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Asynchronous Changepoint Estimation for
Spatially Correlated Functional Time Series

Mengchen Wang , Trevor Harris, and Bo Li

We propose a new solution under the Bayesian framework to simultaneously estimate
mean-based asynchronous changepoints in spatially correlated functional time series.
Unlike previous methods that assume a shared changepoint at all spatial locations or
ignore spatial correlation, ourmethod treats changepoints as a spatial process. This allows
our model to respect spatial heterogeneity and exploit spatial correlations to improve
estimation. Our method is derived from the ubiquitous cumulative sum (CUSUM) statis-
tic that dominates changepoint detection in functional time series. However, instead
of directly searching for the maximum of the CUSUM-based processes, we build spa-
tially correlated two-piece linear models with appropriate variance structure to locate
all changepoints at once. The proposed linear model approach increases the robustness
of our method to variability in the CUSUM process, which, combined with our spatial
correlation model, improves changepoint estimation near the edges. We demonstrate
through extensive simulation studies that our method outperforms existing functional
changepoint estimators in terms of both estimation accuracy and uncertainty quantifica-
tion, under either weak or strong spatial correlation, and weak or strong change signals.
Finally, we demonstrate our method using a temperature data set and a coronavirus
disease 2019 (COVID-19) study.

Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

In recent years, there has been a considerable renewed interest in changepoint detec-
tion and estimation in many fields, including Climate Science (Lund et al. 2007; Reeves
et al. 2007), Finance and Business (Lavielle and Teyssiere 2007; Taylor and Letham 2018),
and traffic analysis (Kurt et al. 2018). The changepoint problem was first studied by
Page (1954) for independently and normally distributed time series. Since then, change-
point literature has grown tremendously. Methods for changepoints in time series have been
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developed for both at most one change and multiple changepoints. Vast methodologies are
derived based on the cumulative sum (CUSUM) statistic (e.g., Wald 1947; Shao and Zhang
2010; Aue and Horváth 2013; Fryzlewicz and Rao 2014) which was first introduced by Page
(1954) to detect a shift in the process mean, though other methods have also been proposed
(e.g., Chernoff and Zacks 1964; MacEachern et al. 2007; Sundararajan and Pourahmadi
2018).

With the proliferation of high-frequency data collection and massive data storage in
recent years, functional data has become increasingly common, and functional data analysis
is an increasingly valuable toolkit. For instance, daily temperature data in a specific year can
be considered functional data and analyzed using functional data methods. Consequently,
functional time series become prevalent, and they usually contain more information than a
single time series. Following the previous example, daily temperature data over, say 50 years,
can be treated as a functional time series which is much more informative than an annual
average temperature series with 50 observations. As for univariate time series, changepoint
detection and estimation for functional time series have received particular interest owing
to the rise of high-dimensional time series.

Within the functional data analysis (FDA) literature, changepoint detection has primarily
focused on the scenario of at most one change. Berkes et al. (2009) proposed a CUSUM test
to detect and estimate changes in the mean of independent functional sequence data. The
comprehensive asymptotic properties for their estimation are further studied in Aue et al.
(2009). Berkes et al.’s test was then extended to weakly dependent functional data by Hör-
mann and Kokoszka (2010) and to epidemic changes, for which the observed changes will
return to baseline at a later time, by Aston and Kirch (2012). Zhang et al. (2011) introduced
a test for changes in the mean of weakly dependent functional data using self-normalization
to alleviate the use of asymptotic control. Later, Sharipov et al. (2016) developed a sequen-
tial block bootstrap procedure for these methods. Recently, Aue et al. (2018) proposed a
fully functional method for finding a change in the mean without losing information due to
dimension reduction, thus eliminating restrictions of functional principal component based
estimators. Other methods in multiple changepoint detection for functional time series can
be seen in Chiou et al. (2019), Rice and Zhang (2019), Harris et al. (2020) and Li and Ghosal
(2021).

Environmental data often naturally takes the form of spatially indexed functional data.
Again using our temperature data example, if we observe such functional time series at
many weather stations in a region, then we have a spatial functional time series. The study
for changepoint estimation with spatially indexed functional time series is relatively scant
compared to the abundant literature for data not associated with spatial locations. The
possible spatial variability and correlation for spatially indexed data present challenges for
such data analysis. Spatial data observed in a vast region such as weather data in a state may
exhibit heterogeneous characteristics across the spatial domain. Furthermore, it is often not
straightforward to model and estimate spatial correlation in statistical analysis. However,
spatial correlation, if appropriately taken into account, can effectively improve the statistical
inference drawn from the spatial data (Shand et al. 2018). Gromenko et al. (2017) tackled the
changepoint estimation for spatial functional data by assuming a common break time for all
functional time series over the spatial domain. They developed a test statistic as a weighted
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average of the projected CUSUM with the weights defined as the inverse of the covariance
matrix of the spatial data. However, the assumption of a common changepoint over the entire
spatial domain can be unrealistic. Other related work on spatial functional data includes a
test for the correlation between two different functional data sets observed over the same
region (Gromenko et al. 2012), a test for the equality of the mean function in two samples
of spatial functional data (Gromenko and Kokoszka 2012), and a nonparametric method to
estimate the trend as well as evaluate its significance for spatial functional data (Gromenko
and Kokoszka 2013). All those works, similar as Kriging (Matheron 1963), took spatial
correlation into account by downweighting the data that are strongly spatially correlated.

