\ \. Supplementary materials for this article are available at https:// doi.org/ 10.1007/s13253-022-00509-y .

®

Check for
updates

Computational Efficiency and Precision for
Replicated-Count and Batch-Marked Hidden
Population Models

Matthew R. P. PARKER®, Laura L. E. COWEN,
Jiguo CAO, and Lloyd T. ELLIOTT

We address two computational issues common to open-population N -mixture models,
hidden integer-valued autoregressive models, and some hidden Markov models. The first
issue is computation time, which can be dramatically improved through the use of a fast
Fourier transform. The second issue is tractability of the model likelihood function for
large numbers of hidden states, which can be solved by improving numerical stability of
calculations. As an illustrative example, we detail the application of these methods to the
open-population N-mixture models. We compare computational efficiency and precision
between these methods and standard methods employed by state-of-the-art ecological
software. We show faster computing times (a ~ 6 to ~ 30 times speed improvement
for population size upper bounds of 500 and 1000, respectively) over state-of-the-art
ecological software for N-mixture models. We also apply our methods to compute the
size of alarge elk population using an N-mixture model and show that while our methods
converge, previous software cannot produce estimates due to numerical issues. These
solutions can be applied to many ecological models to improve precision when logs
of sums exist in the likelihood function and to improve computational efficiency when
convolutions are present in the likelihood function.

Supplementary materials accompanying this paper appear online.

Key Words: Fast Fourier transform; Hidden Markov models; Integer auto-regression;
Integer underflow; Log sum exponential; NV-mixtures; Population abundance estimation;
Unmarked.

1. INTRODUCTION

Hidden population models allow population sizes and dynamics to be estimated from
partial observations and form a cornerstone of ecological methodology. Open-population

Matthew R. P. Parker (B<)) - J. Cao - L. T. Elliott
Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, BC, Canada
(E-mail: mrparker909 @ gmail.com).

Matthew R. P. Parker - L. L. E. Cowen

Department of Mathematics and Statistics, University of Victoria, Victoria, BC, Canada.

© 2022 International Biometric Society
Journal of Agricultural, Biological, and Environmental Statistics, Volume 28, Number 1, Pages 43-58
https://doi.org/10.1007/s13253-022-00509-y

43

https://doi.org/10.1007/s13253-022-00509-y
http://orcid.org/0000-0003-3021-7959
mailto:mrparker909@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1007/s13253-022-00509-y&domain=pdf

44 M. R. P. PARKER ET AL.

models allow population sizes to vary with time and are theoretically the most interesting
class of hidden population model. However, some open-population models exhibit substan-
tial computational issues when the population sizes are large (N = 250). These classes of
models include N-mixture models (Royle 2004; Dail and Madsen 2011), hidden Markov
models (HMMs; Zucchini et al. 2016), and integer autoregressive (INAR; Jin-Guan and
Yuan 1991) models. N-mixture models are used frequently in ecological studies where
under reporting is expected (e.g. Hostetter et al. 2015; Belant et al. 2016; Ward et al. 2017;
Ketz et al. 2018; Parker et al. 2020). Hidden Markov models are used extensively in studying
hidden stochastic processes and have been applied to study problems similar to the open-
population N-mixture model (Cowen et al. 2017). Integer autoregressive models are also
used to study hidden open populations (Fernandez-Fontelo et al. 2016).

These hidden INAR, HMM, and N-mixture models share some similarities in their
mathematical structure. In particular, owing to the transitions between unknown population
states, these models require large convolutions for likelihood function calculations. These
convolutions are computed many times in open-population N-mixture models due to the
explicit summation over possible values of N (the total hidden population size) and the
iterative nature of model fitting. In hidden INAR models, the convolutions are repeated
due to the explicit sums over the possible hidden states. The HMMs formulated in Cowen
et al. (2017) contain implicit summations through the multiplication of state matrices, with
convolutions arising in the calculation of transition probability matrices. In all three of
these hidden population model formulations, suitable upper bounds must be chosen on
the size of the population. The upper bound must be chosen large enough that the fitted
models are not affected by the choice of the upper bound. In practice, this means that
larger study populations require large upper bounds on the summations, leading to an even
larger number of computations of convolutions, and even larger computation times. These
computation times can be problematic, especially when simulation studies or parametric
bootstrap techniques require repeated model fitting, such as in Parker et al. (2020). Our work
introduces some standard numerical methods to this class of models, leading to increased
computational efficiency and increased computational precision. We use the N-mixture
model (exemplified by the popular unmarked R package) as a proof of concept. Applying
these methods to the hidden INAR models follows a similar procedure, due to the convolution
over hidden states in the hidden INAR model likelihood function, while applying these
methods to HMMs has been accomplished in previous work Cowen et al. (2017) and Mann
(2006).

Large numbers of hidden states (arising from large values of N in N-mixture models, for
example) lead to intractable likelihoods (see Sect. 2.2 for details). This is due to the presence
of summations over states, precluding simple log transforms for numerical stability. This
leads to numerical and computational issues, as integer underflow prevents the use of these
classes of models on populations with larger numbers of hidden states. Integer underflow
occurs when a floating point number is truncated to zero by limited machine precision
(Blanchard et al. 1985). When the true parameter values of a model lay in a region of
the likelihood function where underflow occurs for a particular data set, this can cause
inaccurate parameter estimates. Likewise, when the observed data lay in a region of the
likelihood function where underflow occurs for the true parameter values, the underflow

COMPUTATIONAL EFFICIENCY AND PRECISION FOR REPLICATED- COUNT 45

can entirely preclude model fitting. In addition, the choice of initial values used during
likelihood optimisation must be chosen to avoid regions of underflow given the observed
data; otherwise, underflow at the initial values will preclude model fitting.

