Skip to main content
Log in

Scalable Semiparametric Spatio-temporal Regression for Large Data Analysis

  • Published:
Journal of Agricultural, Biological and Environmental Statistics Aims and scope Submit manuscript

Abstract

With the rapid advances of data acquisition techniques, spatio-temporal data are becoming increasingly abundant in a diverse array of disciplines. Here, we develop spatio-temporal regression methodology for analyzing large amounts of spatially referenced data collected over time, motivated by environmental studies utilizing remotely sensed satellite data. In particular, we specify a semiparametric autoregressive model without the usual Gaussian assumption and devise a computationally scalable procedure that enables the regression analysis of large datasets. We estimate the model parameters by maximum pseudolikelihood and show that the computational complexity can be reduced from cubic to linear of the sample size. Asymptotic properties under suitable regularity conditions are further established that inform the computational procedure to be efficient and scalable. A simulation study is conducted to evaluate the finite-sample properties of the parameter estimation and statistical inference. We illustrate our methodology by a dataset with over 2.96 million observations of annual land surface temperature, and comparison with an existing state-of-the-art approach to spatio-temporal regression highlights the advantages of our method.

Supplementary materials accompanying this paper appear online.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agirbas E, Koca L, Aytan U (2017) Spatio-temporal pattern of phytoplankton and pigment composition in surface waters of south-eastern Black Sea. Oceanologia 59(3):283–299

    Article  Google Scholar 

  • Anderson E et al (1999) LAPACK users’ guide, 3rd edn. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Anselin L (2013) Spatial econometrics: methods and models. Springer, Cham

    Google Scholar 

  • Asseng S et al (2015) Rising temperatures reduce global wheat production. Nat Clim Chang 5(2):143–147

    Article  Google Scholar 

  • Banerjee S, Gelfand AE, Finley AO, Sang H (2008) Gaussian predictive process models for large spatial data sets. J Roy Stat Soc B 70(4):825–848

    Article  MathSciNet  MATH  Google Scholar 

  • Belgiu M, Stein A (2019) Spatiotemporal image fusion in remote sensing. Remote Sens 11(7):818

    Article  Google Scholar 

  • Blackford LS et al (2002) An updated set of basic linear algebra subprograms (blas). ACM Trans Math Softw 28(2):135–151

    Article  MathSciNet  MATH  Google Scholar 

  • Brynjarsdóttir J, Berliner LM (2014) Dimension-reduced modeling of spatio-temporal processes. J Am Stat Assoc 109(508):1647–1659

    Article  MathSciNet  MATH  Google Scholar 

  • Buluc A, Gilbert JR (2011) The combinatorial BLAS: design, implementation, and applications. Int J High Perform Comput Appl 25(4):496–509

    Article  Google Scholar 

  • Case AC (1991) Spatial patterns in household demand. Econometrica 59(4):953–965

    Article  Google Scholar 

  • Chakraborty T, Hsu A, Manya D, Sheriff G (2020) A spatially explicit surface urban heat island database for the United States: characterization, uncertainties, and possible applications. ISPRS J Photogramm Remote Sens 168:74–88

    Article  Google Scholar 

  • Chi G, Zhu J (2019) Spatial regression models for the social sciences. SAGE, New York

    MATH  Google Scholar 

  • Chu T, Zhu J, Wang H (2019) Semiparametric modeling with nonseparable and nonstationary spatio-temporal covariance functions and its inference. Stat Sin 29(3):1233–1252

    MATH  Google Scholar 

  • Coppersmith D, Winograd S (1990) Matrix multiplication via arithmetic progressions. J Symb Comput 9(3):251–280

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie N (1993) Statistics for spatial data. Wiley, New York

    Book  MATH  Google Scholar 

  • Cressie N, Shi T, Kang EL (2010) Fixed rank filtering for spatio-temporal data. J Comput Graph Stat 19(3):724–745

    Article  MathSciNet  Google Scholar 

  • Cressie N, Wikle CK (2011) Statistics for spatio-temporal data. Wiley, New York

    MATH  Google Scholar 

  • Diffenbaugh NS, Davenport FV, Burke M (2021) Historical warming has increased U.S. crop insurance losses. Environ Res Lett 16(8):084025

    Article  Google Scholar 

  • Dutilleul PRL (2011) Spatio-temporal heterogeneity: concepts and analyses. Cambridge University Press, Cambridge

    Google Scholar 

  • Fernández C, Steel MF (1998) On Bayesian modeling of fat tails and skewness. J Am Stat Assoc 93(441):359–371

