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Discussion on “Saving Storage in Climate
Ensembles: A Model-Based Stochastic
Approach”

Julie BESSAC, Robert UNDERWOOD, and Sheng D1

We thank the authors for this interesting paper that highlights important ideas and
concepts for the future of climate model ensembles and their storage, as well as future
uses of stochastic emulators. Stochastic emulators are particularly relevant because of
the statistical nature of climate model ensembles, as discussed in previous work of the
authors (Castruccio et al. in J Clim 32:8511-8522, 2019; Hu and Castruccio in J Clim
34:8409-8418, 2021). We thank the authors for sharing of some of their data with us
in order to illustrate this discussion. In the following, in Sect. 1 we discuss alternative
techniques currently used and studied, namely lossy compression and ideas emerging
from the climate modeling community, that could feed the discussion on ensemble and
storage. In that section, we also present numerical results of compression performed
on the data shared by the authors. In Sect. 2, we discuss the current statistical model
proposed by the authors and its context. We discuss other potential uses of stochastic
emulators in climate and Earth modeling.
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1. LOSSY COMPRESSION, STORAGE, AND STATISTICS

1.1. LOSSY COMPRESSORS

Lossy compressors are increasingly adopted in scientific research, tackling volumes of
data from experiments or parallel numerical simulations and facilitating data storage and
movement. Lossy compression enables significantly reducing the data size without sacri-
ficing data integrity, which is a concerning research problem for many of today’s scientific
projects. Lossy compressors typically comprise (i) a decorrelation step that exploits corre-
lations present in the dataset to transform the data into a more compressible version, (ii)
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an approximation/quantization step that reduces the precision of the input data bringing
the lossyness in the compression pipeline, and (iii) an encoding step that minimizes the
number of bits used to represent the approximation step outcomes. Different lossy compres-
sors leverage different decorrelation, quantization, and encoding methods. Leading lossy
compressors include SZ3 (cubic-spline interpolation-based prediction Zhao et al. 2021),
SPERR (wavelet based Li and Clyne 2022), ZFP (near-orthogonal transform Lindstrom
2014), TThresh (singular value decomposition based Ballester-Ripoll et al. 2020, and Big
Grooming Zender 2016). In the following, we focus on SZ3 because it provides the best
compression quality based on previous studies (Underwood et al. 2022a).

1.2. LoSSY COMPRESSION IN EARTH SYSTEM MODELING

Earth system model outputs are particularly relevant to lossy compression because they
generate large outputs that present correlations. Recent studies have quantified the influence
of spatial correlation on lossy compression outputs. In Klower et al. (2021), the concept of
bitwise real information (BIR) is introduced as the mutual information of bits in adjacent
grid points. In particular, the stronger the association with neighboring bits, the greater
the BIR. In Krasowska et al. (2021), global and local measures of spatial correlation via
variogram estimation are introduced as explanatory variables of compression ratios (ratio
of the original data size to the compressed data size).

In lossy compression, the question of evaluating the quality of reconstructed data nat-
urally brings in statistics. For instance, Baker et al. (2017) address the issue of striking a
balance between meaningfully reducing data volume and preserving the integrity of the
simulation data via a series of quality assessment metrics: the structural similarity image
metric (SSIM/d-SSIM), the p-value of the Kolmogorov—Smirnov test, the Pearson correla-
tion coefficient of determination (R?), and the spatial relative error. In their paper, Baker
et al. accompany each metric with an acceptable threshold. In a recent work, Underwood
et al. (2022a) propose an extensive comparison of 11 lossy compressors for Community
Earth Systems Model (CESM) simulations and suggest the use of different metrics based
on probability distributions including the Wasserstein distance.

1.3. NUMERICAL RESULTS

In this section, we collect results of some compression algorithms that have been per-
formed on the original data provided by the authors, and we compare some of the decom-
pressed data with the simulated ensemble proposed by the authors. We perform the analysis
in the monthly regional context as this being the largest data provided by the authors.

The example data are provided as a 3-dimensional dataset in which the first and third
dimensions, representing the regions and the ensemble members, are numerically uncorre-
lated. This structure would be difficult for most compressors to capture because they are
designed to exploit local (typically less than 16 elements away) spatial correlations within
the dataset dimensions. When data are presented as 1-dimensional arrays to the compres-
sors, however, the compressors are able to better capture this local behavior. SZ3 with
its dynamic cubic-spline predictor captures this behavior very accurately at competitive
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Figure 1. Left: Time series of each monthly and regional signal for 4 consecutive years of the study (2006-2010).
Solid black line: original data; solid red lines: stochastic samples proposed by the authors; and dots: reconstructed
data from compression with SZ3 (green: absolute error bound of 10-1, grey: absolute error bound of 1). Central
and right: temporal autocorrelation of monthly regional temperature at region #10, respectively, for the raw data
(typically input in a compressor) and detrended and deseasonalized data (typically operated by statisticians) (Color
figure online).

compression ratios. Figure I shows the temporal autocorrelation of the monthly average
temperature (that is input as such in a compressor) at region #10 (chosen arbitrarily) and
their detrended and deseasonalized (accounting for 6- and 12-month periods) counterparts
(typically operated by statisticians). In this figure, we highlight the high correlation ranges
present in the data, in both raw and detrended and deseasonalized data, as well as period-
icities (6- and 12-month periods), which vastly exceed what most compressors can observe
and exploit to increase compression ratios. To find a configuration of the compressor that
is the closest to matching the compression ratio of the proposed statistical model, we use
OptZConfig, developed by Underwood et al. (2022b), which finds an error bound enabling
a given compression ratio. In our case, the absolute error bound is sought between 1 and
100. SZ3 was able to match within 1% the compression ratio achieved by the authors by
using an absolute error bound of 12.9.

