric estimates of themodel
components. Numerical studies were conducted to check the performance of the pro-
posed procedure, by approximating the bias and the standard error of two estimators. A
practical application of the proposed approach to pollution data has also been included.
Specifically, it is employed to make inference about the annual trend of ground-level
ozone concentration at Yarner Wood monitoring station in the United Kingdom.
Supplementary material to this paper is provided online.
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1. INTRODUCTION

Air pollution is considered one of the biggest health challenges worldwide in urban
environments. There are a wide variety of urban air pollutants, such as carbon monoxide
(CO), nitrogen oxides (NOx ), sulphur dioxide (SO2), particulate matter (PM2.5 and PM10)
and ozone (O3). In this work, we will focus on ground-level ozone, as it has been shown to
have serious health effects on humans and can also damage plants and trees (e.g. Karlsson
et al. 2017), but the proposed methodology could be also applied to other pollutants.
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Nowadays, technological developments related to sensor technology and IoT have made
it possible to have data sources where air pollutants and related variables are continuously
monitored. For instance, the UK Automatic Urban and Rural Network (AURN, https://
uk-air.defra.gov.uk/networks/network-info?view=aurn) records large volumes of informa-
tion, including the pollutants cited above. As the observed values can be considered realiza-
tions of a functional process, the application of functional data analysis (FDA) techniques
may be useful on the assessment of air pollution impact on human health and ecosystems
(see e.g. Ramsay and Silverman 2005; Ferraty and Vieu 2006; Manteiga and Vieu 2007;
Ullah and Finch 2013 for a general view of this methodology). There are several studies
available in the literature on functional methods applied to environmental data (e.g. Febrero
et al. 2008; Delicado et al. 2010; Giraldo et al. 2010; Embling et al. 2012; Sancho et al.
2014; Xiao and Hu 2018). Many of these developments used the tools implemented in dif-
ferent R packages. Among them, we may highlight the packages fda (Ramsay et al. 2020),
rainbow (Shang and Hyndman 2019), and fda.usc (Febrero and Oviedo 2012), which
allow the application of descriptive, outlier detection, regression, classification, clustering,
dimension reduction, variance analysis and bootstrap methods, among others.

Bootstrap methods for functional data can be of great interest for problem solving in
many fields, including air quality data analysis (see e.g. McMurry and Politis 2011). They
are often used to approximate characteristics of the distribution of statistics related to the
process under study. For instance, among many other applications, this includes estimating
the probability that a pollutant exceeds a certain threshold value (e.g. UK air quality guide-
lines state that eight-hour average of ozone should not exceeded 100µgm−3 more than 10
times a year). Classical bootstrap procedures have been employed for functional data anal-
ysis, including naive, parametric, and block bootstrap methods. For example, Ferraty et al.
(2010) studied the asymptotic validity of naive and wild bootstrap methods for inference on
a nonparametric functional regression model. Several resampling procedures specifically
designed for functional data have also been proposed (de Castro et al. 2005; Politis and
Romano 2010). Among them, we may highlight the smoothed bootstrap method proposed
in Cuevas et al. (2006), where they compare its performance with those of the naive and
parametric bootstrap methods. However, for the results obtained with a bootstrap procedure
to be reliable, it must adequately reproduce the variability of the underlying process.

The proposed bootstrap procedure is an adaptation of the method developed by Castillo-
Páez et al. (2019) for spatial data. The idea would be to consider the functional process as a
spatial process of dimension one so that repeated (independent) measurements are observed
at some discretization points. This method requires the modelling of the variability of the
process, which is done employing nonparametric techniques. Following the usual procedure
in geostatistics, themodelling of the dependence is done through the semivariogram. For this
purpose, a new package npfda (Fernandez-Casal et al. 2023) has been developed, adapting
the tools implemented in the npsp package (Fernandez-Casal 2023) for this particular case
(see the supplementary material for more details).