To illustrate the limitation of assuming a common changepoint for a large region, we
examine the changepoints of the dailyminimum temperature inCalifornia from1971 to 2020
obtained fromhttps://www.ncdc.NOAA.gov/cdo-web/search?datasetid=GHCND.Thedata
are collected over 207 stations, but only 28 stations have sufficiently complete (<15%miss-
ing values) time series for meaningful change point estimation and are presented here.
We first use 21 Fourier basis functions to smooth the daily data and then apply the fully
functional (FF) method of Aue et al. (2018) to each station. We then test for the existence
of changepoints with the FF method and find 16 stations with p < 0.1 after a false dis-
covery rate (FDR) control (Benjamini and Hochberg 1995). The locations of stations and
the FF changepoint estimates are shown in Fig. 4a in Sect. 4. The changepoint estimates
appear asynchronous, though somewhat spatially clustered. Thus, simply assuming a single
common break time would misrepresent the changepoint process and lose information.

We propose an asynchronous changepoint estimationmethod for simultaneously locating
at most one change in each mean function of spatially indexed functional time series. In
contrast to estimating a single shared changepoint in Gromenko et al. (2017), our method
allows both the break time and the amount of change to vary spatially. In addition, we take
spatial correlation into account to strengthen the changepoint estimation and respect the
inherent spatial continuity. We derive our method based on the asymptotic properties of
the functional CUSUM squared norm process at each location. Rather than directly finding
the maximum value of the CUSUM-based processes in previous work, we propose to fit
spatially correlated piecewise linear models with two pieces for the CUSUM squared norm
process across the spatial domain, and estimate changepoints by where the two pieces meet
at each individual location. To our knowledge, this is the first methodological exploration of
fitting parametricmodels for theCUSUMprocess in order to estimate the spatially correlated
changepoints. This new strategy leads to more robust changepoint estimation to noise, and
improves the estimation for challenging cases where the changepoints are near the edges.
All parameters are jointly specified in a Bayesian hierarchical model, which provides a
powerful means for parameter estimation as well as allows us to conveniently quantify the
uncertainty of the estimation.

The rest of this paper is organized as follows. In Sect. 2, we first introduce the notations
and the properties of the CUSUM squared norm process, then present our proposed method.
In Sect. 3, we conduct simulations under different scenarios to evaluate the performance
of our proposed model and other competitive methods. Real data analysis on the Califor-
nia minimum temperatures and the COVID-19 dataset is presented in Sect. 4. The paper
concludes with a brief discussion in Sect. 5.

https://www.ncdc.NOAA.gov/cdo-web/search?datasetid=GHCND
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2. CHANGEPOINT ESTIMATION

2.1. NOTATION

Let Xs,t (u) be the functional observation at location s ∈ D, where D is a compact
subset in Rd , and time t ∈ Z. Each Xs,t (u) ∈ L2([0, 1]) is a real-valued square integrable
function defined without loss of generality on the unit interval [0, 1], i.e., u ∈ [0, 1], and∫ 1
0

∣
∣X2

s,t (u)du
∣
∣ < ∞. We assume the functional times series Xs,t (u), t = 1, . . . , T , is

generated from the following model:

Xs,t (u) = μs(u) + δs(u)1(t > k∗
s ) + εs,t (u), t ∈ Z, (1)

where μs(u) is the baseline mean function that is distorted by the addition of δs(u) after the
break time k∗

s ∈ {1, . . . , T } at location s, and 1(A) is an indicator function that equals 1 only
when event A is true and zero otherwise. We assume that the functional data at all locations
are observed at the same time points. We also assume that the zero-mean error functions
εs,t (u) are weakly dependent in time at each location, follow the same distribution at all
space and time locations, and are second-order stationary with isotropic correlation in the
spatial, temporal, and functional domains. The formal assumption statements and details are
deferred to Appendix A. To simplify notation, we suppress u from the functional random
variables such as referring to δs(u) by δs when there is no risk of confusion.

Changepoint detection in themean, at each location s, canbe formulated into the following
hypothesis test:

H0 : δs = 0 versus HA : δs �= 0, (2)

where δs = 0 means δs(u) = 0 for all u ∈ [0, 1] and otherwise δs �= 0. Aue et al. (2018)
proposed a fully functional approach to testing the hypothesis (2) for each location s based
on the functional CUSUM defined as

Ss,T,k(u) = 1√
T

{
k∑

t=1

Xs,t (u) − k

T

T∑

t=1

Xs,t (u)

}

, k = 0, . . . , T, (3)

for which the two empty sums Ss,T,0(u) = Ss,T,T (u) = 0. Noting that the L2 norm of
the CUSUM statistic,

∥
∥Ss,T,k

∥
∥, as a function of k tends to be large at the true break date

motivates a max-type test statistic for detecting a change in the mean function:

T ST (s) = max
1≤k≤T

‖Ss,T,k(u)‖2. (4)

If a changepoint is detected, Aue et al. (2018) further provided an estimator for the break
time k∗

s :

k̂∗
s = min

{

k : ∥
∥Ss,T,k(u)

∥
∥ = max

1≤k′≤T

∥
∥Ss,T,k′(u)

∥
∥
}

.
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The CUSUM test based on Eq. (4) allows the functional time series to be m− dependent
and requires notably weaker assumptions than the functional principal component-based
methods. TheCUSUMstatistic is shown to be powerful (Page 1954;MacEachern et al. 2007)
in detecting mean shift of univariate time series. For functional time series, the CUSUM is
also the basis of many other changepoint detection methods (Berkes et al. 2009; Hörmann
and Kokoszka 2010; Aston and Kirch 2012; Sharipov et al. 2016; Gromenko et al. 2017).