The left panel of Fig.1 shows the monthly regional (region #10) temperature and its
counterparts coming from the stochastic model proposed by the authors and from a recon-
struction after compression with SZ3. We note that the overall trends, periodicities, and
ensemble spread are captured by most methods. We also observe the trade-off between
compression techniques and the stochastic simulations. Stochastic simulations reproduce
the statistical behaviors of the reference data and as many samples as can be generated. On
the other hand, compression methods capture pointwise behaviors of each ensemble mem-
ber and provide a tool applicable in a general context (i.e., other variables); however, they
cannot generate new scenarios. We also exemplify the various quality of reconstructed data
from compression by showing two different absolute error bounds, 10~! and 1. As the error
bound becomes more permissive, the accuracy of the reconstruction decreases; however,
the compression ratio increases. In the left panel of Fig.2, we compare the distributions of
the original data, stochastic simulations from the authors, and decompressed data. We note
that simulation and compression methods both perform well but do not capture the same
parts of the distribution. The right panel of Fig.2 shows the distributions of the Wasserstein
distance computed between the reference data and the simulated and decompressed data,
following (Underwood et al. 2022a). Each boxplot data point represents the Wasserstein
distance computed for a region. Stochastic samples, reconstructions from SZ3 at the 10~
and 1 error level, exhibit a low median Wasserstein distance. However, the most permissive
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Figure 2. Left: histograms of the original monthly temperature data (region #10), corresponding stochastic sam-
ples from the authors, and decompressed data from SZ3. Right: Wasserstein distance between the original data
and, from left to right, stochastic samples from the authors and SZ3 reconstruction with error = 0.1, 1, and 12.9 .

compression with tolerated errors at 12.9, corresponding to the compression ratio matching
the authors’ one, does not capture well the distribution of the reference data. As pointed out
by the authors, the stochastic samples may not recover the highest points of the distribu-
tions. This situation is common with statistical models and can explain the variability in the
corresponding Wasserstein distances.

We have highlighted some differences between both methods. Since each technique has
its own advantages and drawbacks, these differences could be leveraged as synergies in
future work depending on the user’s priority, which could be storage, time performance, or
generative aspects.

Questions: Trust and confidence are topics often raised in data compression. Have the
authors thought of statistics that could be associated with their model in that regard?

2. STOCHASTIC EMULATORS

2.1. PROPOSED STOCHASTIC GENERATORS

As noted by the authors, the stochastic simulations of different fields can represent a
challenge (Ailliot et al. 2015a). Wind fields comprising wind intensity and direction, which
necessitate a circular treatment, require regime switching because both variables are linked
to weather types (Ailliot and Monbet 2012; Ailliot et al. 2015b). Precipitation is another
challenging variable since it combines an occurrence and a rainfall amount variable (Katz
1977; Thompson et al. 2007; Kleiber et al. 2012). Additionally, to mimic operational set-
tings, one would need to simulate concurrently multiple variables together. This remains a
challenging aspect of statistical models. Richardson (1981) and Parlange and Katz (2000)
pioneered single-site models for multiple variables; however, the addition of a spatial com-
ponent has rarely been attempted since then.

The authors mentioned the difficulty of modeling the bulk and tails of a distributions.
Recent developments in that vein have been proposed for unidimensional probability dis-
tribution functions (PDFs); see (Tencaliec et al. 2020; Stein 2021a,b). These models seek
to capture low, moderate, and high values of a variable of interest into a single PDF model.
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However, the models require additional layers of modeling to account for spatial and tem-
poral dependencies and their nonstationarities.

The study of the minimal number of training samples from the CESM-LENS is crucial
and interesting. We expect that this number of training samples would increase if one were
to look at other variables such as wind or precipitation and also at different temporal scales
such as subdaily scales. Determining a reduced number of ensemble members that are
representative of the ensemble could also be a way to think about storage saving, but it
requires defining statistically and mathematically the concept of “representativeness.”

Questions: We wonder whether the authors have thought how they would generalize their
model to a multivariate setting. Do they have any thoughts about the representativeness
of ensemble members as a way to save storage?

2.2. NEXT GENERATION OF WEATHER AND CLIMATE MODELS

As discussed by the authors, the need to rethink climate model simulations is critical
as the increasing computational power and high-resolution modeling lead to larger and
larger outputs. As an example discussed by Klower et al. (2021), the European Centre for
Medium-Range Weather Forecasts produces 230 TB of data on a typical day, and this data
production is expected to quadruple within the next decade because of the increased spatial
resolution of the forecast model (Bauer et al. 2020). In that vein, recent works have studied
the use of single and mixed precision in climate modeling in order to tackle large amounts
of data while ensuring forecast quality (Vana et al. 2017; Tinté Prims et al. 2019). In the
meantime, in a world of changing climates, Loft (2020) pleads for greener Earth system
modeling that reduces the carbon footprint of weather and climate models; he highlights the
need to “develop machine learning algorithms to avoid unnecessary computations.” This
statement resonates with the current paper and further applications of stochastic emulators,
in particular since the authors mention in their paper that statistical models are especially
suited for fine spatiotemporal scales.

Questions: Have the authors thought of other future and alternative uses of stochastic
emulators for future computing in Earth systems modeling? How might one reduce the
footprint of statistical inference in general?
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