This methodology was applied to ground-level ozone data. The data set consist of daily
averages of ozone concentration (µgm−3) recorded over the period from 1988 to 2020 at
the Yarner Wood monitoring site in the UK (available at https://uk-air.defra.gov.uk/data).
These data were pre-processed, applying the usual outlier detection and data imputation

https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://uk-air.defra.gov.uk/networks/network-info?view=aurn
https://uk-air.defra.gov.uk/data
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Figure 1. Annual ozone curves (µgm−3), from 1988 to 2020, at the YarnerWood site in the UK (using a rainbow
colour scale for the year) .

methods, using the package climatol (Guijarro 2019). It is assumed that the observations
corresponding to each year are (partial) realizations of a functional process, so the data
consist of 33 curves observed at 365 discretization points. This curves are shown in Fig. 1.
As an initial objective, we will assume that we intend to make inferences about the annual
trend of the ozone level. Specifically, the estimation of the mean curve and the construction
of confidence intervals (Sect. 4). However, this methodology can be used for a large number
of problems including the analysis of other pollution related variables.

The remainder of the paper is organized as follows. The generalmodel, the nonparametric
estimators and the proposed bootstrap method, are presented in Sect. 2. The performance
of this procedure is illustrated through numerical studies in Sect. 3, where the results are
compared with those derived from the naive and smoothed bootstrap approaches. In Sect. 4,
we describe an application of the proposed methodology to the ozone data. Finally, Sect. 5
contains a summary of the main conclusions and some finals remarks.

2. METHODOLOGY

Suppose that Sn = {Yi (t)}ni=1, for t ∈ [a, b] ⊂ R, is a set of n independent observations
of a functional variable Y (t) defined over R, verifying:

Yi (t) = μ(t) + σ(t)εi (t), (1)

being μ(t) the functional trend, σ 2(t) the functional variance, and εi (t) a random error
process with zero mean, unit variance and correlations

Cov
(
εi (t), εi ′(t

′)
) = δi i ′ρ

(∣∣t − t ′
∣∣) ,

for 1 ≤ i, i ′ ≤ n and a ≤ t, t ′ ≤ b, where δi i ′ = 1 if i = i ′, δi i ′ = 0 if i �= i ′ and ρ(·) is the
correlogram function.
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In practice, each Yi (t) is observed at a discrete set of points t j ∈ [a, b] ⊂ R, with
j = 1, . . . , p. This set of observations can be expressed as a matrix Y of order n × p, with
Yi j = Yi (t j ). Furthermore, if yi = (

Yi (t1), . . . ,Yi (tp)
)� is the vector corresponding to the

i-th row ofY, the elements of its covariance matrix Cov(yi ) = �0 (within-curve covariance
matrix) are

(�0) j j ′ = σ(t j )σ (t j ′)ρ
(∣∣t j − t j ′

∣∣) ,

for i = 1, . . . , n. Consequently, �0 = D�εD, where �ε (within-curve correlation
matrix) is the covariance matrix of εi = (

εi (t1), . . . , εi (tp)
)�, for i = 1, . . . , n, being

D = diag(σ (t1), . . . , σ (tp)). Nevertheless, the dependence structure is estimated through
the error semivariogram:

γ (u) = 1

2
Var(ε(t) − ε(t + u)) = 1 − ρ(u).

2.1. NONPARAMETRIC ESTIMATION

The proposed procedure starts with the nonparametric estimation of the trend, the con-
ditional variance and the dependence, following an iterative algorithm similar to the one
described in Fernández-Casal et al. (2017). However, in this case, since multiple realizations
of the process are available, it has been observed that a bias correction in the estimation of
the small-scale variability seems to be not necessary.

The trend is estimated by linear smoothing of

{
(t j ,Yi (t j )) : 1 ≤ i ≤ n, 1 ≤ j ≤ p

}
.

This estimator can be written explicitly in terms of the sample means Ȳ (t) = 1
n

∑
i Yi (t):

μ̂(t) = e�
1

(
X�
t WtXt

)−1
X�
t Wt ȳ = s�t ȳ (2)

where ȳ = (
Ȳ (t1), . . . , Ȳ (tp)

)�
, e1 = (1, 0)�, Xt is a matrix with the j-th row equal

to
(
1, t j − t

)
, Wt = diag{Kh(t1 − t), . . . , Kh(tp − t)}, Kh(u) = 1

h K ( uh ), K is a kernel
function and h is the bandwidth parameter.