2.2. PROPERTIES OF SPATIAL CUSUM PROCESS

Most previous methods consider changepoint detection in a single functional time series,
and thus may have limited power when directly applied for the spatially indexed functional
data that exhibit spatial correlation. While Gromenko et al. (2017) took spatial correlation
into account, their assumption of a single shared changepoint can be too restrictive for data
observed in a large spatial domain. We aim to develop a flexible and efficient method to
estimate spatially varying break time k∗

s jointly for all locations while taking advantage of
spatial correlation in the changepoint estimation. Due to the power of CUSUM statistic in
changepoint detection, our method will employ the CUSUM as the building block.

Since our method is derived from the asymptotic properties of CUSUM processes for
spatially indexed functional time series, we first study those properties before introducing
our model in Sect. 2.3. To simplify notation, let

YT,k(s) = ∥
∥Ss,T,k(u)

∥
∥2 , k = 0, . . . , T . (5)

The notation YT,k(s) emphasizes that Y is a spatially varying random process. By definition,
YT,k(s) = 0 when k = 0 and k = T . Since YT,k(s) largely preserves the changepoint
information (Aue et al. 2018), our method will be based on YT,k(s), which reduces the
functional sequence Xs,t (u) at each location into a time series YT,k(s), k = 0, . . . , T . The
spatial functional sequence thus reduces into a spatiotemporal random process.

We then study the characteristics of the spatiotemporal process YT,k(s). Let λl and ψl(u)

be the eigenvalues and eigenfunctions of the error process εs,t (u) in Eq. (1). The formal
definition is deferred to Section S2 of the Supplement. Let q = k/T be the scaled time
point.

Lemma 1. Under the null hypothesis of no changepoint at location s, we have

YT,k(s)
D→

∞∑

l=1

λl B2
l (q) as T → ∞,

where (Bl : l ∈ N) are independent and identically distributed (iid) standard Brownian
bridges defined on [0, 1], E{∑∞

l=1 λl B2
l (q)}=q (1 − q)

∑∞
l=1 λl and var{∑∞

l=1 λl B2
l (q)}=

2q2 (1 − q)2
∑∞

l=1 λ2l .
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Proposition 1. Under the alternative hypothesis that there is one changepoint k∗
s at

location s and the corresponding change function is δs(u), we have

√{YT,k(s)} − √{ZT,k(s)} P→ 0,

for a random process ZT,k(s) with

E{ZT,k(s)} =

⎧
⎪⎨

⎪⎩

q (1 − q)
∑∞

l=1 λl + T q2||δs(u)||2
(
1 − k∗

s
T

)2
, if k ≤ k∗

s ;
q (1 − q)

∑∞
l=1 λl + T (1 − q)2 ||δs(u)||2

(
k∗
s

T

)2
, if k > k∗

s ,
(6)

and

var{ZT,k(s)} =

⎧
⎪⎨

⎪⎩

aq2 (1 − q)2 + bsT q3 (1 − q)
(
1 − k∗

s
T

)2
, if k ≤ k∗

s ;
aq2 (1 − q)2 + bsT q (1 − q)3

(
k∗
s

T

)2
, if k > k∗

s ,
(7)

where

a = 2
∑∞

l=1 λ2l and bs = 4
∑∞

l=1 λl

{∫ 1
0 ψl(u)δs(u)du

}2
.

Assumption 2 in Appendix A that assumes identically distributed error functions implies
both λl andψl are invariant across s and t , so all locations share the same parameter a which
represents the feature of the long-run variance, whereas bs depends on change functions that
may vary across different locations. Proofs of Lemma 1 and Proposition 1 are deferred to
Section S4 of the Supplement.

The asymptotics in Proposition 1 indicates that we can use the mean and variance of√{ZT,k(s)} to approximate those of
√{YT,k(s)} at a large T . However, the calculation of

the first two moments for
√{ZT,k(s)} is rather involved compared to that for ZT,k(s) due to

the square root operator. To bypass that difficulty, we propose to use the mean and variance
of ZT,k(s) to approximate those of the YT,k(s) process. This is not a viable solution in
theory; however, the approximations are sufficient to serve our purpose of understanding
the mean and variance structure of YT,k(s) for deriving our method. To evaluate how well
(6) and (7) approximate the mean and variance of the YT,k(s), respectively, we conduct
simulations at four different settings composed of two different T ’s and two signal-to-noise
ratio (SNR) values that will be introduced in Sect. 3.1. The details of the simulation can
be found in Section S5.1 of the Supplement. Figure 1 compares the empirical mean and
variance from the simulations with their theoretical approximations. For all scenarios we
considered, the approximations seem to match with the empirical result well, especially in
the mean function.

The expression in Eq. (6) shows that when T is large the mean of the YT,k(s) sequence
attains its peak at the changepoint. This is indeed the basis of the test in Aue et al. (2018).
Figure 1 also shows that the YT,k(s) sequence starts from exactly zero on both ends and then
peaks at the true changepoint 0.6T . In addition, Eq. (6) indicates that the stronger the change
signal is, the more pointed the peak tends to be, which is corroborated by the comparison
between the means of YT,k(s) at two different SNR values. The variance of YT,k(s) also
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Figure 1. Mean and variance of the YT,k (s) process based on simulation results (blue solid) and the proposed
theoretical approximation (red dashed).

starts from zero at the two ends and then increases toward the center. However, there is no
theoretical evidence that the variance should maximize at the changepoint. Indeed, we find
the peak of the variance is not necessarily located at the changepoint, though this particular
simulation shows so.