    MathSciNet  MATH  Google Scholar 

  • Finley AO, Banerjee S, Gelfand AE (2012) Bayesian dynamic modeling for large space-time datasets using gaussian predictive processes. J Geogr Syst 14(1):29–47

    Article  Google Scholar 

  • Fu P, Weng Q (2016) A time series analysis of urbanization induced land use and land cover change and its impact on land surface temperature with landsat imagery. Remote Sens Environ 175:205–214

    Article  Google Scholar 

  • Gao Z, Ma Y, Wang H, Yao Q (2019) Banded spatio-temporal autoregressions. J Econom 208(1):211–230

    Article  MathSciNet  MATH  Google Scholar 

  • Gasparrini A et al (2017) Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Health 1(9):e360–e367

    Article  Google Scholar 

  • Gilbert JR, Moler C, Schreiber R (1992) Sparse matrices in MATLAB: design and implementation. SIAM J Matrix Anal Appl 13(1):333–356

    Article  MathSciNet  MATH  Google Scholar 

  • Guinness J (2018) Permutation and grouping methods for sharpening Gaussian process approximations. Technometrics 60(4):415–429

    Article  MathSciNet  Google Scholar 

  • Guinness J (2021) Gaussian process learning via Fisher scoring of Vecchia’s approximation. Stat Comput 31(3):25

    Article  MathSciNet  MATH  Google Scholar 

  • Guo S, Wang Y, Yao Q (2016) High-dimensional and banded vector autoregressions. Biometrika 103(4):889–903

    Article  MathSciNet  Google Scholar 

  • Hanewinkel M et al (2013) Climate change may cause severe loss in the economic value of european forest land. Nat Clim Chang 3(3):203–207

    Article  Google Scholar 

  • Hu H-W et al (2016) Effects of climate warming and elevated CO2 on autotrophic nitrification and nitrifiers in dryland ecosystems. Soil Biol Biochem 92:1–15

    Article  Google Scholar 

  • Huang H-C, Cressie N (1996) Spatio-temporal prediction of snow water equivalent using the Kalman filter. Comput Stat Data Anal 22(2):159–175

    Article  MathSciNet  Google Scholar 

  • IPCC (2021) Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth assessment report of the intergovernmental panel on climate change, Volume In Press. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press

  • Johannesson G, Cressie N, Huang H-C (2007) Dynamic multi-resolution spatial models. Environ Ecol Stat 14(1):5–25

    Article  MathSciNet  Google Scholar 

  • Katzfuss M, Guinness J (2021) A general framework for vecchia approximations of gaussian processes. Stat Sci 36(1):124–141

    Article  MathSciNet  MATH  Google Scholar 

  • Katzfuss M, Stroud JR, Wikle CK (2016) Understanding the ensemble Kalman filter. Am Stat 70(4):350–357

    Article  MathSciNet  MATH  Google Scholar 

  • Kilic E, Stanica P (2013) The inverse of banded matrices. J Comput Appl Math 237(1):126–135

    Article  MathSciNet  MATH  Google Scholar 

  • Kressner D (2005) Numerical methods for general and structured eigenvalue problems. Springer, Cham

    MATH  Google Scholar 

  • Lee L-F, Yu J (2015) Estimation of fixed effects panel regression models with separable and nonseparable space-time filters. J Econ 184(1):174–192

    Article  MathSciNet  MATH  Google Scholar 

  • Lesk C et al (2017) Threats to North American forests from southern pine beetle with warming winters. Nat Clim Chang 7(10):713–717

    Article  Google Scholar 

  • Li L, Yang Z (2021) Spatial dynamic panel data models with correlated random effects. J Econ 221(2):424–454

    Article  MathSciNet  MATH  Google Scholar 

  • Lu Z, Steinskog DJ, Tjøstheim D, Yao Q (2009) Adaptively varying-coefficient spatiotemporal models. J Roy Stat Soc B 71(4):859–880

    Article  MathSciNet  MATH  Google Scholar 

  • Luszczek P (2009) Parallel programming in MATLAB. Int J High Perform Comput Appl 23(3):277–283

    Article  Google Scholar 

  • Mafteiu-Scai LO (2015) The bandwidths of a matrix: a survey of algorithms. Ann West Univ Timisoara Math Comput Sci 52(2):183–223

    MathSciNet  MATH  Google Scholar 

  • Mariella L, Tarantino M (2010) Spatial temporal conditional auto-regressive model: a new autoregressive matrix. Aust J Stat 39(3):223–244