The small-scale variability of the process, determined by the conditional variance and
the temporal dependence of the error process, is estimated from the residuals ri j = Yi (t j )−
μ̂(t j ). An estimate of the conditional variance σ̂ 2(·) is obtained by linear smoothing of:

{(t j , r2i j ) : 1 ≤ i ≤ n, 1 ≤ j ≤ p},

analogously to the trend estimate, using a bandwidth h2.
A pilot local linear estimate of the error semivariogram γ̂ (·) is obtained by the linear

smoothing of the semivariances,

{(
t j − t j ′,

1
2 ( ˆεi j − ˆεi j ′)2

)
: 1 ≤ i ≤ n, 1 ≤ j < j ′ ≤ p

}
,
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of the standardized residuals ˆεi j = ri j/σ̂ (t j ). The corresponding bandwidth parameter will
be denoted by h3. Additionally, as this estimator is not necessarily conditionally negative
definite (it cannot be used directly for prediction or simulation), a flexible Shapiro–Botha
variogram model (Shapiro and Botha 1991) is fitted to the pilot estimates to obtain the final
variogram estimate γ̄ (·).

Although the choice of the kernel function is of secondary importance, the bandwidth
parameters play an important role in the performance of the local linear estimators described
above, since they control the shape and size of the local neighbourhoods used for computing
the corresponding estimates, determining their smoothness. However, when the data are
correlated, traditional smoothing parameter selection methods for nonparametric regression
will often fail to provide useful results (Opsomer et al. 2001). To take the dependence into
account, we recommend the use of the “bias-corrected and estimated” generalized cross-
validation criterion (CGCV) proposed in Francisco-Fernández and Opsomer (2005). In the
case of the trend estimator μ̂(·), this method consists in selecting the bandwidth h that
minimizes:

CGCV(h) = 1

n

n∑

i=1

(
Ȳ (ti ) − μ̂(ti )

1 − 1
n tr(SR̂ȳ)

)2

,

where tr(A) stands for the trace of a square matrix A, S is the smoothing matrix, a square
matrix whose i th row is equal to sti (the smoother vector for t = ti ), and R̂ȳ is an estimate
of the correlation matrix of the sample means ȳ. This matrix can be easily obtained bearing
in mind that:

Cov
(
Ȳ (t j ), Ȳ (t j ′)

) = 1
nσ(t j )σ (t j ′)ρ

(∣∣t j − t j ′
∣∣) .

An analogous procedure can be used to select the bandwidth h2 for the variance estimation.
Nevertheless, this method will require an estimate of the correlation matrix of the squared
residuals (or of their sample means, if we use the previous approximation). Under the
assumptions of normality and zero mean for the residuals, the covariance matrix of the
squared residuals admits the following expression:

�r2 = 2�r � �r, (3)

where � represents the Hadamard product and �r the covariance matrix of the residuals
(Ruppert et al. 1997), from which it is simpler to approximate the required correlations. The
bandwidth parameter h3 for the estimation of the variogram could be selected, for instance,
byminimizing the cross-validation relative squared error of the semivariogramestimates (see
e.g. Fernández-Casal and Francisco-Fernández 2014). Although, as this criterion does not
take into account the dependence between the sample semivariances, the resulting bandwidth
should be increased (for example by multiplying it by a factor between 1.5 and 2) to avoid
under-smoothing the variogram estimates.

The above criteria, for the selection of optimal bandwidths for trend and variance approx-
imation, require estimation of the small-scale variability of the process, leading to a circular
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problem. To avoid it, an iterative algorithm is used. Starting with an initial h and h1 band-
widths (e.g. obtained by anyof the availablemethods for independent data).At each iteration,
the bandwidths are selected using the variance and variogram estimates computed in the
previous iteration, and the model components are re-estimated. The algorithm is consid-
ered to have converged when there are no significant changes in the selected bandwidths,
indicating similar small-scale variability estimates. Typically, a single iteration of this algo-
rithm is sufficient in practice. This procedure is implemented in the npf.fit() function
of the npfda package (Fernandez-Casal et al. 2023). More details are provided in the
supplementary material.

2.2. NONPARAMETRIC BOOTSTRAP

Using the nonparametric estimates of the trend μ̂(·), the variance σ̂ 2(·) and the semi-
variogram γ̄ (·) obtained with the procedure described in previous section, the proposed
bootstrap algorithm is as follows:

1. Form the standardized residualsmatrix Ê,whose i th row is equal to ε̂i = D̂−1(yi−μ̂),
where D̂ = diag(σ̂ 2(t1), . . . , σ̂ 2(tp)) and μ̂ = (

μ̂(t1), . . . , μ̂(tp)
)�.

2. Construct an estimate �̂ε of the within-curve correlation matrix from γ̄ (·), and
compute its Cholesky decomposition �̂ε = U�U.