The properties of YT,k(s) enlighten us to estimate the break time by fitting a piecewise
linear model with two pieces for the YT,k(s), 0 ≤ k ≤ T sequence at each location. The
two pieces are expected to be joined at the break time. Figure S1 in Section S5.2 of the
Supplement illustrates this idea using simulated YT,k(s) processes. Due to the constraint of
being zeroes on both ends, the two pieces can be modeled by one slope parameter, and a
stronger change signal will lead to a steeper slope. Although the mean function in Eq. (6)
suggests a piecewise quadratic model, for simplicity and the robustness of linear models,
we choose the piecewise linear model which suffices for our purpose of capturing the peak
of the YT,k(s) process. In order to correctly quantify the uncertainty of the fitted piecewise
linear model and thus the uncertainty of the changepoint estimation, it is important to feed
the regression model with the appropriate variance structure. We model the variance of the
piecewise linear model following Eq. (7).

If the functional data are observed at nearby locations, their break times are expected to
be similar due to spatial dependency, so is the amount of change.What these similarities pass
to the piecewise linear models is that the locations of the joints and the slopes of the models
at two neighboring locations tend to be respectively similar. This suggests us to borrow
information from neighbors when estimating the changepoint at one specific location.

Given the above considerations, we propose a Bayesian hierarchical model to jointly
estimate spatially varying changepoints together with their uncertainty for all locations that
have changepoints. In practice, we can first apply any changepoint detection method at
each location and then employ FDR to adjust the p-values to decide which locations show
significant evidence of having a changepoint. If the number of spatial locations is large, the
mirror procedure developed by Yun et al. (2020) can be an effective alternative to the classic
FDR control.
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2.3. BAYESIAN HIERARCHICAL MODEL

Assume changepoints are detected at locations s1, . . . , sN . At each of those locations,
we fit a two-piece piecewise linear model with only one slope parameter for YT,k(s), k =
1, . . . , T − 1, due to the constraint of YT,k(s) = 0 for k = 0 and k = T . We model the
slope parameters and the joints of the two pieces as spatially correlated processes to account
for the spatial correlation in the break time and change amount of the changepoints. Let
c(s) = k∗

s /T ∈ (0, 1) be the scaled location specific changepoint. We propose the following
model:

Stage I Likelihood of the YT,k(s) process:

YT,k(s) = β(s)[{c(s) − 1}q + {q − c(s)}1{q ≥ c(s)}] + ek(s), k = 1, . . . , T − 1,

where β(s) < 0 is the spatially varying piecewise linear model coefficient, and the error
process ek(s) is assumed to be a zero-mean spatially correlated Gaussian process.We further
assume a space-time separable covariance structure for errors for simplicity, as is widely
used in spatiotemporal modeling (Haas 1995; Hoff 2011).We denote the entire error process
as

e = (e1(s1), . . . , e1(sN ), e2(s1), . . . , e2(sN ), . . . , eT −1(s1), . . . , eT −1(sN ))T ,

and assume

e ∼ N (0N (T −1),�
1/2�t ⊗ �s�

1/2),

where 0N (T −1) is a vector of N (T − 1) zeros and

� = diag
(
ω2
1(s1), . . . , ω

2
1(sN ), . . . , ω2

T −1(s1), . . . , ω
2
T −1(sN )

)
,

with

ω2
k (s) =

{
aq2(1 − q)2 + bs{1 − c(s)}2T q3(1 − q), if q ≤ c(s);
aq2(1 − q)2 + bsc(s)2T q(1 − q)3, if q > c(s).

The variance term� follows the theoretical approximation in Eq. (7) to represent the uncer-
tainty of YT,k(s). Parameters a and bs are complex functions of unknown eigenvalues,
eigenfunctions and change functions. We will directly treat them as unknown nuisance
parameters in our model. This also gives us the leverage of being less dependent on the
exact form of the approximation but rather following its basic structure. The pure temporal
correlation matrix �t and pure spatial correlation matrix �s can be governed by any valid
correlation function such as exponential or Matérn function (Stein 2012). For simplicity, we
assume an exponential covariance function for both matrices:

�t (k,k′) = exp

(

−|k − k′|
T φt

)

, �s( j, j ′) = exp

(

−||s j − s j ′ ||
φs

)

,
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where φt and φs are range parameters for temporal and spatial correlation, respectively.
As shown earlier by the asymptotic and numerical results, the shape of the piecewise

linear model is influenced by the change function and changepoint. To respect the fact that
the nearby locations tend to have similar changepoints and change functions, we regulate
β = (β(s1), . . . , β(sN ))T and c = (c(s1), . . . , c(sN ))T by a correlated process. Since
b = (bs1 , . . . , bsN )T also depends on the change function, it is governed by a correlated
process as well. Because the dependency in β, c and b all arise from the spatial dependency
in the data, it is not unreasonable to assume these parameters share one correlation matrix
�(φ) to retain parsimony of the model. Considering the constraints that the slope β(s) is
negative, changepoint c(s) is between 0 and 1, and the parameters a and bs in the variance
part are positive, we construct the following priors:
Stage II Priors:

log(−β) ∼ N (μβ, σ 2
β�(φ)),

�−1(c) ∼ N (μc, σ
2
c �(φ)),

log(a) ∼ N (μa, σ 2
a ),

log(b) ∼ N (μb, σ
2
b �(φ)),

where �(φ)nn′ = exp (−||sn − sn′ ||/φ).
All parameters μβ , μc, μa and μb take values in R, so we choose a normal distribution

with large variance as their weak hyperpriors. The variance parametersσ 2
i , i = β, c, a, b, are

all given a conjugate inverse gamma hyperprior. We choose IG(0.1,0.1) because it provides
relatively reasonable range for the variances of β, c, a, and b, and we find the hyperprior has
little influence on all those parameters, in particular, the c parameter of our primary interest.

