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In grassland ecosystems, it is well known that increasing plant species diversity can
improve ecosystem functions (i.e., ecosystem responses), for example, by increasing pro-
ductivity and reducing weed invasion. Diversity-Interactions models use species propor-
tions and their interactions as predictors in a regression framework to assess biodiversity
and ecosystem function relationships. However, it can be difficult to model numerous
interactions if there are many species, and interactions may be temporally variable or
dependent on spatial planting patterns.We developed a newDiversity-Interactionsmixed
model for jointly assessing many species interactions and within-plot species planting
pattern overmultiple years.Wemodel pairwise interactions using a small number of fixed
parameters that incorporate spatial effects and supplement this by including all pairwise
interaction variables as randomeffects, each constrained to have the same variancewithin
each year. The random effects are indexed by pairs of species within plots rather than a
plot-level factor as is typical in mixed models, and capture remaining variation due to
pairwise species interactions parsimoniously. We apply our novel methodology to three
years of weed invasion data from a 16-species grassland experiment that manipulated
plant species diversity and spatial planting pattern and test its statistical properties in a
simulation study.
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1. INTRODUCTION

The performance of many ecosystems can be improved by increasing species diversity in
communities (Isbell et al. 2017). For example, in grassland ecosystems, responses such as
community biomass production, weed suppression and soil carbon storage can be boosted by
increased plant species diversity (e.g., Cardinale et al. 2011). Studies of the ‘biodiversity and
ecosystem function’ (BEF) relationship explore biodiversity effects on ecosystem functions
or responses. Many BEF modeling approaches (Hooper et al. 2005) focus primarily on
the number of species (richness) as the driver of diversity effects; however, community
plant diversity can also be characterized by the identity and proportions (evenness) of the
resident species, andmethods relying on richness alone cannot capture these other aspects of
species diversity (Dooley et al. 2015). Diversity-Interactions (DI)models were introduced to
facilitate the analysis of multi-species experiments using species proportions as predictors
of ecosystem functions (Kirwan et al. 2007, 2009; Connolly et al. 2013; Dooley et al.
2015; Brophy et al. 2017). DI models enable users to estimate the contribution of individual
species and their interactions with other species, in addition to richness, when assessing
the effect of species diversity on ecosystem functions. However, when species richness
is particularly high, it can be challenging to model numerous species interactions in this
framework. Brophy et al. (2017) introduced methods to model a large number of species in
a single year. Here, we develop this approach to apply to a repeated measures (multi-year)
setting and incorporate methods to test how species interactions may vary across spatial
planting pattern scenarios in experimental plots.

Our new methodology was motivated by the Species Pattern and Community Ecology
(SPaCE) experiment, which is a plot-based grassland BEF experiment established with a
pool of sixteen tallgrass prairie species. The experiment was designed to investigate the
effects of biodiversity (richness and evenness) and spatial planting pattern on plant produc-
tivity and weed invasion (McKenna and Yurkonis 2016;McKenna et al. 2019). Monoculture
(single species) and mixture plots of up to eight species were constructed from a pool of
sixteen species drawn from four plant functional groups (warm-season grass, cool-season
grass, forb, and legume). The sixteen species varied considerably within and across func-
tional groups with respect to traits such as their growth habit, size, and phenology. The
spatial pattern treatment involved planting species in a randomly dispersed fashion across
regularly spaced locations in mixture plots or planting in aggregated groups of species; fine-
scale species interactions may vary across these spatial planting patterns within plots. Weed
biomass in each of three growing seasons (2012–2014) is the response we analyze here. The
data presented three main statistical challenges each to be addressed in a repeated measures

(multi-year) setting: (1) how to model the

(
16
2

)
= 120 pairwise species interactions in a

biologically meaningful way; (2) how to assess the spatial planting pattern treatment that
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was applied to mixture, but not monoculture, plots; and (3) given the variety of species types
in the study, how to adjust for heterogeneous variation across plots within each year.