3. Compute the uncorrelated standardized residuals E = ÊU−1 and scale them (jointly,
by subtracting the overall sample mean and dividing by the overall sample standard
deviation).

4. Use the scaled values to derive an independent bootstrap sample E∗ (by resampling
the rows and columns of E).

5. Compute the bootstrap errors ε∗ = E∗U.

6. Obtain the bootstrap sample Y∗, with

y∗
i = μ̂ + D̂ε∗

i ,

for i = 1, . . . , n.

7. Repeat B times steps 4–6 to obtain the B bootstrap replicates
{
Y∗
1, . . . ,Y

∗
B

}
.

As stated in the Introduction, the replicates derived from this algorithm can be used to
approximate characteristics of the distribution of a statistic under study. For example, they
can be used to approximate the standard error and bias of an estimator (as illustrated in
Sects. 3 and 4), as well as to compute confidence intervals (Sect. 4), among many other
potential applications.
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3. SIMULATION RESULTS

This section presents various studies comparing the performance of the proposed non-
parametric bootstrap method (NPB) with the smoothed bootstrap (SB) method proposed by
Cuevas et al. (2006) and the naive bootstrap (NB)method. The SB algorithm is implemented
in the fdata.bootstrap() function of the fda.usc package and can be summarized
as follows:

1. Draw a standard bootstrap replicate Y∗
0 from Y, by uniform resampling of the rows

y1, . . . , yn .

2. Generate Z, such that each row zi = (Zi (t1), . . . , Zi (tp)))� is normally distributed
withmean0 and covariancematrixα�̂Y, where �̂Y is the sample covariancematrix of
the observed valuesY (an estimate of�0) andα is a smoothing parameter (controlling
the amount of additional variability), and such that zi is independent of zi ′ if i �= i ′
(Cov

(
Zi (t j ), Zi ′(t j ′)

) = 0).

3. Compute the bootstrap sample as Y∗ = Y∗
0 + Z.

4. Repeat B times steps 1–3 to obtain the B bootstrap replicates
{
Y∗
1, . . . ,Y

∗
B

}
.

The difficulty in applying this method in practice is the proper selection of the α parameter.
However, in the results shown below, we set α = 0.05 following the authors’ recommen-
dation.

Note that the naive bootstrap (NB) can be obtained as a particular case when α = 0.
In this case, steps 2 and 3 in the previous algorithm can be skipped, resulting in the naive
bootstrap replicates Y∗ = Y∗

0.
Numerical studies were carried out to study the behaviour of the three bootstrap proce-

dures (NPB, SB, NB) under different scenarios. In each case, N = 2000 curve samples of
sizes n = 25, 50 and 100, with p = 101 regular discretization points in the interval [0, 1],
following the model (1) were generated. In order to take into account the effect of different
functional forms of the trend and variance, the following theoretical functions were consid-
ered: μ1(t) = 2.5 + sin(2π t) (nonlinear trend), μ2(t) = 10t (1 − t) (polynomial trend),
μ3(t) = 2 (constant trend), σ 2

1 (t) = ( 1516 )
2[1 − (2t − 1)2]2 + 0.1 (nonlinear variance),

σ 2
2 (t) = 0.5(1 + t) (linear variance) and σ 2

3 (t) = 1 (constant variance, i.e. homoscedastic
case). The random errors εi were normally distributed with zero mean, unit variance and
isotropic exponential variogram:

γε(u) = c0 + (1 − c0)

(
1 − exp

(
−3

|u|
a

))
,

(for u �= 0), where c0 is the nugget effect (1 − c0 is the partial sill) and a is the practical
range. The values considered in the simulations were a = 0.3, 0.6, 0.9, and c0 = 0, 0.2, 0.5.
For instance, Fig. 2 provides an idea of the shape of the simulated samples in two of the
studied scenarios.

In each scenario, B = 1000 bootstraps replicates were obtained using both the SB and
NPB methods. The performance of both methods was analysed by comparing the results in
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Figure 2. Simulated samples of size n = 25 with μ1 (nonlinear), σ 2
1 (nonlinear), c0 = 0.2 and a = 0.6 (a), and

with μ2 (polynomial), σ 2
2 (linear), c0 = 0 and a = 0.9 (b). The theoretical trends are shown in solid lines and the

nonparametric estimates in black dashed lines .

the approximation of characteristics of two estimators. More specifically, we will consider
the approximation of the bias and the standard error (se) of the nonparametric trend μ̂(t)
and conditional variance σ̂ 2(t) estimators described in Sect. 2.1. The general procedure to
approximate the bias and the standard error of an estimator θ̂ (t) from bootstrap resamples
is as follows:

1. Derive B replicates
{
Y∗
1, . . . ,Y

∗
B

}
from the original data.