The range parameters φ, φs and φt are positive, so we choose an exponential hyperprior
for thembut set a different hyperparameter forφt , given that the spatial and temporal domains
have different characteristics.

The hyperpriors for unknown parameters are given in Section S6 of the Supplement. We
use theMarkov chainMonte Carlo (MCMC) algorithm to obtain posterior samples from the
model. Gibbs sampling is utilized to sample the posteriors for σ 2

β , σ
2
c , σ

2
a and σ 2

b , while the
Metropolis-Hasting-within-Gibbs algorithm is implemented for the remaining parameters.
For parameters β, c, a and b that have constraints on their range, we first transform them to
the real line before sampling. The derivation of the posterior full conditional distributions
can be found in Section S6 of the Supplement.

3. SIMULATION STUDY

We conduct simulations to evaluate the accuracy of our changepoint estimation, as well
as the coverage and the length of the credible interval. We also explore how the strength of
spatial correlation and change signal influence performance. To further study the properties
of our method, we compare it with other competitive methods.
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3.1. DATA GENERATION

We randomly select N = 50 locations in a 10× 10 spatial domain as the rejection region
DR resulting from a changepoint detection algorithm adjusted by the FDR control. Due
to the joint estimation for all locations of our method, the false discoveries, i.e., the null
locations falsely classified as alternatives, may undermine the estimation. To mimic false
discoveries at a typical rate of 0.1, we randomly select a cluster of N0 = 5 locations among
the N locations to be the falsely classified null locations. At each location, we consider
T = 50 time points and generate T functional data, Xs,t (u) : u ∈ [0, 1] for t = 1, . . . , T ,
as defined in Eq. (1). Without loss of generality, we assume the mean curves, μs1 , . . ., μsN ,
to be zero functions. Thus, the data generation mainly involves simulating error functions,
break time and change functions, except that at those N0 locations, the change function δs

is set to be zero.

Error functions: Although we allow the error functions to be weakly dependent, using
temporally independent error functions in simulation studies is very common (Horváth
et al. 2013; Aue et al. 2018). In particular, Aue et al. (2018) repeated their simulation with
the first-order functional autoregressive errors, and found the results generally remain the
same as those from the independent errors. This is because the power of YT,k(s) process for
changepoint detection is insensitive to the error correlation structure. The YT,k(s) process
is temporally correlated even if Xs,t (u) is temporally independent. We therefore adopt
temporally independent error functions in our simulation. For each location, we generate T
error functions εs,t as follows:

εs,t (u) =
L∑

l=1

ξ l
s,tνl(u), t = 1, . . . , T , s ∈ DR,

where L = 21 is the number of Fourier basis functions, νl(u) is the lth Fourier basis function,
and ξ l

s,t is the coefficient for νl(u) at location s and time point t .
Define ξ l

t = (ξ l
s1,t , . . . , ξ

l
sN ,t )

T for any l between 1 and L , and assume ξ l
t ∼

N
(
0N , 1/(2m3)�

)
. To ensure curve smoothness, we setm = 1 if l = 1,m = l/2 if l is even,

and m = (l − 1)/2 if l is odd and l ≥ 3. The derivation of m and details of basis functions
are deferred to Section S7 of the Supplement. To ensure the error functions be spatially cor-
related, we assume that the N × N matrix � is governed by �(φ)i j = exp

(−||si − s j ||/φ
)

for a range parameter φ.

Break time: For the region Da of the Na = 45 true alternative locations, s1, . . . , sNa ,
we first generate the scaled break times k̃∗

s , s ∈ Da , from a truncated multivariate normal
distribution such that 0.15 ≤ k̃∗

s ≤ 0.85 for any s ∈ Da :

k̃
∗ = (̃k∗

s1, . . . , k̃∗
sNa

)T ∼ T N (0.5Na ,�a, 0.15Na , 0.85Na ),

where dn is an n−length vector of all d values and x ∼ T N (μ,�a,bl ,bu) means

f (x,μ,�a,bl ,bu) = exp
{− 1

2 (x − μ)T �−1
a (x − μ)

}

∫ bu
bl

exp
{− 1

2 (x − μ)T �−1
a (x − μ)

}
dx

.
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Again, �a(φ)i j = exp
(−||si − s j ||/φ

)
for si , s j ∈ Da . Then, the real break time

k∗
s = [̃k∗

s T ], s ∈ Da , where [n] denotes rounding n to its nearest integer. We truncate
the scaled break time to ensure there are a reasonable amount of data both before and after
the changepoint.

Change functions: We generate change functions δs, s ∈ Da , as follows:

δs =
L∑

l=1

ηl
sνl , s ∈ Da,

where νl is the lth Fourier basis function and ηl
s is the coefficient for νl at loca-

tion s. Define ηl = (ηl
s1 , . . . , η

l
sNa

)T for any l between 1 and L , and assume ηl ∼
N (ρ/m21Na , 1/(10m3)�a), where m and �a follow the definition in the error function
and break time, respectively. The parameter ρ measures the magnitude of the change signal.