In BEF studies, the extent to which plant communities resist invasion by undesired plant
species is of particular interest. Undesired plant species (weeds) can reduce yields and for-
age quality in grasslands, and can prevent restored grasslands from reaching their diversity
goals (e.g., Corbin and D’Antonio 2012). Weed invasion is a source of inefficiency and must
be reduced to make grassland production systems more economically and environmentally
sustainable. Herbicide use to control weeds is expensive (DiTomaso 2000) and can nega-
tively affect the environment and human health (Mahanty et al. 2017). Combining multiple
species in grassland ecosystems offers a solution that is less economically and environmen-
tally expensive, since it can reduce weed invasion by making better use of plant-available
resources (Maron and Marler 2008; Connolly et al. 2018).

By definition, plants interact and acquire resources over finite distances, and traditional
ways of capturing species interactions within BEF models may not be sufficient for captur-
ing changes in species interactions that come with changes in species richness, evenness,
and planting patterns in communities (Yurkonis 2013). To test this effect, researchers alter
within plot species planting patterns and have found that fine-scale species patterns affect
community scale productivity and weed invasion responses (Yurkonis et al. 2012; Zhang
et al. 2014; McKenna and Yurkonis 2016; Seahra et al. 2016; McKenna et al. 2019). How-
ever, these spatial planting patterns and their subsequent effects on species interactions
have yet to be incorporated into BEF models. To address the role that fine-scale species
interactions play in affecting community-scale responses and to resolve the scales over
which plant species affect their communities, we need BEF models that incorporate tests
for species interactions that are informed by the spatial relationships among plant species
in manipulated communities.

In this paper, we develop a novel Diversity-Interactions (DI) model that addresses the
statistical challenges presented in the SPaCE experiment dataset. We build on previous
versions of DI models by developing a method to integrate a treatment (spatial pattern) that
only applies to mixture (and not monoculture) communities, allowing for heterogeneous
variance across plots in the variance–covariance structure of the model, and introducing
novel, multi-year random pairwise interaction effects to handle large numbers of possible
pairwise species’ interactions. The random effects included are highly unusual in that they
are indexed by pairs of species and year, rather than by a plot-level factor, which is typical
in mixed models. They supplement a low degree of freedom fixed-effect description of the
pairwise species interactions to acknowledge that there may be additional variation due
to pairwise species interactions that cannot be captured by biologically meaningful fixed
effects. For each year, a new random effect is introduced for each pair of species (120 pairs
in each year, totaling 360 random effects), and in each year they are assumed to have the
same variances. Thus, only one variance parameter per year is required for the inclusion
of the random effects. To support this effort, we present a simulation study to explore the
statistical properties and test the limitations of the random effects approach to modeling
pairwise interactions. Our approach increases the capacity for researchers to assess more
nuanced BEF relationships and further investigate the spatial and temporal scaling of BEF
responses.
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2. DATA AND METHODS

2.1. REVIEW OF DIVERSITY-INTERACTIONS MODELS

Biodiversity and ecosystem function experiments aim to investigate how varying species
diversity affects community scale responses (the ecosystem function). There is a long-
standing history in BEF research to focus on species richness (number of species) as the
driver of ecosystem functions (Byrnes et al. 2014), but evenness (how equally distributed
the species’ relative abundances are) may also be strongly influential (Kirwan et al. 2007;
Wilsey and Stirling 2007). While it is common to find a positive and saturating relationship
between ecosystem function and richness (e.g., Scherber et al. 2010), variation around
the (ecosystem function—richness) line may be attributed to the identities and the relative
abundances of the species and interactions among them. Diversity-Interactions (DI) models
(Kirwan et al. 2007, 2009) were developed to model data from BEF experiments in which
species diversity is manipulated. However, DI models can account for variation attributed to
species’ identities, species’ relative abundances, interactions among species and evenness,
in addition to species richness. DI models use species proportions and their interactions to
model ecosystem functions and were developed from earlier work by Scheffe (1963) and
Cornell (2002). DI models are a form of response surface models (Box and Draper 2007),
where the predictors are the species proportions that sum to one for each experimental
unit and collectively form a simplex space. If the experimental design provides sufficient
coverage around the simplex space, DI models can be used to predict for any community
combination of relative abundances within the species pool, not just the exact communities
that were included in the design, providing a major advantage over some other modeling
approaches used in BEF research. Since their original development (Kirwan et al. 2007,
2009), the family of DI models has grown to facilitate many of the complexities that arise
with data from biodiversity experiments, such asmultivariate responses (Dooley et al. 2015),
nonlinearity in the form of species interactions (Connolly et al. 2013), the modeling of a
large numbers of species interactions in a single year (Brophy et al. 2017) and the modeling
of interactions among phylogenetically diverse communities (Connolly et al. 2011), where
phylogenetic diversity is a measure of species’ ancestral relationships. The approach has
been applied to data fromawide rangeof ecosystem types in addition to grasslands, including
bacterial communities (Connolly et al. 2013) and dung fauna diversity studies (O’Hea et al.
2010). The DImodels R package fits DI models to BEF data collected from a single site in
a single year (Moral et al. 2021).