One solution to the integer underflow issue is to use arbitrary precision arithmetic. This is
investigated and discussed in Parker (2020). This solution is far from ideal, as it exacerbates
the computational complexity issue dramatically (arbitrary precision arithmetic can be hun-
dreds or even thousands of times slower than arithmetic on double-precision floating point
numbers; Bailey and Borwein (2013)). A common solution to the integer underflow issue
in HMMs is to use scaling (Zucchini et al. 2016, p. 48). However, Mann (2006) discussed
using the ‘log-sum-exp’ trick as an alternative.

Another solution is to use Bayesian Markov chain Monte Carlo (MCMC) methods in
model fitting (see for example Ketz et al. 2018, and the textbook Kéry and Royle 2015).
This approach removes the need to sum over hidden states by exploring the parameter space
stochastically and can reduce the computation times involved in model fitting (and numerical
stability can be achieved with simple log transforms). However, this approach requires the
use of prior distributions (which in some cases may be undesirable or even indefensible and
can yield more model parameters to estimate) and this approach is non-deterministic due to
the stochastic nature of MCMC.

We provide several important contributions with this work. We draw attention to the
mathematical similarities between three hidden population modelling frameworks and show
how commonly encountered computational precision and efficiency problems can be solved
in identical ways for all three frameworks. In light of the popularity of these classes of
models, and the computational issues they entail, we expect our proposed solutions to be of
particular interest to the ecological modelling community. We provide in our supplemental
materials all of the R code necessary for simple and immediate use of these improvements
to the N-mixtures framework. Similar code can be implemented for hidden INAR models
without difficulty.

We note that our methods for improving computational efficiency are not applicable to
general HMMs, but can be applied to any HMM which includes a convolution structure
(which is the case with the HMM formulated in Cowen et al. (2017), but is not the case in
general). Our methods for improving computational precision are applicable to any HMM,
as shown by Mann (2006). In both cases, our main contribution is to illustrate how these
methods can be extended to and used to improve the other two hidden model architectures:
hidden INAR and N-mixtures.

In Sect. 2.1 we propose a solution to the computation time issue inherent to hidden
open-population models through fast Fourier transforms (FFT), as is common in the signal
processing literature. This method has been used successfully in HMMs (Cowen et al. 2017),
but has not yet been incorporated into any software that solves N-mixture models. Applica-
tion of FFT is similar for each of the three hidden population models we mention. We focus
our examples on N-mixture models and improve on the state-of-the-art software package
unmarked (Fiske and Chandler 2011), which we have chosen due to both the popularity of
the package as well as due to its non-Bayesian implementation of N-mixture model fitting.
In Sect. 4.1 we illustrate the gain in computation speeds made possible by using this tech-
nique through an application of N-mixture models to Ancient Murrelet (Synthliboramphus

46 M. R. P. PARKER ET AL.

antiquus) chick count data (Parker et al. 2020). In Sect. 2.2 we propose solving the numerical
instability of the N-mixture and hidden INAR models for large numbers of states using the
numerically stable method of calculating the sum of data (using log transformations, and
the log-sum-exp trick; Blanchard et al. 2020), which has already been used successfully
in HMMs (Mann 2006). In Sect. 4.2 we demonstrate improvements in numerical stability
through a case study with elk data (Ketz et al. 2018).

2. METHODS

2.1. IMPROVING COMPUTATIONAL SPEED USING FFT

We provide a short overview of fast Fourier transforms (FFTs). Details for the theory of
FFT can be found in the references Gray and Goodman (1995) and Heckbert (1998). The
FFT is a fast method of calculating a Fourier transform (FT). The Fourier transform uses
integration to transform a continuous function f (x) into its frequency counterpart f(v) (see
Eqg. 1). The inverse of the Fourier transform, the IFT, undoes this transformation by moving
from frequency domain back to the time domain (see Eq. 2).

S .
JW) =FT[f(0)] = / fx)e > dx, ey
S
fx) =IFT[f(v)] = / FeF i vdy, 2)
—00
Here i is the complex unit i = +/—1. We use discrete versions of these functions: the

discrete Fourier transform (DFT) and its inverse (IDFT). The DFT operates on a length
Q sequence of numbers x = {xy, x2, ..., xg} to produce the frequency domain sequence
X = {X1, X2, ...,xg}. The DFT for each component k is given in Eq. (3), while the IDFT
is given in Eq. (4).

Q —2mijk
T = DFT() =) xje 0+ 3)
j=1
1 Q . 2mijk
x; = IDFTR) = o1 leje 041 (4)
]:

The DFT can be used to compute convolutions of discrete functions. Given two sequences
of numbers x and y, the convolution is as follows: (x * y), = ZkQ: | Xk Yn—k+1. Using the
DFT, this can be calculated using: (x * y) = IDFT(DFT(x) - DFT(y)). The advantage to
calculating the convolution using the DFT is that for large Q, calculating the DFT and IDFT
is much faster than directly calculating the many summations. Both DFT and IDFT have
algorithmic complexity O(Q log Q). Manual calculation of the convolution has algorith-
mic complexity O(Q?), while calculating the convolution using the DFT has complexity
O(Q log Q) (Heckbert 1998).