2. Compute B estimates of θ(t) from the B replicates, which will be denoted by{
θ̂∗
1 (t), . . . , θ̂∗

B(t)
}
.

3. Approximate the bootstrap version of σ(θ̂(t)) as follows:

ŝe∗(θ̂∗(t)) =
{

1

B − 1

B∑

b=1

(
θ̂∗
b (t) − ¯̂

θ∗(t)
)2

} 1
2

, (4)

where ¯̂
θ∗(t) = ∑B

b=1 θ̂∗
b (t)/B.

4. In a similar way, obtain the bootstrap counterpart of Bias(θ̂(t)) through

B̂ias
∗
(θ̂∗(t)) = 1

B

B∑

b=1

(
θ̂∗
b (t) − θ̂ (t)

)
. (5)

To avoid the effect that the bandwidth selection criteriamight have on the results, the local
linear trend and variance estimators were computed using the bandwidths thatminimized the
corresponding (theoretical) mean average squared errors (MASE). For the trend estimator,
this criterion can be expressed as follows:

MASE(h) = 1

p
(Sμ − μ)t (Sμ − μ) + 1

np
tr(S�0St ),
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whereμ = [
μ(t1), . . . , μ(tp)

]t . An analogous approachwas used in the case of the variance
estimator, by using (3) to approximate the corresponding covariance matrix.

At each simulation, the bias and variance of the two estimators were approximated
through (5) and (4). To measure the accuracy of these bootstrap estimates, mean squared
(MSE) errors were computed, using theoretical values, Bias(θ̂(t)) and σ(θ̂(t)), approxi-
mated by simulation. For example, in the case of the approximation of the bias of the trend
estimator:

MSE(t) = E

{[
B̂ias

∗
(μ̂∗(t)) − Bias(μ̂(t))

]2}
.

The averages of these errors over the discretization points will be denoted by AMSE.
Similar results were observed across the simulation scenarios, although only a few rep-

resentative outcomes are presented here for brevity. Overall, the proposed method showed
superior performance in approximating the bias of both estimators. The bias approxima-
tions obtained with the SB and NB methods were closer to zero, particularly for the trend
estimator.

In addition, the results obtained with the SB and NB methods were more similar than
expected, since the replicates with the SB method have more variability. Only slight dif-
ferences between these two methods were observed when approximating the bias of the
variance estimator. For example, Fig. 3 compares the theoretical values with the bootstrap
approximations of the bias and the standard error of both estimators for μ1 (nonlinear), σ 2

1
(nonlinear), n = 50, c0 = 0.2 and a = 0.6.

Unexpectedly, the standard error approximations obtained with the SB and NB meth-
ods turned out to be slightly better than those obtained with the NBP method, especially
when the sample size is small. For instance, Table 1 summarizes the errors obtained in the
approximation of the bias and standard error of the estimators with both bootstrap proce-
dures considering the different sample sizes, for μ1 (nonlinear), σ 2

1 (nonlinear), c0 = 0.2
and a = 0.6. It can be observed that as the sample size n increases, the squared errors
decrease, suggesting the consistency of the approximations obtained with both methods. A
clear improvement is observed when using the SB or the NB methods to approximate the
standard error of the variance estimator with the smallest sample size, obtaining very sim-
ilar results with both methods as the number of observations increases. However, the NPB
method outperforms the other methods at approximating the bias in all cases, especially
when the variance estimator is considered.

The influence of the temporal dependence on the bootstrap approximations was also stud-
ied. For instance, Table 2 shows the results obtained for the trend estimator μ̂(t) considering
the different nugget (c0) and practical range (a) values, for μ1 (nonlinear), σ 2

1 (nonlinear)
and n = 100. In these cases, the errors corresponding to the standard error approximations
are quite similar for all three methods. As for the bootstrap estimates of biases, as expected,
it is generally observed that the errors decrease as the nugget increases (which corresponds
to lower temporal dependency). This effect is particularly pronounced when the SB or NB
method is used. A similar behaviour is observed when the practical range increases.
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Figure 3. Comparison of the theoretical bias (left) and standard error (right) with their bootstrap approximations,
for the local linear trend (top) and the variance (bottom) estimators, considering μ1 (nonlinear), σ 2

1 (nonlinear),
n = 50, c0 = 0.2 and a = 0.6. The theoretical values are shown in solid lines, the NPB, SB andNB approximations
in dashed, dotted and dot-dashed lines, respectively .