DI models generally take the form (Kirwan et al. 2009):

y = Identities + Interactions + Structures + ε (1)

The community-level response y is an ecosystem function, such as biomass in a grassland
community. The species ‘identities’ enter the model as the species proportions (Pi ), the
‘interactions’ enter as products of species proportions, while ‘structures’ are other experi-
mental design structures such as block or treatments. The sum of the species proportions is
one for each experimental unit. For example, with a pool of s species, a DI model may take
the form:
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yml =
s∑

i=1

βi Pim +
∑

1≤i< j≤s

δi j Pim Pjm + αl + εml (2)

where yml is the ecosystem function for experimental unit m in block l and εml ∼ N (0, σ 2).
In monoculture (species i is the only species present), Pi = 1 and all other proportions are
equal to zero and the expected response for the lth block is E [Y ] = β i +αl . The interaction
potential between species i and j is δi j . The E [Y ] in a mixture is a weighted sum of the
identity effects of each of the species present in the mixture, plus the combined pairwise
interactions.Model (2) is the ‘full’ pairwise interactionsmodel and it accounts for the effects
of species identities and individual pairwise interactions between species on the response of
interest. If there is a small number of species in the species pool, model (2) is a reasonable
model to fit. However, when the species pool is large, model (2) is generally not of interest:
the number of pairwise interactions is either too large to be biologically informative, or itmay
not be possible to estimate all pairwise interactions due to the experimental design (Brophy

et al. 2017). For example, in a four-species system there are

(
4
2

)
= 6 pairwise interactions,

while in a sixteen-species system there are

(
16
2

)
= 120 pairwise interactions. However,

there are many biologically informative ways to simplify model (2), for example, there may
be no interaction effects (identity model), or it may be assumed that all pairwise interaction
terms are equal (average pairwise model), or constraints among interactions may be intro-
duced according to biological functional groupings (functional group model) as detailed in
Table 1 [and in Kirwan et al. (2009)]. Higher-order interactions may also be needed (Kirwan
et al. 2009).

2.2. EXPERIMENT

The data used in this study were collected from the Species Pattern and Community
Ecology (SPaCE) experiment at the University of North Dakota’s Mekinock Field Station
(Mekinock, ND, USA) from 2012 to 2014, inclusive (McKenna and Yurkonis 2016). There
were 170 plots (1 × 1 m) arranged in a randomized block design consisting of five blocks.
Each plot was divided evenly into an 8 × 8 grid where each of the 64 cells was planted
with a 16-week-old greenhouse grown plant at the beginning of the growing season in 2012.
Sixteen tallgrass prairie species were planted in the plots with either 1 (monoculture), or 2,
4 or 8 (mixtures) species in each, with varying relative abundances at each richness level in
mixtures. A spatial treatment with two levels was manipulated across mixture plots (those
with more than one species). Species were either assigned randomly to single planting
positions in the 8 × 8 grid (dispersed) or assigned randomly to four adjacent planting
positions, forming 2× 2 conspecific patches in the 8× 8 grid (aggregated) (supplementary
materials S.1). Non-focal species (weeds) were removed monthly by hand and collected,
dried and weighed. Total weed biomass removed (g) in the growing season of each year
is analyzed in this paper. The proportion of biomass of the planted species in each plot
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Table 1. Various forms of the pairwise species interactions component of Diversity-Interactions models (Kirwan
et al. 2009)

Model name Description of interactions (for S
species categorized into T
functional groups)

Interactions

Identity No interactions

Average pairwise All pairwise interactions are equal;
there is one interaction (δ) term