COMPUTATIONAL EFFICIENCY AND PRECISION FOR REPLICATED- COUNT 47

Applying these ideas to calculating the model likelihoods is as simple as identifying
the convolution components of the likelihood functions and replacing them with the DFT
version of convolution. To illustrate, we will replace the transition matrix computations of
open-population N-mixture models with FFT in Sect. 2.1.1. In the following, we will use
FFT to mean the fast method of computing the DFT and the IDFT.

2.1.1. N-mixtures Transition Probability Matrix

The likelihood function for the open-population N -mixtures model from Dail and Madsen
(2011) is given in Eq. (5). In this model there are four parameters: probability of detection
p, initial site abundance A, mean population growth rate y, and survival probability w.
There are also two study specific constants: the number of sampling sites R, and the number
of sampling occasions 7. The total population at site i and time ¢ are given by the latent
variables N;;, and the observed population counts are denoted n;;.

The function P, ; shown in Eq. (6) calculates the transition probability for moving from
a population of size a to a population of size b. To calculate the likelihood equation requires
calculating P, ; at most RT (K + 1)(T — 1) times (when each n;; = 0), where K is the
upper bound on the summations and thus also the upper bound on the population size. The
complexity of computing P, j is thus the main bottleneck for computing the likelihood
function. P, is a convolution of two discrete distributions and can thus be calculated
efficiently using the FFT convolution.

R K K T T
L(p,x,y,wuni,}):]'[{ Yooy {(HBin(nir;Nit,P)) Pois(Nn;A)l'[PN,-,l,N,,”, Q)

i=1| Nii=ni1 Nir=nir =1 1=2
min{a,b}

Pip= Z Bin(c; a, w)Pois(b — c;). (6)
c=0

Here Bin and Pois denote the binomial and Poisson distribution functions, respectively.
We define the transition probability matrix Mk to be the matrix of P, ; values, where a and
b vary from 0 to K.

Equation (7) illustrates the relationships between P, 5, Mk, convolution, and FFT; let
Xq,c = Bin(c; a, w) so that X, = {x4,0,Xa,1 - --» Xa,min{a,b}, 0, 0, ..., 0} (right padded
with zeroes until x, has K + 1 elements), and let y, = Pois(b — ¢; y) so thaty =
{Y0,cs Y1.es - -+ YK .}, then (X, * ¥)p = Zrcn;%{”’b} Xa,c* Yoo = Pap, and (x, x y) = {(x, *
Yo, Xy * Y1, - X, Yk}

Poo Po1 --- Pok (Xg *Y) IFFT(FFT(x,) - FFT(y))
Plo Py - Pk (X *Y) IFFT(FFT(x,) - FFT(y))

Mg =| P2o Po1i - Pox | = | o *y) | = | IFFT(FFT(x,) - FFT(v) | (7
Pxo Px1--- Px.x (Xg *Y) IFFT(FFT(xg) - FFT(y))

o(k+1)?) O((K+1)2 log(K+1))

48 M. R. P. PARKER ET AL.

m
E 104
[)]
£
';) l * Convolution Method
£ 54 -~ FFT
2 i
o manual
5 }
[e]
3 |
2 %
9 e

1 50100 250 500 1000

K

Figure 1. Plot of log median value of computation time measured in milliseconds (out of 100 runs with randomised
y and w) versus K for computation of the transition probability matrix M g using manual (grey) and the fast Fourier
transform (black) convolution methods. Error bars indicate minimum and maximum computing time over the 100
runs per K. We considered K = 1, 10, 50, 100, 250, 500, and 1000.

Computation of My is a large portion of the computational cost of calculating the likeli-
hood function in open-population N-mixture models. In Fig. 1 we show a plot of the median
computation times for calculating Mk for increasing values of K using both the manual
convolution and the FFT convolution techniques. The values plotted are the median com-
puting times over 100 runs for each value of K. Each run involved generating a random
value for w drawn from a Beta (¢ = 10, b = 10) distribution and a random value for y
drawn from a X}‘; distribution. Mg was then calculated using the same w and y for both
the manual convolution method and the FFT convolution method, and computation times
were calculated using the R package microbenchmark (Mersmann 2021). The error bars
shown in Fig. 1 indicate minimum and maximum observed computing times. We also note
that for both methods, the upper and lower quantiles are indistinguishable from the median
computing times on the log plot.

Often, time-varying covariates for the population dynamics parameters y and w are
incorporated into N-mixture models. When this is done, the matrix M is calculated once
for each time point ¢ € {2, ..., T'}. Thus the computing time savings when using FFT are
increased by a factor of up to 7 — 1 when time covariates are considered.

In Sect. 3.1 we use a simulation study to illustrate the improved computational efficiency
of using the FFT method for calculating M when fitting N-mixture models. In Sect. 4.1
we apply the FFT method to improve computing efficiency for an Ancient Murrelet chick
counts application.