To investigate how our model performs under different spatial correlation strengths, we
consider both φ = 2 and 5 which corresponds to relatively weaker and stronger spatial
correlation. The correlation between functional data at two locations decays faster under
φ = 2 than that with φ = 5. It is also interesting to study the influence of change signal
strength on our model performance. We adopt the signal-to-noise ratio (SNR) used in Aue
et al. (2018) to measure the strength of the change signal. SNR, the ratio of the magnitude
of change function to that of error functions, is defined as

SNR = θ(1 − θ)‖δ‖2
tr(Cε)

, (8)

where θ is the scaled date of the changepoint, i.e., k∗
s /T in our context, δ is the change

function, Cε is the long-run covariance matrix of the error functions as defined in Equation
(S2.1) of the Supplement, and tr(·) is the trace function. The estimation procedure for SNR
at a single location is detailed in Aue et al. (2018). By setting ρ = 1 and 1.5, we obtain
simulated data with mean SNR over all locations in Da being around 0.5 and 1, which
corresponds to weaker and stronger signal, respectively.

3.2. RESULTS

To evaluate the performance of the proposed method, we examine the root-mean-squared
error (RMSE) of the changepoint estimate, the empirical coverage of the credible interval
(CI), and the length of CI. For each setting of spatial correlation and SNR, we run 100 sim-
ulations. Different locations, changepoints and functional data are generated independently
in each simulation. To ensureMCMC chain convergence, we try different initial values of all
parameters and run MCMC until the parallel chains converge based on the Gelman–Rubin
diagnostic (Gelman and Rubin 1992). We also apply Geweke’s diagnostic (Geweke 1991)
to determine the burn-in period. Through experimentation, we picked a conservatively large
iteration number of 20,000 and a larger than necessary burn-in size of 15,000 for all simula-
tion runs to ensure convergence. We retain every 10th iteration and discard the remainder to
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reduce the positive correlation in the original sample. We compute 95% credible intervals
as the interval between the 2.5 and 97.5 percentiles of the posteriors for each parameter.

We compare our method to the recent fully functional (FF) method in Aue et al. (2018)
and the method particularly designed for spatial functional data in Gromenko et al. (2017)
(hereinafter GKR). The GKR method mainly focuses on changepoint detection and does
not provide confidence intervals. Thus, our comparison with Gromenko et al. (2017) is only
limited to comparing the accuracy of the estimation. The changepoint confidence interval
based on the FF method is computed using the R package fChange. Although all methods
are applied to the functional data at 50 locations, the evaluation metrics are calculated only
at the 45 true alternative locations.

The RMSE of the changepoint estimates from all three methods is reported in Section S9
of the Supplement. Unsurprisingly, GKR has significantly higher error rates than the other
two methods since it assumes a simultaneous changepoint, whereas the data are generated
with spatially varying changepoints. We instead focus on FF and our method in Fig. 2 since
they have comparable error rates. Across all four scenarios representing both the weaker
and stronger spatial correlation and SNR, our proposed method outperforms FF by reducing
the RMSE of the changepoint estimation. When the signal of change is stronger (ρ = 1.5),
both FF and our method show smaller and more stable RMSE, as expected. When spatial
correlation is higher (φ = 5), our method achieves far less estimation error, especially in
the challenging situation with a weaker change signal (ρ = 1). This implies that our method
can use spatial correlation to improve the changepoint estimation. Curiously, the FF method
experiences a slight RMSE reduction in the high correlation regime, which turned out to
be an artifact of the data generation randomness. Details are reported in Section S9 of the
Supplement.

We further report the empirical coverage probability of our 95% credible intervals against
the 95% confidence intervals of the FF method, and present the interval lengths of both
methods in Fig. 2. Narrow credible or confidence intervals, with empirical coverage close
to the nominal level, indicate precise uncertainty quantification.Our credible intervals, based
on weakly informative priors, have empirical coverage closer to the nominal level and are
narrower than the corresponding FF confidence intervals. We observe that when the change
signal is stronger, both FF and our method improve the uncertainty quantification compared
to the lower change signal scenarios. Again, our method is apparently able to take advantage
of the spatial correlation in changepoint estimation, reflected by shorter credible interval
length while better coverage when the spatial correlation becomes stronger. This ability is
particularly important when the change signal is weak, because in such cases, methods like
FF that do not take spatial correlation into account may face challenges.

Figure 3 shows the 95% credible and confidence intervals from randomly chosen simula-
tion runs in two different settings. Figure 3a is associatedwith the stronger spatial correlation
and the stronger change signal when both our and the FF method have the best performance
among all the settings. In this scenario, the confidence interval from the FFmethod performs
slightly worse than the credible interval of our method and the RMSE from FF is compet-
itive. Nevertheless, it is still seen that when the true changepoints are close to the edges,
the FF method tends to miss true values and results in longer credible intervals, while our
method consistently captures all changepoints well regardless of their positions. Besides,
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Figure 2. Boxplots of RMSE, the empirical coverage probability of 95% credible and confidence intervals and
the logarithms of interval length under four settings. The range parameter φ = 2 and φ = 5 represent weaker and
stronger spatial correlation, and ρ = 1 and ρ = 1.5 represent weaker and stronger change signals, respectively.
“BH” is our proposed Bayesian hierarchical model and “FF” refers to the fully functional method in Aue et al.
(2018).

for many locations, even though the estimate from the FF method is close to the true value,
their confidence interval often appears too long to be informative. Figure 3b corresponds
to the case with the stronger spatial correlation and weaker signal. Both methods perform
satisfactorily when the true changepoint is near 0.5T . However, the FF method in this sce-
nario struggles to capture the changepoint as well as quantify the uncertainty when the real
changepoint is slightly extreme toward both ends. In contrast, our method still retains its
power in those situations by providing accurate estimates and informative credible intervals.