δ
s∑

1≤i< j≤s
Pi Pj

Functional group (FG) Assume T functional groups (FG1 -
FGT ), each with nt species, where
t = 1, . . . , T . The parameter ωqq
is the interaction between two
species from functional group q
and ωqr is the interaction between
two species from different
functional groups, i.e., where

q �= r . There are T +
(

T
2

)

interaction (ω) terms

T∑
q=1

ωqq
∑

i, j ∈ FGk
i < j

Pi Pj +

T∑
1 ≤ q < r ≤ T

ωqr
∑

i∈FGq

∑
j∈FGr

Pi Pj

Additive species The contribution of species i to a
pairwise interaction (λi ) is an
additive constant, regardless of the
species it is interacting with. The
strength of the pairwise interaction
between two species is the sum of
the individual contributions of each
species. There are S interaction (λ)

terms

s∑
1≤i< j≤s

(λi + λ j )Pi Pj

Full pairwise All pairs of species interact uniquely;

there are

(
S
2

)
interaction (δ) terms

s∑
1≤i< j≤s

δi j Pi Pj

was recorded at the end of every growing season, providing annual ‘realized’ proportions
(McKenna et al. 2019).

Plants with similar traits can be classified by their functional group (FG). In this exper-
iment, there were four species from each of four plant functional groups: warm-season
grasses, species 1 to 4: Andropogon gerardii (big bluestem), Schizachyrium scoparium (lit-
tle bluestem), Sorghastrum nutans (Indian grass), and Panicum virgatum (switchgrass);
cool-season grasses, species 5 to 8: Elymus canadensis (Canada wildrye), Elymus tra-
chycaulus (slender wheatgrass), Pascopyrum smithii (western wheatgrass), and Nassella
viridula (green needle grass); forbs, species 9 to 12: Monarda fistulosa (wild bergamot),
Solidago rigida (stiff goldenrod),Helianthus maximiliani (Maximilian sunflower), andRati-
bida columnifera (yellow coneflower) and legumes, species 13 to 16:Desmodium canadense
(showy tick trefoil), Astragalus canadensis (Canada milkvetch), Dalea purpurea (purple
prairie clover), and Glycyrrhiza lepidota (American licorice). Two-species plots contained
a grass and either a forb or a legume, four-species plots contained one species from each FG,



A Mixed Model for Assessing the Effect of Numerous Plant 7

and eight-species plots contained two species from each FG. The species were randomly
selected from the FGs for each plot according to these constraints.

2.3. DESCRIPTION OF NEW METHODS

In the SPaCE data, there are 16 species and

(
16
2

)
= 120 pairwise interactions. Esti-

mating all 120 pairwise interactions is not of interest here since their large number would be
devoid of biological meaning, and not possible given the design of the experiment (there is
partial confounding among pairwise interactions). Over the three years, we aim to describe
the interaction effects using fixed effects as parsimoniously as possible, and to test the inclu-
sion of random pairwise interactions to identify if any variation due to pairwise interactions
remains unexplained in each year. We describe the model in this section, assuming that all
pairwise interactions are equal (Table 1, average pairwise model), while in Sects. 2.4 and
3.2 we describe the full model fitting process and final choice of model, respectively. The
model for the SPaCE data (3 years of repeated measurements on 170 plots) can be written
as:

y = Xβ + Zu + ε (3)

Thepredictors in theXmatrix include block effects, species proportions (Pi , i = 1, . . . , 16),
and the single interaction variable computed as the sum of all pairwise interactions crossed
with the spatial planting pattern treatment. The error term ε ∼ N (0,R), where R is a
(510×510) block diagonal matrix with 3×3 blocks for the repeated measurements on each
plot. The diagonal blocks in R can be the same across all plots or can differ based on plot
characteristics, such as whether the plot is a mixture or monoculture.

For species i = 1, . . . , 15, j = 2, . . . , 16, i < j , plot m = 1, . . . , 170, and year
k = 1, 2, 3:

[
510 × 360; P Pi jmk = Pimk Pjmk

] ×[360 × 1; di jk ]

Zu =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

P P1,2,1,1 0 0
0 P P1,2,1,2 0
0 0 P P1,2,1,3

· · ·
P P15,16,1,1 0 0

0 P P15,16,1,2 0
0 0 P P15,16,1,3

.