2.2. IMPROVING NUMERICAL STABILITY

Underflow arises when machine precision is not large enough to differentiate a floating
point number from zero (Blanchard et al. 1985). This situation occurs when calculating the
probability of relatively rare events. As an example, consider a binomial random variable X
with size parameter N and fixed probability of success w. There are N 4 1 possible states for

COMPUTATIONAL EFFICIENCY AND PRECISION FOR REPLICATED- COUNT 49

the random variable X, the integers {0, 1, ..., N}. Increasing N decreases the probability
of observing any particular state. For large enough N, integer underflow will occur when
calculating the probability py of even the most probable state of X.

This problem is usually solved by calculating the state probabilities py in log space:
log(px) rather than px. When taking the log transform of the probability, the log of the
probability will have relatively small absolute magnitude (i.e. within the realm of floating
point precision). This solution is not immediately possible in certain likelihood equations,
such as the ones associated with N-mixtures, HMMs, and hidden INAR models. The pres-
ence of summations in the likelihood functions requires transformation away from log space
in order to compute the sums. To perform these summations in a numerically stable way we
use the log-sum-exp trick (LSE; Blanchard et al. (2020)), which is standard in the machine
learning community, and has been used for HMMs (Mann 2006), but is not used by the
unmarked software. We overview the details of LSE in this section.

LSE is a method which allows two (or more) log space floating point numbers to be added
outside of log space in a numerically stable way, producing a log space result. LSE works
by translating the floating point numbers into a region wherein computational precision is
maximised according to the IEEE 754 specification for floating points (Blanchard et al.
1985). Consider two very small floating point numbers x and y, which are being stored as
£x = log(x) and £y = log(y). The LSE allows the sum to be calculated using Eq. (8), where
v = max(£x, £y). Without loss of generality, suppose that £x > £y. Then equation 8 simpli-
fiesto: LSE(¢x, €y) = £x+log[1+exp(£y—~Lx)]. Thisleaves us with atermlog(1+z) where
z = exp(£y —£x) is bounded between 0 and 1 (an interval with highest computational preci-
sion according to IEEE 754). This can be computed accurately even for very small z so long
as appropriate algorithms for computing the logarithm are used (Blanchard et al. 2020). An
appropriate algorithm available in R (R Core Team 2020) is provided by the function 1oglp.

LSE({x, £y) = v + log(exp({x — v) +exp(fy — v)), v = max({x, Ly). ®)

The function implementing LSE can be implemented with very few lines of code; for

an example implemented using R see Algorithm 1. These ideas can be used to compute

convolutions in log space, so that computing the transition probability matrix Mk can be

done with high computational precision even at large K. See Algorithm 2 for an example
of implementing a log space convolution function using R.

Computes logSumEzxp

1s a wvector in log space

ans 1s the logSumExzp of =z

logSumExp <- function(x) {
if (all(is.infinite(x))) { return(x[1]) }
x = x[which(is.finite(x))]

[

6

7 ans = x[1]

8 for(i in seq_along(x)[-1]) {

9 ma = max(ans,x[i])

10 mi = min(ans,x[i])

1 ans = ma + loglp(exp(mi-ma))
12 }

13 return (ans)

u |}

50 M. R. P. PARKER ET AL.

1 |# Computes convolution in log space

2 |# log_z and log_y are equal length log space wvectors
3 |# ans 1s the log of the convolution of = and y

4 |conv_log <- function(log_x,log_y) {

5 nx = length(log_x)

6 ny = length(log_y)

7 if(nx != ny) {stop("length x must equal length y")}
8 log_y = rev(log_y)

9 n = nx

10 m = 2*n - 1

11 ans = numeric (m)

13 # first half
14 for(k in 1:n) {

15 v = numeric (k)

16 for(j in 1:k) {

17 v[jl = log_x[j] + log_yln-(k-3j)]
18 }

19

20 if (max(v) == -Inf) {

21 ans [k] = -Inf

22 } else {

23 ans [k] = logSumExp (v)
2 }

25 }

26
27 # second half
28 for(k in 1:(n-1)) {

20 v = numeric (k)

30 for(j in 1:k) {

31 v[jl] = log_x[n-(k-3j)] + log_yl[j]
32 }

33

34 if (max(v) == -Inf) {

35 ans [m-k+1] = -Inf

36 } else {

37 ans [m-k+1] = logSumExp (v)
38 }

40

a return (ans)

42 }

The ability to compute arbitrary sums in log space using LSE, as well as the particular
application of using LSE to compute convolutions in log space, allows for the accurate
computation of log-likelihood functions involving summations and/or convolutions. This
is directly applicable to the model likelihood functions for N-mixtures, HMMs, and hid-
den INAR models, giving them the ability to handle large numbers of discrete states in a
numerically stable way.

As anillustrative example, in Sect. 3.2 we use a simulation study to compare the numerical
stability of calculating the transition probability matrix of an open-population N-mixture

COMPUTATIONAL EFFICIENCY AND PRECISION FOR REPLICATED- COUNT 51

model with and without the proposed LSE implementation. In Sect. 4.2 we apply the LSE
method to solve the integer underflow issue for an Elk counts application.

3. SIMULATIONS

All simulations were computed on a single 4.0 GHz AMD Ryzen 9 3900X processor.