    Google Scholar 

  • Mueller SE et al (2020) Climate relationships with increasing wildfire in the southwestern US from 1984 to 2015. For Ecol Manag 460:117861

    Article  Google Scholar 

  • NOAA (2021). State of the climate: global climate report for annual 2020

  • Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer, Cham

    MATH  Google Scholar 

  • Nordman DJ, Lahiri SN (2004) On optimal spatial subsample size for variance estimation. Ann Stat 32(5):1981–2027

    Article  MathSciNet  MATH  Google Scholar 

  • Oleson KW et al (2018) Avoided climate impacts of urban and rural heat and cold waves over the U.S. using large climate model ensembles for RCP85 and RCP45. Clim Change 146(3):377–392

    Article  Google Scholar 

  • Omernik JM, Griffith GE (2014) Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ Manag 54(6):1249–1266

    Article  Google Scholar 

  • Rue H et al (2017) Bayesian computing with INLA: a review. Ann Rev Stat Appl 4(1):395–421

    Article  Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. J R Stat Soc B 71(2):319–392

    Article  MathSciNet  MATH  Google Scholar 

  • Saad Y (2003) Iterative methods for sparse linear systems (Second ed.). SIAM

  • Sarangi C et al (2021) Urbanization amplifies nighttime heat stress on warmer days over the US. Geophys Res Lett 48(24):e2021GL095678

    Article  Google Scholar 

  • Shen X et al (2022) Effect of shrub encroachment on land surface temperature in semi-arid areas of temperate regions of the northern hemisphere. Agric For Meteorol 320:108943

    Article  Google Scholar 

  • Sherman M (1996) Variance estimation for statistics computed from spatial lattice data. J Roy Stat Soc B 58(3):509–523

    MathSciNet  MATH  Google Scholar 

  • Shi W, Lee L-F (2017) Spatial dynamic panel data models with interactive fixed effects. J Econom 197(2):323–347

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart GW (2002) A Krylov-Schur algorithm for large eigenproblems. SIAM J Matrix Anal Appl 23(3):601–614

    Article  MathSciNet  MATH  Google Scholar 

  • Thompson R, Hornigold R, Page L, Waite T (2018) Associations between high ambient temperatures and heat waves with mental health outcomes: a systematic review. Public Health 161:171–191

    Article  Google Scholar 

  • Vecchia AV (1988) Estimation and model identification for continuous spatial processes. J Roy Stat Soc B 50(2):297–312

    MathSciNet  Google Scholar 

  • Vose RS et al (2017) Temperature changes in the United States. pp. 185–206. Climate Science Special Report: Fourth National Climate Assessment, Volume I. U.S. Global Change Research Program

  • Wan Z (2014) New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote sensing of Environment 140:(36–45)

  • Westerling AL, Hidalgo HG, Cayan DR, Swetnam TW (2006) Warming and earlier spring increase western U.S. forest wildfire activity. Science 313(5789):940–943

    Article  Google Scholar 

  • Wikle CK, Zammit-Mangion A, Cressie N (2019) Spatio-temporal statistics with R. Chapman and Hall/CRC, London

    Book  Google Scholar 

  • Xu G, Liang F, Genton MG (2015) A Bayesian spatio-temporal geostatistical model with an auxiliary lattice for large datasets. Stat Sin 25(1):61–79

    MathSciNet  MATH  Google Scholar 

  • Yan Y et al (2020) Driving forces of land surface temperature anomalous changes in North America in 2002–2018. Sci Rep 10(1):6931

    Article  Google Scholar 

  • Yu J, De Jong R, Lee L-F (2008) Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and t are large. J Econom 146(1):118–134

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang B, Cressie N (2020) Bayesian inference of spatio-temporal changes of arctic sea ice. Bayesian Anal 15(2):605–631

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang B, Sang H, Huang JZ (2015) Full-scale approximations of spatio-temporal covariance models for large datasets. Stat Sin 25(1):99–114

    MathSciNet  MATH  Google Scholar 

  • Zhang W, Yao Q, Tong H, Stenseth NC (2003) Smoothing for spatiotemporal models and its application to modeling muskrat-mink interaction. Biometrics 59(4):813–821

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao C et al (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci 114(35):9326–9331

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Aeronautics and Space Administration (NASA) under AIST-80NSSC20K0282 and the National Science Foundation (NSF) under DMS-2245906. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of NASA and NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangfang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 11862 KB)