Under the null hypothesis of no changepoint, the variability of YT,k(s) process is large in
the middle and reaches its peak at k = 0.5T . Even if the changepoint exists and perturbs the
variation, the variance in the middle still tends to be higher due to the intrinsic properties of
YT,k(s), though the peak may not occur at the center. Since the FF method only searches for
the maximum value of the YT,k(s) process, it could be vulnerable to the large variance often
dwelling around the center of the duration. When the real changepoint is off-center and the
signal is weak, high variance near the center can lead to spurious maxima in the YT,k(s)
process. In contrast, our method attempts to identify the changepoint with a piecewise linear
model, which is more robust to variance. Furthermore, our method allows us to borrow the
neighborhood information to estimate the changepoint, which is particularly helpful for
challenging situations such as change signal being weak or changepoints close to the edges.

It is worth noting that we use 21 basis functions, the same number as to smooth the
daily minimum temperature in California, to smooth the simulated data. We also evaluated
the sensitivity of our method to the presmoothing procedure by smoothing the simulated
data with L = 5, 7, 11, 21, 31 Fourier basis functions, respectively. We found that the
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Figure 3. 95% credible and confidence intervals (vertical “I”), changepoint estimates (cross), and true change-
points (black dot) at alternative locations. Labeling of the procedures is the same as that in Fig. 2. a A simulation
from the setting φ = 5 and ρ = 1.5. Our model has coverage 93.3% and RMSE 0.0068, while the FF method has
coverage 80% and RMSE 0.0146. b A simulation from the setting φ = 5 and ρ = 1. Our model has coverage
93.3% and RMSE 0.0130, while the FF method has coverage 66.7% and RMSE 0.0363.

performance of our method is insensitive to a particular choice of the number of basis
functions. More details can be seen in Section S9 of the Supplement.
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Figure 4. aChangepoint estimates from the FFmethod (left) and our proposed BHmethod (right). b 95% credible
intervals from our method and 95% confidence intervals from the FF method.

4. REAL DATA EXAMPLES

We demonstrate our method on two datasets and, again, compare our results with the
FF detector of Aue et al. (2018). The first dataset is the temperature profiles introduced in
Sect. 1, and the second dataset records COVID-19 positive cases by age in Illinois during
the spring of 2021.

4.1. CALIFORNIA MINIMUM TEMPERATURE

As described in Sect. 1, we have daily minimum temperature profiles at 207 locations
in California from 1971 to 2020. Due to the high degree of missingness in many sites, we
only retain 28 stations that have at least 85% complete profiles each year. Each profile is
then smoothed with 21 Fourier basis functions. We apply the FF method to further subset
the number of stations down to 16, each with a p-value below the 0.1 cutoff after FDR
correction.

As an example, the daily minimum temperature profile at Los Angeles International
Airport in 1980 together with the smoothed curve using the 21 Fourier basis functions
are shown in Figure S6 of the Supplement. When applying our method to this data, we
determine the burn-in size using Geweke’s diagnostic and check the MCMC convergence
with Gelman–Rubin diagnostic, which guides us to run 30,000 iterations with a burn-in size
of 20,000. Again we use a thinning interval of 10. The changepoint posterior estimates are
shown in Fig. 4a, and the credible intervals for each station are shown in Fig. 4b, together
with the FF estimates and their confidence intervals for a comparison.

Both Figs. 4a and b indicate the FF break date estimates concentrate near the middle of
the interval, while our method freely finds changepoints all along the interval. The same
phenomenon was observed in the simulation studies. Our estimates also preserve the spatial
continuity of the naturally dependent temperature process, as evidenced by the changepoint
estimates in Fig. 4a Stations close in space tend to have changepoints close in time. Accu-
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rate changepoint estimates and informative credible intervals can help us more profoundly
understand the climate dynamics and the threat of tipping points in the climate system.

4.2. COVID-19 DATA IN ILLINOIS

As we all know, the coronavirus emerged as mainly attacking the older adults, but then
it is observed that the age distribution of COVID-19 cases moved toward younger ones.
One interesting question in studying how COVID-19 cases evolve is to identify when
the age distribution changes. To investigate this question in our state, we obtain the daily
COVID-19 cases for all counties in Illinois between 01/01/2021 and 04/05/2021, 95 days in
total, from the Illinois Department of Public Health (https://www.dph.illinois.gov/covid19/
data-portal). The data reports the number of cumulative confirmed and probable positive
cases in 9 age groups (< 20, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80+, Unknown).
After exploratory data analysis, we eliminate the age group “Unknown” because this cat-
egory only contains very few cases and the numbers are often incoherent. Although eight
data points are considered low for representing a function, they contain all the information
that the public health department concerns.

For each county, we first calculate the daily new cases for each age group and then scale
them by the total number of daily new cases to approximate the age distribution.We consider
the daily age distribution over time as a functional time series, and our goal is to detect and
locate any changepoints. We smooth the data using seven Fourier basis functions, and an
example of smoothed data is shown in Section S10 of the Supplement. Again, we first use
the FF test and FDR control to identify the counties that show evidence of change; 28 such
counties are identified. ChampaignCounty has the adjusted p-value 0.102, only barely above
the threshold 0.1. Since Champaign County is the 10th largest among the 102 counties in
Illinois in terms of population, and it has a large young age group due to a major public
university being in this county, we also include Champaign for changepoint estimation.