3.1. COMPUTATIONAL SPEED COMPARISON AGAINST Unmarked

The popular R package unmarked (Fiske and Chandler 2011) contains the function
pcountOpen for fitting N-mixture models of the form developed in Dail and Madsen (2011).
pcountOpen is optimised using C++, making it a fast implementation of the open-population
N-mixtures likelihood. However, at the time of writing this manuscript, pcountOpen uses
manual convolution in calculating the transition probabilities (and does not use the FFT
convolution, incurring an additional factor of O(K /log(K)) in the asymptotic complexity).

We compare the computation times for pcountOpen against the computation times for
our implementation of the likelihood, which uses the FFT to compute convolutions. For this
comparison, we chose w = 0.8, y = 2, A = 30, and p = 0.25 to generate a single random
data set {n;,} for each combination of 7" and R considered. We refer to Fig. 1 to illustrate
that differences in w and y will have minimal impact on computing time for both methods.
We note that in all cases considered, the unmarked parameter estimates matched the FFT
parameter estimates.

The results of this simulation are summarised in Fig. 2. Due primarily to the high level of
optimisation of the unmarked function, as well as the diminishing relative advantage of the
FFT for small K, unmarked outperforms the FFT implementation in terms of computational
speed when K is small. However, the computational speed of the FFT implementation
substantially outperforms the unmarked implementation for K > 250 (in a domain where
unmarked requires months of computing time, our FFT implementation requires days).

The FFT method of computation as illustrated in Fig. 2 shows a non-monotonic growth
pattern in terms of increasing K. This is an artefact of the FFT algorithm, and different
implementations of the FFT will show different such artefacts. The FFT algorithm which
we have used is implemented in base R (R Core Team 2020) and uses the mixed-radix
algorithm of Singleton (1969). This implementation is known to be fastest for sequence
lengths which are highly composite. As well, odd factors of the sequence length compute
with four times fewer complex multiplications than the even factors, so that choice of K
influences computing time through its prime factors as well as its magnitude.

3.2. NUMERICAL STABILITY COMPARISON

We consider the effect of numerical instability on calculation of the transition probability
matrices Mg . Figure 3 shows four matrix contour plots, with transition probabilities in log
space. Each matrix was calculated with @ = 0.5 and y = 1 (according to the N-mixture
model in Egs. (5) and (6)). We note that similar results can be obtained for any given

52 M. R. P. PARKER ET AL.

O Method

g ~ FFT

=501 unmarked

o

£

é T.R

] - 2.4
- & 20,4

o 4

g%° = 420

-

0.0

0 250 500 750 1000
Upper bound K

Figure 2. Plot of the log computation time versus K using the unmarked model fitting implementation
pcountOpen and the FFT-based implementation. R is the number of sampling locations, and 7 is the num-
ber of sampling occasions. When population size upper bound K = 1000, the top three lines correspond to
unmarked, while the bottom three lines correspond to FFT.

combination of w and y . In amodel with site or time varying y or w, calculating the likelihood
would require a separate matrix M to be calculated for each site or time. For this example
we are considering a single-transition probability matrix with constant parameters. The first
column of Fig. 3 illustrates the values of the transition probability matrix after calculation
without using the LSE method. The second column illustrates the same, calculated using
the LSE method. The first row is the matrices calculated when K = 500, while the second
row is the matrices calculated when K = 4, 000. The empty portions of Figs. 3a, c indicate
regions where underflow has occurred. In the case of Fig. 3a, 24.03% of the matrix entries
have experienced underflow. For Fig. 3c, 62.72% of the entries experienced underflow. This
illustrates that underflow becomes a more prominent issue as K increases. We note that in
the extreme case, when K is very large, 100% of the entries would experience underflow,
as the entries of Mk tend to zero. For both choices of K, when calculating the matrix
using the LSE method, zero underflows occurred. We also note that the current likelihood
implementation used by the pcountOpen function of the unmarked package does not use
the numerically stable LSE; thus, caution must be exercised when fitting models for large
K (although small entries of Mg correspond to unlikely states, all possible product chains
of entries with length 7" — 1 and with N;; < K are weighted and summed together upon
likelihood evaluation).

4. CASE STUDIES

All case studies were computed on a single 4.0 GHz AMD Ryzen 9 3900X processor.

COMPUTATIONAL EFFICIENCY AND PRECISION FOR REPLICATED- COUNT 53

0 0

-500 -500
-1000 -1000
-1500 -1500

-2000

é%
-

-2000

|
é

0 100 200 300 400 500

Without LSE, K = 500, underflow = 24.03%

(a)

With LSE, K =500, underflow = 0.00%

(b)

0 4000
-5000
3000
-10000
-15000 2000
-20000
1000
-25000
T -30000 0

T
0 1000 2000 3000 4000 1000 2000 3000 4000

4000 4

0

-5000

-10000

-15000

-20000

-25000

-30000

Without LSE, K = 4000, underflow = 62.72% With LSE, K = 4000, underflow = 0.00%

(c) (d)

Figure 3. Transition probability matrices Mg in log space, calculated for K = 500, and for K = 4000. Each
matrix was calculated with the parameter values: @ = 0.5 and y = 1. Vertical axes represent row number
and horizontal axes represent column number in the Mg matrix. Greyscale indicates log of probability values.
Subfigures a and ¢ are calculated without using the numerically stable LSE, while b and d are calculated using the
numerically stable LSE.