Appendix A: Notation and Assumptions

Appendix A: Notation and Assumptions

We first introduce some notation and conventions. Given an \(n\times n\) matrix \({\varvec{P}}= (p_{ij})_{n\times n}\), we use \(\mathrm{{tr}}({\varvec{P}})\) and \(\mathrm{{det}}({\varvec{P}})\) to denote the trace and determinant of a square matrix \({\varvec{P}}\), and we let \(vec_D({\varvec{P}})\) denote the column vector formed by the diagonal elements of \({\varvec{P}}\). The (ij)th element of a matrix \({\varvec{P}}\) is denoted by \(\mathrm{{ent}}_{ij}({\varvec{P}})\). We define \(\Vert {\varvec{P}}\Vert _{1} = \max _{1\le j\le n}\sum _{i=1}^n|p_{ij}|\) and \(\Vert {\varvec{P}}\Vert _{\infty } = \max _{1\le i\le n}\sum _{j=1}^n|p_{ij}|\). We also let \(\Vert {\varvec{P}}\Vert _2=\{\lambda _{\max }({\varvec{P}}'{\varvec{P}})\}^{1/2}\) and \(\Vert {\varvec{P}}\Vert _F=\{\mathrm{{tr}}({\varvec{P}}'{\varvec{P}})\}^{1/2}\) denote the spectral norm and the Frobenius norm, respectively. Let \(abs({\varvec{P}}) = (|p_{i,j}|)_{n\times n}\). A sequence of \(n\times n\) matrix \({\varvec{P}}_n\) is said to be uniformly bounded in row and column sums (UB), if \(\sup _{n\ge 1}\Vert {\varvec{P}}_n\Vert _{1} <\infty \) and \(\sup _{n\ge 1}\Vert {\varvec{P}}_n\Vert _{\infty } <\infty \). We also use \({{\varvec{0}}}\) and \({{\varvec{1}}}\) to denote a matrix or a vector with all elements equal zero and one, respectively. For a real-valued function \(f({\varvec{x}})\), \({\varvec{x}}= ({\varvec{X}}_1, \ldots , x_k)'\in {\mathbb {R}}^k\), we let \(\nabla f({\varvec{x}})\) denote the gradient vector and let \(\nabla ^2 f({\varvec{x}})\) denote the Hessian matrix. The partial derivative of f with respect to \(x_j\) is denoted by \(\partial _{x_j} f({\varvec{x}})\) or \(\frac{\partial f({\varvec{x}})}{\partial x_j}\), whereas the second partial derivative with respect to \(x_j\) is denoted as \(\partial _{x_jx_j} f({\varvec{x}})\) (or \(\frac{\partial ^2 f({\varvec{x}})}{\partial x_j^2}\)).

In the following, we provide the regularity conditions for establishing the large sample properties of the PMLE \({\widehat{{\varvec{\delta }}}}\).

A.1 The spatial weight matrix \({\varvec{W}}\) is nonstochastic and symmetric, with zero diagonal elements.

A.2 The parameter space \(\mathbf {\Theta }_{{\varvec{\delta }}}\) of \({\varvec{\delta }}= ({\varvec{\beta }}', {\varvec{\theta }}', \sigma ^2)'\) is compact and is the product space of \(\mathbf {\Theta }_{{\varvec{\beta }}}\), \(\mathbf {\Theta }_{{\varvec{\theta }}}\), and \([{\underline{\sigma }}^2, {\bar{\sigma }}^2]\), where \(\mathbf {\Theta }_{{\varvec{\theta }}}\) is a compact set such that the matrix \({\varvec{{\mathcal {I}}}}_N -\lambda {\varvec{W}}\) is nonsingular and the eigenvalues of \(A({\varvec{\theta }})\) are less than one in magnitude, while \(\mathbf {\Theta }_{{\varvec{\beta }}}\) is a compact subset of \({\mathbb {R}}^k\). The true value \({\varvec{\delta }}_0= ({\varvec{\beta }}_0', {\varvec{\theta }}_0', \sigma _0^2)'\) lies in the interior of \(\mathbf {\Theta }_{{\varvec{\delta }}}\).

A.3 The vector of innovations \( {\varvec{V}}_t = (v_{1,t}, \ldots , v_{N,t})'\) \(\sim iid(0, \sigma _0^2 {\varvec{{\mathcal {I}}}}_{N})\) and \(E(|v_{j,t}|^{4+\eta }) <\infty \) for some \(\eta >0\) for all jt.