Table 1. Monte Carlo approximations of the AMASE (×102) of the bias and standard error bootstrap estimates,

for the local linear trend μ̂(t) and variance σ̂ 2(t) estimators, consideringμ1 (nonlinear), σ
2
1 (nonlinear),

n = 100 c0 = 0.2 and a = 0.6

n = 25 n = 50 n = 100
Estimator Method Bias se Bias se Bias se

μ̂(t) SB 0.104 0.031 0.046 0.009 0.020 0.002
NB 0.104 0.031 0.046 0.009 0.021 0.002
NPB 0.020 0.036 0.009 0.010 0.004 0.003

σ̂ 2(t) SB 1.433 0.076 0.767 0.028 0.531 0.009
NB 1.594 0.078 0.688 0.029 0.384 0.009
NPB 0.097 0.123 0.038 0.029 0.018 0.009

Finally, Table 3 illustrates the effect of the assumed theoretical functional forms in model
(1) on the errors in bias and standard error approximations of the variance estimator (for n =
100, c0 = 0.2, anda = 0.6).Once again, theNPBmethod consistently outperforms the other
methods in approximating biases across the different scenarios. When the variance model
remains fixed, similar results are obtained with all methods when the trend varies. However,
for the same theoretical trend, different behaviours are observed when the functional form of
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Table 2. Monte Carlo approximations of the AMASE (×102) of the bootstrap estimates of the bias and standard
error of μ̂(t), considering the different c0 and a values, withμ1 (nonlinear), σ

2
1 (nonlinear) and n = 100

a = 0.3 a = 0.6 a = 0.9
c0 Method Bias se Bias se Bias se

0 SB 0.036 0.002 0.023 0.003 0.016 0.003
NB 0.036 0.002 0.023 0.003 0.016 0.003
NPB 0.007 0.002 0.004 0.004 0.003 0.005

0.2 SB 0.030 0.002 0.020 0.002 0.015 0.003
NB 0.030 0.002 0.021 0.002 0.016 0.002
NPB 0.006 0.002 0.004 0.003 0.003 0.004

0.5 SB 0.023 0.001 0.018 0.002 0.015 0.002
NB 0.023 0.001 0.018 0.002 0.015 0.002
NPB 0.005 0.001 0.004 0.002 0.003 0.002

Table 3. Monte Carlo approximations of the AMASE (×102) of the bootstrap estimates of the bias and standard

error of σ̂ 2(t), considering the different theoretical trend and variance functions, with n = 100, c0 = 0.2,
and a = 0.6

Theoretical μ1 (nonlinear) μ2 (polynomial) μ3 (constant)
Method Bias se Bias se Bias se

σ1 (nonlinear) SB 0.531 0.010 0.536 0.009 0.541 0.009
NB 0.384 0.009 0.383 0.009 0.379 0.009
NPB 0.018 0.009 0.018 0.009 0.017 0.009

σ 2
2 (linear) SB 0.654 0.006 0.654 0.006 0.645 0.005

NB 0.694 0.005 0.690 0.005 0.673 0.006
NPB 0.004 0.013 0.004 0.013 0.004 0.013

σ 2
3 (constant) SB 1.104 0.009 1.105 0.010 1.092 0.010

NB 1.170 0.009 1.163 0.009 1.136 0.009
NPB 0.008 0.022 0.008 0.022 0.008 0.022

the theoretical variance changes. While the error in bias approximations increases notably
with the SB and NB methods when simpler variance models are considered, a similar effect
is observed with the NPB method in standard error approximations. This may be attributed
to the slight underestimation of variance by the local linear estimator σ̂ 2(t) in these cases,
resulting in a small negative bias that the SB and NBmethods approximate with values close
to zero, and producing slightly lower variability in the NPB method.

4. APPLICATION TO POLLUTION DATA

In this section, the practical performance of proposed methodology is illustrated through
its application to the data set of ground-level ozone concentrations briefly mentioned in the
Introduction (n = 33 and p = 365).