4.1. FFT APPLICATION

We considered a concrete example of increasing computational efficiency of N-mixture
models with the FFT approach, using the Ancient Murrelet chick counts from Parker et al.
(2020). The Ancient Murrelet chick count data were collected on East Limestone Island,
Haida Gwaii by the Laskeek Bay Conservation Society, between 1995 and 2006. The Ancient
Murrelet is a burrow nesting seabird which is a species of special concern due to dramatic
population declines (see for example Bertram (1995)). Estimating the total number of chicks
from the chick count data provides a measure of population health over time for the Ancient
Murrelet colony. An increasing trend in chicks can indicate population growth, while a
decreasing trend can indicate population decline. For the chick count data, there are six
sampling sites (R = 6), which are constant for each year. The sampling sites use capture
funnels set each year, which allow easy counting as the chicks run from their burrows
out to sea during the hatching season. There are seventeen sampling occasions (T = 17),
with sampling occasions lasting from early May to late June. We chose an upper bound of
K = 500 for this study. In fitting these data, we show that the FFT implementation produces
the same estimates and the same standard error estimates as the unmarked implementation,
while computing more than ten times faster (Table 1). Our results show that the estimated

54 M. R. P. PARKER ET AL.

Table 1. Results from fitting open-population N-mixture models to the Ancient Murrelet chick count data using
the unmarked implementation and the FFT implementation

unmarked FFT
computation time (s) 4354 42.2
log(A) 5.494 (0.068) 5.495 (0.068)
log(y) 1.991 (0.245) 1.993 (0.237)
logit(w) 2.727 (0.185) 2.726 (0.180)
logit(p) —0.134 (0.127) —0.134 (0.126)
nll 607.79 607.79

Here T = 17 sample times, R = 6 sites and K = 500 were used. Included in the table are the computation
times in seconds, the four parameter estimates log and logit transformed (log(A), log(y), logit(w), logit(p)), and
the negative log-likelihood (nll) at the parameter estimates. Parameter standard error estimates calculated using
the estimated Hessian matrix are shown in parentheses

population dynamics parameters y and w are consistent with population decline, with the
estimated number of chicks declining from 1740 with 95% confidence interval (1530, 2010)
in 1995 to 950 (840, 1100) in 2006.

4.2. LSE APPLICATION

We considered a concrete example of increasing the computational precision of N-
mixture models with the LSE approach, using the elk (Cervus elaphus nelsoni) counts
from Ketz et al. (2018), which are counts of a wintering elk population located in the Estes
Valley, Colorado. In this example there are R = 2 sampling sites, corresponding to Rocky
Mountain National Park and Estes Park. There are T = 24 sampling occasions, with several
sampling occasions per winter for each of the years 2011 to 2016. More details can be found
in Ketz et al. (2018). In this case study we do not consider the movement model components
from Ketz et al. (2018), and so our results here are meant only as an example illustrating
the LSE approach for the large counts regime. We show that our LSE implementation of
the N-mixture model succeeds in producing estimates, while the unmarked implementation
fails due to numerical instability (Table 2): failing to converge because integer underflow
prevents the algorithm from considering the off diagonal corners of the transition probability
matrix. This can be seen in Fig. 4, which compares the transition probability matrix for the
elk data calculated with and without the numerically stable LSE at the converged parame-
ter values. For the LSE implementation, none of the elements of the matrix underflowed,
whereas for the unmarked implementation 65.83% underflowed.

S. DISCUSSION

We investigated the use of fast Fourier transforms and the ‘log-sum-exp’ trick to improve
computational and numerical instability issues inherent in N-mixture models when the
population size is large. We compared these methods with the standard implementation
found in the R package unmarked using both Ancient Murrelet and elk data.

COMPUTATIONAL EFFICIENCY AND PRECISION FOR REPLICATED- COUNT 55

6000 0 6000

5000 - -2000 5000 -2000

-4000 -4000

4000 — 4000

-6000 -6000

3000 4 3000

-8000 -8000

2000 4 -10000 2000 -10000

1000 -12000 1000 -12000

-14000 -14000

0

T T 1
6000 0 1000 2000 3000 4000 5000 6000

T T T
0 1000 2000 3000 4000 5000

Without LSE, K = 6000, underflow = 65.83% With LSE, K = 6000, underflow = 0.00%

(a) (b)

Figure 4. Transition probability matrices Mg in log space for the elk model, calculated for K = 6000 at the
converged model parameter values: @ = 0.7743 andy = 202.94. Vertical axes represent row number and horizontal
axes represent column number in the M g matrix. Greyscale indicates log of probability values. The cross indicates
aparticular transition (a = 2262 to b = 979) which falls into the integer underflow region. Subfigure a is calculated
without using the numerically stable LSE, while b is calculated using the numerically stable LSE.