A.4 The precision matrix, infinite sum of power of \({\varvec{A}}({\varvec{\theta }}_0)\), and the design matrix are UB. Namely,

  1. (i)

    \({\varvec{\Sigma }}({\varvec{\theta }})^{-1}={\varvec{B}}({\varvec{\theta }})'({\varvec{\Omega }}({\varvec{\theta }}))^{-1}{\varvec{B}}({\varvec{\theta }})\) and \({\varvec{S}}(\lambda )^{-1}\) are UB, \(\forall {\varvec{\theta }}\in \mathbf {\Theta }\).

  2. (ii)

    \(\sum _{h=1}^{\infty }abs({\varvec{A}}({\varvec{\theta }}_0)^h)\) is UB.

  3. (iii)

    The \(N\times k\) design matrix \({\varvec{X}}_{t}\) is nonstochastic with elements UB in N and t.

A.5 \(\lim _{N\rightarrow \infty } \frac{1}{N} {\varvec{X}}'{\varvec{\Sigma }}({\varvec{\theta }})^{-1}{\varvec{X}}=\lim _{N\rightarrow \infty } \frac{1}{N} {\varvec{X}}'{\varvec{B}}({\varvec{\theta }})'({\varvec{\Omega }}({\varvec{\theta }}))^{-1}{\varvec{B}}({\varvec{\theta }}){\varvec{X}}\) is nonsingular, \(\forall {\varvec{\theta }}\in \mathbf {\Theta }\).

A.6 \(\liminf _{N \rightarrow \infty } N^{-1}\sum _{j=1}^{NT} \nabla ^2 f_j({\varvec{\alpha }})\) is nonsingular, where \(f_j({\varvec{\alpha }})\) \(=\) \(-\log (\lambda _j({\varvec{\theta }})\sigma ^{-2}\sigma _0^2)\) \(+\) \(\lambda _j({\varvec{\theta }})\sigma ^{-2}\sigma _0^2\), \({\varvec{\alpha }}= ({\varvec{\theta }}', \sigma ^2)'\), and \(\lambda _j({\varvec{\theta }})\), \(j=1, \ldots , NT\), are the distinct eigenvalues of \({\varvec{\Sigma }}({\varvec{\theta }})^{-1}{\varvec{\Sigma }}({\varvec{\theta }}_0)\) in nonincreasing order.

A.7 \({\varvec{\Sigma }}({\varvec{\theta }})\), \(\partial _{\theta _i} ({\varvec{\Sigma }}({\varvec{\theta }})^{-1})\), \(\partial _{\theta _i\theta _j}^2 ({\varvec{\Sigma }}({\varvec{\theta }})^{-1})\), and \(\partial _{\theta _i\theta _j\theta _k}^3 ({\varvec{\Sigma }}({\varvec{\theta }})^{-1})\) are UB in \({\varvec{\theta }}= (\theta _1, \theta _2, \theta _3)' \in \mathbf {\Theta }\).

A.8 \(\lim _{N\rightarrow \infty }N^{-1}{\varvec{\Omega }}_{N} \) is nonsingular, where

$$\begin{aligned} {\varvec{\Omega }}_{N} =&\left( \begin{array}{cccc} \mathrm{{tr}}( {\varvec{m}}_{\lambda }^2 ) &{} \mathrm{{tr}}( {\varvec{m}}_{\lambda } {\varvec{m}}_{\gamma } ) &{} \mathrm{{tr}}( {\varvec{m}}_{\lambda } {\varvec{m}}_{\rho } ) &{} -\frac{1}{\sigma _0^2} \mathrm{{tr}}({\varvec{m}}_{\lambda }) \\ * &{} \mathrm{{tr}}( {\varvec{m}}_{\gamma }^2 ) &{} \mathrm{{tr}}( {\varvec{m}}_{\gamma } {\varvec{m}}_{\rho } ) &{} -\frac{1}{\sigma _0^2} \mathrm{{tr}}({\varvec{m}}_{\gamma })\\ * &{} * &{} \mathrm{{tr}}( {\varvec{m}}_{\rho }^2 ) &{} -\frac{1}{\sigma _0^2} \mathrm{{tr}}({\varvec{m}}_{\rho }) \\ * &{} * &{} * &{} \frac{NT}{ \sigma _0^4 } \end{array} \right) , \end{aligned}$$
(11)

with \({\varvec{m}}_{\lambda }\), \({\varvec{m}}_{\gamma }\), and \({\varvec{m}}_{\rho }\) defined in (S.14) in Supplementary Materials.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T.F., Wang, F., Zhu, J. et al. Scalable Semiparametric Spatio-temporal Regression for Large Data Analysis. JABES 28, 279–298 (2023). https://doi.org/10.1007/s13253-022-00525-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13253-022-00525-y

Keywords

Navigation