.

.
. . .

.

.

.

P P1,2,170,1 0 0
0 P P1,2,170,2 0
0 0 P P1,2,170,3

· · ·
P P15,16,170,1 0 0

0 P P15,16,170,2 0
0 0 P P15,16,170,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1,2,1
d1,2,2
d1,2,3

.

.

.

d15,16,1
d15,16,2
d15,16,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

i.e., Z is a 510 by 360 matrix which contains the 120 pairwise interactions (Pi Pj )

separated into yearly columns (with zeros outside of the current year). It is assumed
u ∼ N (0,G), where G = Bdiag(M1,2, . . . ,M15,16) is a 360 x 360 block-diagonal (the
operator Bdiag represents a block-diagonal matrix), with zeros outside theMi,j blocks, and

Mi,j=
⎛
⎜⎝σ 2

1 0 0
0 σ 2

2 0
0 0 σ 2

3

⎞
⎟⎠ is a 3 × 3 block solely indexed by year (for each i , j), i.e. there are

120 random effects included in each year, but they are constrained to have equal variance,
thus there is only one variance parameter per year; it would also be reasonable to include
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nonzero covariances in the off-diagonals of the Mi,j matrices. The purpose of the variance
parameter in each year is to test if there is variability due to pairwise interactions, additional
to the fixed interaction effect terms: for example, for the average pairwise interaction model
(δi jk = δk), σ 2

k measures variation in the true δi jk around δk , if it exists. Indexing the random
effects di jk by species pair i, j (and year k) is unusual, since random effects are typically
indexed by a plot-level factor such as a block. It is more common that the experimental or
sampling design generates observations grouped according to one or more factors (which
may be crossed or nested), yielding a hierarchical modeling structure in which observations
within the same group are correlated. Hence, in our modeling framework the Z matrix dif-
fers to that expected by standard mixed model fitting software, such as nlme (Pinheiro et al.
2018) and lme4 (Bates et al. 2015) in R (R Core Team 2020) for example.

In the SPaCE experimental design, the spatial pattern treatment (aggregated or dispersed)
is applied only to mixture plots (it is not possible to apply it to monocultures). The spatial
pattern treatment can interact with the species interaction effect terms, allowing the fixed
averagepairwise interactionof all pairs of species to differ for aggregated anddispersedplots,
i.e., pairs of species may interact differently depending on the spatial planting pattern. This
could be due to higher intraspecific interactions (between individuals of the same species)
and lower interspecific interactions (between individuals of different species) in aggregated
plots than dispersed plots (Stoll and Prati 2001). Incorporating the spatial pattern treatment,
model (3) can be written as

yklmn =
s∑

i=1

βik Pikm + δkn

∑
1≤i< j≤s

Pikm Pjkm +
∑

1≤i< j≤s

di jk Pikm Pjkm + αkl + εklmn (4)

where αkl is block effect l in year k, Pikm is the proportion of species i in plot m relevant
to the year k (i.e., planted proportion when k = 1 and the proportion in the preceding year
when k > 1), and ε ∼ N (0,R) as in Eq. (3). When Pi = 1, βik is the expected weed
biomass for a monoculture of species i in year k, and when Pi < 1, then βik Pik is the species
identity effect contribution to a mixture. The parameter δkn is the fixed average pairwise
interaction between species i and j in year k for spatial pattern n, where n can be either 1 =
aggregated or 2 = dispersed. The fixed interaction term assumes that all 120 δi jkn pairwise
interactions are equal to δkn . This may not be sufficient, and if random pairwise interaction
(di jk) terms are needed in year k, this acknowledges there is additional variation around δkn

across all pairwise interactions. The random effect variance terms will be incorporated into
fixed effects standard errors, improving inference.