Table 2. Results from fitting open-population N-mixture models to the elk data using the log-sum-exponential
(LSE) implementation

LSE
log() 6.917 (0.067)
log(y) 5.313(0.031)
logit(w) 1.233 (0.187)
logit(p) —1.322(0.071)
nll 1427.14

Included in the table are the four parameter estimates log and logit transformed (log(%), log(y), logit(w), logit(p)),
and the negative log-likelihood (nll) at the parameter estimates. Computation time for model optimisation took
several weeks due to the large population size upper bound K = 6000. Parameter standard error estimates calculated
using the estimated Hessian matrix are shown in parentheses

By recognising the convolution calculations inherent to calculating the model likelihood
functions, it is straightforward to replace the method of calculation from a manual convolu-
tion method to a substantially faster FFT convolution. The improvement in computational
complexity for the convolution calculation is largely realised in the computation of the N-
mixture model likelihood, since calculating the convolution is the most demanding aspect
of the likelihood computation. This improvement is readily available to any other likelihood
models which make use of convolutions, such as the hidden INAR (Fernandez-Fontelo et al.
2016) and particular HMM models (Cowen et al. 2017, for example).

We have added our FFT implementation of the pcountOpen function to the R package
quickNmix (Parker et al. 2022), via the function pCountOpenFFT. Our package is available
on CRAN and enables researchers to quickly and easily switch between the unmarked
implementation and our FFT version.

There are many cases for which the faster FFT method makes computation time more
feasible. Some possibilities include large colonies of seabirds, sea lions, ungulates (elk/-
caribou), or insects where population surveys involve counts. One such example would be

56 M. R. P. PARKER ET AL.

examining larger colonies of Ancient Murrelet seabirds than in Sect. 4.1. The colony on
Haida Gwaii is very small compared to the neighbouring colony on Reef Island, which is
estimated to contain roughly five times as many burrows (COSEWIC 2004). Especially
when bootstrap methods are implemented to produce standard error estimates, such as in
Parker et al. (2020), the gains in computational efficiency from using the FFT methods can
be instrumental to making a large population study computationally feasible.

Implementing numerically stable log-space summations allows for the study of models
with large numbers of hidden states by facilitating the calculation of the log-likelihood
at high computational precision even when the likelihood function contains summations.
This avoids the problem of integer underflow present in calculating the regular likelihood
functions when large numbers of states are considered (such as in the large K regime of
N-mixtures).

The transition probability matrix contour plots shown for the elk example in Fig. 4 illus-
trate why LSE can be used to fit the model to the elk data, but the unmarked implementation
cannot be used. The estimated parameter values (as shown in Table 2) give rise to an esti-
mated latent abundance for site 2 at sampling occasion 6 of]/V\z,é = 2262, which transitions
to ﬁzg = 979 at sampling occasion 7. This transition falls into the underflow region of
Fig. 4a, illustrated by the blue cross. The integer underflow can be avoided by use of the
numerically stable LSE in this and similar situations.

We have addressed two computational issues common to N-mixture models, hidden
INAR models, and some HMMs. We have shown that the solutions to these issues compare
favourably against the current implementation in the unmarked R package, and both solu-
tions are easily implemented. For the open-population N-mixture models, we recommend
using the FFT convolution method for K larger than 200, noting that the FFT method can
be further improved by optimisation in C++. We also recommend the FFT method for other
models which contain many convolution calculations. However, we caution that without a
numerically stable FFT algorithm, integer underflow will still be an issue for large popula-
tion size upper bounds such as in the N-mixture models. Therefore we recommend using the
LSE method in situations where numerical instability leads to intractable model likelihoods,
where higher computational precision is needed (such as when an optimisation algorithm
fails to differentiate functional values at neighbouring parameter values), and when the
log-likelihood will be used in calculating quantities such as AIC or BIC.

ACKNOWLEDGEMENTS

Much of the analyses and model fitting were run on Westgrid/Compute Canada Calcul Canada (www.
computecanada.ca). We would like to acknowledge the Micheal Smith Foundation for Health Research and the
Victoria Hospitals Foundation for support through a COVID-19 Research Response grant, as well as a Canadian
Statistical Sciences Institute Rapid Response Program - COVID-19 grant to LC that supported this research. Thanks
to the many Laskeek Bay Conservation Society volunteers and staff who have been counting Ancient Murrelet
chicks since 1990.

Declarations
Author Contributions All authors contributed to the methodology, and all authors contributed to writing the
manuscript. The authors have no conflict of interest to report.

www.computecanada.ca
www.computecanada.ca

COMPUTATIONAL EFFICIENCY AND PRECISION FOR REPLICATED- COUNT 57

Data Availability Data sets utilised for this research are provided in previously published manuscripts as follows:
Ketz et al. (2018) DOL: https://doi.org/10.1002/eap.1692, and Parker et al. (2020) DOI: https://doi.org/10.1007/
$10651-020-00455-3. Novel code is included as online supplemental materials and is publicly available under the
BSD 2-clause open-source license via GitHub (https://github.com/mrparker909/quickNmix).

[Received August 2021. Revised June 2022. Accepted June 2022. Published Online September 2022.]