The iterative process described at the end of Sect. 2.1 was used to estimate the model
components. As a stopping criterion, an absolute percentage difference of less than 10%
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Figure 4. Sample mean (dashed line) and nonparametric trend estimates (solid line), of the ozone data (grey
dotted lines) .

between bandwidths was used. Two iterations were performed in this case. (Although only
one would have been necessary since the selected bandwidths for trend and variance esti-
mation were nearly identical to those of the second iteration, further details can be found in
the supplementary material.) The final trend estimate is shown in Fig. 4, computed with a
bandwidth h = 36.077 selected by the CGCV criterion, where an increase in mean ozone
levels is observed during springtime.

Then, from the final residuals, the variance estimate σ̂ 2(·) (with a bandwidth h2 = 33.106
selected by the CGCV criterion), the pilot semivariogram estimates γ̂ (·) (with a bandwidth
h3 = 3.713 selected by minimizing the CV relative squared error) and its Shapiro-Botha
fit γ̄ (·) were computed. Figure5a shows the standard deviation estimate, where an increase
in the variability in ozone concentration at the beginning of summer and in winter. The
variogram estimates are shown in Fig. 5b. The final variogram has a nugget effect of ĉ0 =
0.307 (whichmay be interpreted as the proportion of independent variability) and a practical
range â ≈ 32.7 (a distance beyond which the temporal correlation can be considered
negligible).

With these nonparametric estimates, the NPB approach was applied to make inference
about the trend of the functional process. Thus, the bias and standard error of the local
linear trend estimator were approximated with B = 2000 replicates. Figure6 shows an
example of the results obtained, the bias-corrected trend estimates (solid line) and pointwise
confidence intervals (point lines), computed adding and subtracting two standard errors to
the corrected trend estimate. The NPB method also allows the construction of pointwise
confidence intervals using the basic percentile method (see e.g. Davison and Hinkley, 1997,
Section 5.2), obtaining practically identical results. (The basic bootstrap replicas are shown
in dotted grey lines; see the supplementary material for further details.)
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Figure 5. Sample variance and nonparametric variance estimates (a), dashed and solid lines, respectively, and
semivariogram estimates (b) of the ozone data .

Figure 6. Bias-corrected (solid line) and uncorrected (dashed line) trend estimates, pointwise confidence intervals
(point lines) and basic bootstrap replicas (dotted grey lines) obtained as a result of the application of theNPBmethod
to the ozone data .

5. CONCLUSION

The performance of the proposed methodology was validated by a simulation study,
showing its good behaviour under different scenarios, considering distinct theoretical trend
and variance functions and including several degrees of temporal dependence. The results
were compared to those obtained with the SB and NB approaches, showing that the new
method seems to be better at reproducing the process variability. Specifically, the NPB
method proved to be much better at approximating the bias of the estimators considered,
as the SB or NB methods tend to produce bias approximations close to zero. Although,
unexpectedly, the standard error approximations obtained with the SB and NB methods
turned out to be slightly better than those obtained with the NBP method when the sample
size is small.
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To improve performance in the case of small samples, a correction for the bias due to
the direct use of the residuals in the estimation of the small-scale variability, similar to that
proposed in Fernández-Casal et al. (2017) for the spatial case, could be investigated.

The NPB method proposed in this study is designed for nonstationary heteroscedastic
processes. However, it can be easily adapted to cases where either the mean or variance is
assumed to be constant, such as when using residuals from a functional regression model. If
any of these assumptions is reasonable, the procedure could be simplified, and even better
results could be expected. On the other hand, the proposed functional model may not be
appropriate in certain cases. For example, in the ozone dataset, it might be reasonable to
assume that there is a yearly effect in the functional mean or in the variance. In such cases,
more sophisticated estimators, such as semiparametric ones, could be considered for these
components. However, the bootstrap procedure would remain analogous. Whereas if it is
not appropriate to assume that the distribution of the standardized errors is homogeneous, it
would be necessary to modify the resampling procedure. These aspects could be the subject
of future researches, including the presence of dependence between curves.

The NPB technique was used for approximating characteristics of estimators and for the
construction of confidence intervals. Moreover, it can also be employed in other inference
problems, including hypothesis testing (e.g. related to the trend or variance functions),
estimationof the probability that a pollutant concentration level exceed air quality guidelines,
outlier detection (e.g. due to pollution episodes or sensor failures), among many others.
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