Fitting 360 random effects with a constrained variance in each year is not a trivial cod-
ing challenge. We used SAS software version 9.4 (SAS Institute, Cary, North Carolina,
USA) to fit our models, utilizing the LIN covariance structure in proc mixed, which allows
user-defined variance–covariance matrix structures for random effects. Proc mixed uses a
Newton–Raphson algorithm to maximize the likelihood function. To resolve convergence
issues, Fisher scoring was used and starting values for variance parameters were specified.
It is not possible to fit the models in the standard mixed model packages in R [e.g. LME4
(Bates et al. 2015)] since random effects in these packages are always indexed by a plot level
factor such as block. However, we have fitted the multi-year model as defined in Eq. (4)
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by writing the log-likelihood manually and maximizing it using optimx in R (Nash and
Varadhan 2011; R Core Team 2020). Supplementary materials S.2 provides a tutorial style
guide to fitting the model in Eq. (4) to simulated data in SAS and R.

2.4. MODEL FITTING PROCESS FOR THE SPACE EXPERIMENT DATA

Diversity-Interactions models were fitted to the three years of SPaCE data with total
yearly weed biomass as the response. Proportions planted were used as predictors in year 1
and ‘realized’ proportions in the preceding year were used in years 2 and 3 (McKenna et al.
2019). The model selection process steps were:

1. Fixed effects selection: the identity, average pairwise, functional group and addi-
tive species models (each described in Table 1) were fitted by maximum likelihood
(ML) assuming an unstructured variance–covariance structure and compared using
likelihood ratio tests (LRTs) to select the best model.

2. Repeated measures variance–covariance structure: the fixed effects model identified
in step 1 was used as a ‘baseline’ model and different variance–covariance structures
were fitted by restricted maximum likelihood (REML) to account for repeated mea-
sures over years: compound symmetry, first-order auto-regressive and unstructured
were compared using LRTs (Littell et al. 2006). To test for heterogeneity across plots,
the block diagonal matrices in the Rmatrix were fitted as: (a) constant across all 170
plots, (b) different for monocultures and mixtures, and (c) different for all FGs in
monocultures, and mixtures; these models were compared using LRTs.

3. Fixed effects and variance–covariance structure: if the variance–covariance structure
was changed in step 2, step 1 was repeated, using the new error structure. Also, the
species interaction terms were tested for interaction with spatial pattern and given
their potential influence, legumepercentage.Modelswere fitted byMLand compared
using LRTs.

4. Random pairwise interactions: the model chosen in step 3 was fitted using REML,
with and without random pairwise interactions in each year individually, and com-
pared using LRTs. The purpose of including random pairwise interactions in a given
year is twofold: (1) if they are not needed, this indicates no evidence of lack of fit in
the interaction effect explanation, (2) if they are needed, the extra variance parame-
ter acknowledges that there is additional variability due to pairwise interactions and
incorporates this extra uncertainty into standard errors, without the need for many
additional fixed terms (Brophy et al. 2017). To counteract the boundary space prob-
lem (Self and Liang 1987) when testing the inclusion of random effects in each year,
the P-values of the LRTs were halved (Littell et al. 2006).
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Figure 1. Total plot weed biomass (g DM in 1 m2 plot) in 2012–2014 for each monoculture (1–16) and each level
of richness (1, 2, 4 or 8 species). The 4 functional groups are separated by the dotted lines, while all communities
are to the right of the solid line. The richness = 1 boxplot describes all of the monocultures in each year .

3. RESULTS

3.1. SPACE DATA OVERVIEW

Weed biomass was similar for all levels of species richness in 2012 (Fig. 1; “All com-
munities” panel). In 2013 and 2014, monocultures showed both a higher median and range
in weed biomass than mixtures (Fig. 1; “All communities” panel), suggesting that diversity
suppressed weed invasion over time. The medians and the variances of the weed biomass
across the 16 monocultures varied in all years (Fig. 1). In 2013 and 2014, the mean and
variance of weed biomass for legumemonocultures (FG4) were considerably higher than all
other types of communities (Fig. 1), confirming that homogeneity across all communities
within each year is unlikely to be a valid assumption.

3.2. MODEL SELECTED AND ITS INTERPRETATION

The results from steps 1 and 2 (listed in Sect. 2.4) are in supplementary materials S.3. In
step 3, the best fixed effects model identified was the functional group model where spatial
planting pattern interacted with the within functional group and between functional group
interactions, and proportion of FG4 (legumes) interacted with additive species pairwise
interactions (Table 2). In step 4, additional random pairwise interactions were needed in
2014 only (Table 2). The code to run these models is in supplementary materials S.4.