REFERENCES

Bailey D, Borwein J (2013) High-precision arithmetic: progress and challenges. http://www.davidhbailey.com/
dhbpapers/hp-arith.pdf. Accessed 25 Feb 2021

Belant JL, Bled F, Wilton CM, Fyumagwa R, Mwampeta SB, Beyer DE (2016) Estimating lion abundance using
N-mixture models for social species. Sci Rep 6:35920

Bertram DF (1995) The roles of introduced rats and commercial fishing in the decline of Ancient Murrelets on
Langara Island, British Columbia. Conserv Biol 9(4):865-872

Blanchard P, Higham DJ, Higham NJ (1985) IEEE standard for binary floating-point arithmetic. ANSI/IEEE Std
754-1985, pp 1-20. https://ieeexplore.ieee.org/document/30711. Accessed Fall 2020

Blanchard P, Higham DJ, Higham NJ (2020) Accurately computing the Log-Sum-Exp and softmax func-
tions. Manchester Institute for Mathematical Sciences Preprint. http://eprints.maths.manchester.ac.uk/2765/.
Accessed 25 Feb 2021

COSEWIC (2004) COSEWIC assessment and update status report on the Ancient Murrelet Synthliboramphus
antiquus in Canada. Committee on the Status of Endangered Wildlife in Canada, pp vi + 31. www.sararegistry.
ge.calstatus/status_e.cfm

Cowen LLE, Besbeas P, Morgan BJT, Schwarz CJ (2017) Hidden Markov models for extended batch data. Bio-
metrics 73(4):1321-1331

Dail D, Madsen L (2011) Models for estimating abundance from repeated counts of an open metapopulation.
Biometrics 67(2):577-587

Ferndndez-Fontelo A, Cabaifia A, Puig P, Morifia D (2016) Under-reported data analysis with INAR-hidden Markov
chains. Stat Med 35(26):4875-4890

Fiske I, Chandler R (2011) unmarked: an R Package for Fitting Hierarchical Models of Wildlife Occurrence and
Abundance. J Stat Soft 43(10):1-23

Gray RM, Goodman JW (1995) Fourier transforms. Springer, Boston
Heckbert PS (1998) Fourier transforms and the fast Fourier transform (FFT) algorithm. Comput Graph 2:15-463

Hostetter NJ, Gardner B, Schweitzer SH, Boettcher R, Wilke AL, Addison L, Swilling WR, Pollock KH, Simons TR
(2015) Repeated count surveys help standardize multi-agency estimates of American Oystercatcher (Haemato-
pus palliatus) abundance. The Condor 117(3):354-363

Jin-Guan D, Yuan L (1991) The integer-valued autoregressive (INAR(p)) model. J Time Ser Anal 12(2):129-142

Kéry M, Royle JA (2015) Applied hierarchical modeling in ecology: analysis of distribution, abundance and species
richness in R and BUGS: volume 1: prelude and static models. Academic Press, London

Ketz AC, Johnson TL, Monello RJ, Mack JA, George JL, Kraft BR, Wild MA, Hooten MB, Hobbs NT (2018) Esti-
mating abundance of an open population with an N-mixture model using auxiliary data on animal movements.
Ecol Appl 28(3):816-825

Mann TP (2006) Numerically stable hidden Markov model implementation. An HMM scaling tutorial, pp 1-8
Mersmann O (2021) microbenchmark: Accurate timing functions. R package version 1.4.9

Parker MRP (2020) N-mixture models with auxiliary populations and for large population abundances. Master’s
thesis, University of Victoria. http://hdl.handle.net/1828/11702

Parker MRP, Elliott LT, Cowen LLE, Cao J (2022) quickNmix: Asymptotic N-mixture model fitting. R package
version 1.1.1

https://doi.org/10.1002/eap.1692
https://doi.org/10.1007/s10651-020-00455-3
https://doi.org/10.1007/s10651-020-00455-3
https://github.com/mrparker909/quickNmix
http://www.davidhbailey.com/dhbpapers/hp-arith.pdf
http://www.davidhbailey.com/dhbpapers/hp-arith.pdf
https://ieeexplore.ieee.org/document/30711
http://eprints.maths.manchester.ac.uk/2765/
www.sararegistry.gc.ca/status/status_e.cfm
www.sararegistry.gc.ca/status/status_e.cfm
http://hdl.handle.net/1828/11702

58 M. R. P. PARKER ET AL.

Parker MRP, Pattison V, Cowen LLE (2020) Estimating population abundance using counts from an auxiliary
population. Environ Ecol Stat 27(3):509-526

R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Com-
puting, Vienna

Royle JA (2004) N-mixture models for estimating population size from spatially replicated counts. Biometrics
60(1):108-115

Singleton R (1969) An algorithm for computing the mixed radix fast Fourier transform. IEEE Trans Audio Elec-
troacoust 17(2):93-103

Ward RJ, Griffiths RA, Wilkinson JW, Cornish N (2017) Optimising monitoring efforts for secretive snakes: a
comparison of occupancy and N-mixture models for assessment of population status. Sci Rep 7(1):18074.
https://doi.org/10.1038/s41598-017-18343-5

Zucchini W, MacDonald IL, Langrock R (2016) Hidden Markov models for time series: an introduction using R.
Chapman and Hall/CRC

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with
the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this
article is solely governed by the terms of such publishing agreement and applicable law.

https://doi.org/10.1038/s41598-017-18343-5

	Computational Efficiency and Precision for Replicated-Count and Batch-Marked Hidden Population Models
	1. Introduction
	2. Methods
	2.1. Improving Computational Speed Using FFT
	2.1.1. N-mixtures Transition Probability Matrix

	2.2. Improving Numerical Stability

	3. Simulations
	3.1. Computational Speed Comparison Against Unmarked
	3.2. Numerical Stability Comparison

	4. Case Studies
	4.1. FFT Application
	4.2. LSE Application

	5. Discussion
	Acknowledgements
	References