We apply both FF and our method to the data over the counties that are expected to
have changepoints. For simplicity, we use an exponential covariance function to model the
dependence between county level parameters, and use the county geographical center to
calculate distance, though conditional or simultaneous autoregressive models are usually
more typical for areal aggregated data. We do not expect the results will be sensitive to
the choice of the covariance model due to the scatter of the 29 counties. Using the same
convergence diagnostic as for the previous temperature dataset, we run MCMC for 50,000
iterations and take the first 40,000 as the burn-in, then we thin the rest using the stepsize 10
to obtain the posterior samples.

The changepoint estimates from both methods are shown in Fig. 5a, and the 95% credible
intervals and confidence intervals are shown in Fig. 5b. Again, our method is able to estimate
changepoints close to the boundaries, and our credible intervals are shorter than the FF
confidence intervals.

To illustrate how the age distribution changes, we further plot the functional time series
and their mean functions colored in two groups, whether before or after the changepoint,
using Champaign and Peoria as two examples. In Fig. 6, we can see in both counties,
the ratio of younger people getting the coronavirus increases and that of the elder drops.

https://www.dph.illinois.gov/covid19/data-portal
https://www.dph.illinois.gov/covid19/data-portal
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Figure 5. a Changepoint estimates from the FF method (left) and our proposed BH method (right) over the 29
counties. b Credible intervals from our method and confidence intervals from the FF method.

Figure 6. Functional time series of COVID-19 age distribution in a Champaign County and b Peoria County. The
light red and blue curves represent the functional data before and after the changepoint, respectively. The solid red
and blue curves are the respective mean of the light red and blue curves.

For Champaign County, where the University of Illinois Urbana-Champaign is located,
a changepoint is detected on January 16, 2021, by our method. According to the school
calendar, University residence halls were open for the spring semester on January 17. So it
was approximately the time when students in < 20 and 20–29 age groups began to gather
at the university. This could be one factor for cases shifting to the younger-age groups for
this county.

5. DISCUSSION

Weproposed an effective approach under the Bayesian framework to simultaneously esti-
mate heterogeneous changepoints for spatially indexed functional time series. Our method
differs significantly from the existing methods in two aspects. First, we utilize spatial cor-
relation to synthesize information over the whole spatial domain instead of focusing on a
single location, e.g., Aue et al. (2018). Second, we allow spatially varying changepoints
for different locations, instead of assuming a single shared changepoint across all locations
(Gromenko et al. 2017). In addition, formulating changepoint estimation into fitting spa-
tially correlated piecewise linear models makes our method more robust to noise and more
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powerful for changepoints close to edges. We also show that our method produces precise,
informative, and intuitive credible intervals of the changepoint.

Our method currently only focuses on the changepoint estimation, after the rejection
region of changepoint detection has been identified. In future work, wewould like to develop
a more compact approach by incorporating detection and estimation in a single model to
remove dependence on auxiliary methods for detection.
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APPENDIX A: ASSUMPTIONS

Following Assumption 1 in Aue et al. (2018), we allow the error functions εs,t (u) ∈
L2([0, 1]) to be weakly dependent in time by assuming they are L p − m−approximable
for some p > 2. Assumption 1 essentially means that for any location s the error functions
εs,t (u) are weakly dependent.

Assumption 1. For all spatial locations s ∈ D, the error functions
(
εs,t : t ∈ Z

)
satisfy

(a) there is a measurable space S and a measurable function g : S∞ → L2([0, 1]), where
S∞ is the space of infinite sequences (ζs,t , ζs,t−1, . . .) with

(
ζs,t : t ∈ Z

)
taking values in

S, such that εs,t = g
(
ζs,t , ζs,t−1, . . .

)
for t ∈ Z, given a sequence of iid random variables(

ζs,t : t ∈ Z
)
;

(b) there are m−dependent sequences
(
εs,t,m : t ∈ Z

)
such that for some p > 2,

∞∑

m=0

{
E

(∥∥εs,t − εs,t,m
∥
∥p)}1/p

< ∞,

where εs,t,m = g
(
ζs,t , . . . , ζs,t−m+1, ζ

∗
s,t,m,t−m, ζ ∗

s,t,m,t−m−1, . . .
)
with ζ ∗

s,t,m, j being inde-

pendent copies of ζs,0 independent of
(
ζs,t : t ∈ Z

)
.

This assumption covers most commonly used stationary functional time series models, such
as functional auto-regressive and auto-regressivemoving average processes.We additionally
assume that all error functions are generated from the same distribution as in Assumption 2.

Assumption 2. The errors
(
εs,t : s ∈ D, t ∈ Z

)
are identically distributed random

fields on [0, 1].

Assumption 2 indicates that the error functions at all time points and all locations follow
the same distribution. Under Model (1), the only changes observed in a functional time
series are due to δs(u), i.e., changes in the mean of the functional sequence. Therefore,
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all other aspects of the distribution, such as the variance, are required to remain the same.
While seemingly restrictive, requiring themoments to not change simultaneously is common
in functional time series (Gromenko et al. 2017) and required for identifiability even in
univariate change point estimation (Horváth 1993). Practically, Assumption 2 also allows
to share variance parameters across spatial locations when estimating the properties of error
functions. Finally, we assume that the error process is stationary and isotropic.

Assumption 3. The errors
(
εs,t : s ∈ D, t ∈ Z

)
form a mean zero, second-order sta-

tionary and isotropic random field. Formally,

E{εs,t (u)} = 0, cov{εs,t (u), εs′,t ′(u
′)} = C(||s − s′||, t − t ′, u − u′),

where ||s − s′|| is the Euclidean distance between spatial locations s and s′.

Assumption 3 essentially means the covariance between any two observations only
depends on their distance in each dimension, regardless of their locations and relative ori-
entation.
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