The final model contained the terms: identities + within functional group by spatial
pattern interaction + between functional group by spatial pattern interactions + additive
species by legume percentage interactions + random interactions for year 3 only. For year
k (k = 1, 2, 3), block l (l = 1, . . . , 5), plot m (1, . . . , 170), spatial pattern n (1 = aggre-
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Table 2. Results from the tests conducted to determine the best linear predictor for the fixed effects (step 3) and
tests for the inclusion of random pairwise interactions (step 4)

Model number Model description Test LRT df P-value

Fixed effects model comparisons
1 Average pairwise model
2 Functional group model 1 v 2 62.8 27 <0.001
3 With functional group interactions * Spatial pattern 2 v 3 52.1 30 0.007
4 With additive species interactions * legume % 3 v 4 210.9 48 <0.001
Random effects model comparisons
5 With random pairwise interactions in 2012 4 v 5 0 1 0.500
6 With random pairwise interactions in 2013 4 v 6 0.4 1 0.264
7 With random pairwise interactions in 2014 4 v 7 5.6 1 0.009

Likelihood ratio test statistics (LRT), degrees of freedom (df = difference between the compared models) and
P-values are shown. Model 1 includes block effects, identity effects for each species, and an average pairwise
interaction term. Models 1–3 were fitted using maximum likelihood (ML). Model 4 was fitted by ML for compar-
isons of fixed effects and restricted maximum likelihood (REML) for comparisons of random effects. Models 5–7
were fitted using REML. The P-values for the random pairwise interactions variance components are halved due
to the boundary space issue. The random pairwise interactions are tested for each year individually, and random
pairwise interactions are included in the final model for all years that are significant

gated or 2 = dispersed) and species i, j , the equation is:

yklmn =
16∑

i=1

βik Pikm +
4∑

q=1

ωqqkn

∑
i, j ∈ FGq
i < j

Pikm Pjkm

+
∑

1≤q<r≤4

ωqrkn

∑
i∈FGq

∑
j∈FGr

Pikm Pjkm

+
∑

1≤i< j≤16

(
λik + λ jk

)
Pikm Pjkm

16∑
i=13

Pikm

+
∑

1≤i< j≤16

di jk Pikm Pjkm Xk + αkl + εklmn (5)

where ε ∼ N (0,R) . R contains different block diagonals for each functional group mono-
culture and another for mixtures (i.e. five repeated measures variance–covariance blocks
across the 170 plots), Xk = 1 if k = 3, and is 0 otherwise (since the random effects were
only needed in year 3), di jk ∼ N (0, σ 2

k ) independent of ε. The αkl parameters are the block
effects and the βik are the identity effects. The parameter ωqqkn is the interaction between
any pair of species from functional group q, for spatial pattern n in year k. The species in
each functional group are: FG1 = {1, 2, 3, 4}, FG2 = {5, 6, 7, 8} , FG3 = {9, 10, 11, 12}
and FG4 = {13, 14, 15, 16}. The parameter ωqrkn is the interaction between any pair of
species with one species each from functional group q and r , for spatial pattern n in year
k. The λik terms are the fixed additive species interaction effects of species’ i and j in year
k, and these are affected by legume percentage (

∑16
i=13 Pikm). The inclusion of random

interaction effects in the final model means that in the third year of the experiment, there
was additional variability due to the individual pairwise interactions that was not picked up
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Figure 2. Predicted weed biomass (g DM in 1 m2 plot) in 2012 in two-species centroid communities containing
one species from either FG1 or FG2 and one species from either FG3 or FG4 split by spatial pattern (either
aggregated or dispersed) .

by fixed interaction effects, and was incorporated into the fixed effects standard errors. The
estimates of the fixed effects and variance components of the final model and a graphical
assessment of model assumptions are included in supplementary materials S.5.

Species identity estimates in 2012 were all significantly higher than those in 2013 at
the average block level (P < 0.001 in most cases; all P < 0.02), and in 2014 except
for species 4, 11, 13 and 16. Two-species community predictions with both species in
equal proportions (centroid communities) at the average block level were computed for
all communities which contained one warm- or cool-season grass species and one forb or
legume species; in 2012, the aggregated planting pattern generally yielded lower predictions
than dispersed, except for communities mixing a species from FGs 2 and 4 (Fig. 2). This
could be due to aggregation allowing subordinate species to establish more easily due to
decreased interspecific interactions, leaving the community less susceptible to invasion
at establishment (Yurkonis et al. 2012; Seahra et al. 2016). Model predictions showed
increasing weeds as legume percentage increased (supplementary materials S.6).

4. SIMULATION STUDIES

4.1. SIMULATION METHODS

We conducted simulation studies to evaluate the performance of the random effects
approach to modeling pairwise interactions over multiple years; specifically, we tested the
power of our approach to detect variation across pairwise interactions for a range of variance
settings, and we assessed the ability of our model selection process to select the simulated
model. The ‘design_a’ experimental design from theDImodels R package (Moral, Connolly,
and Brophy 2021) was used. It contains m = 206 plots, a pool of nine species categorized
according to three functional groups (each of size three), and plots of species richness 1, 2,
3, 4, 6, and 9. Each species was in monoculture in two plots; each pair of species appeared
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twice in a plot of richness two in equal proportion; and there were 48, 36, 24, and 8 plots
of richness 3, 4, 6, and 9, respectively, with all species in equal proportion in each plot.
Response values were simulated assuming a functional group model (described in Table 1)
over k = 3 experimental years with a compound symmetry variance–covariance structure.
In addition to functional group interaction effects, extra variation due to pairwise interactions
was included in the simulated responses. The simulated model was

ykm =
9∑

i=1

βik Pikm +
3∑

q=1

ωqqk

∑
i, j ∈ FGq
i < j

Pikm Pjkm

+
∑

1≤q<r≤3

ωqrk

∑
i∈FGq

∑
j∈FGr

Pikm Pjkm

+
∑

1≤i< j≤9

di jk Pikm Pjkm + εklm (6)

where Pi is the proportion of species i in the preceding year, βik is the identity effect of
species i in year k, ωqqk is the interaction effect between any pair of species from functional
group q in year k, and ωqrk is the interaction effect between any pair of species from func-
tional group q and functional group r in year k, with FG1 = {1, 2, 3} , FG2 = {4, 5, 6} and
FG3 = {7, 8, 9} . The identity effects values and the within and between functional group
interaction values used in each year used for simulating the data are given in supplementary
materials S.7. The random effects di jk were assumed to be normally distributed in each year;
the standard deviation values simulated (assumed the same in each year) were either 0, 500,
1000, 1500, 2000, or 2500. The residual errors εklm , also assumed normally distributed, were
simulated assuming homogeneity across plots within each year, and there was a compound
symmetry variance–covariance structure across years; the simulated standard deviation val-
ues were either 100, 200 or 300 for each year. The covariances of the residual errors were
half of the variance values in each case. Each combination of random effects variance by
error variance values gave rise to 18 sets of simulations, each of which contained 1000
datasets. The identity, average pairwise, functional group and full pairwise models were
fitted to each of the simulated datasets with a compound symmetry variance–covariance
structure, and compared to determine whether the functional group was determined as the
best fixed effectsmodel.When exploringwhether randompairwise interactionswere needed
in the model, the functional group model was fitted without random pairwise interactions
initially. Random pairwise interactions were added to the model in each year individually,
and the number of times in which they were significant (using likelihood ratio tests) from
the 1000 simulations was recorded. We also used the model selection process outlined in
Sect. 2.4 to identify the best model for each simulated dataset. Some models did not initially
converge because SAS fitted a highly negative covariance parameter estimate for the lin(1)
parameter when no random pairwise interactions were present, or their variance was small
compared to residual variance. When this happened, higher starting values of the variance
were specified to help the model converge. The code to perform the simulation studies is in
supplementary materials S.8.
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4.2. SIMULATION RESULTS

The ability of the modeling approach to detect the random pairwise interactions in our
simulation study varied depending on the combination of residual standard deviation and
random pairwise interaction standard deviation (Table 3). When the random pairwise inter-
actions standard deviation was set to 0, DI models found significant variation due to random
pairwise interactions in one of the years on approximately 3% of occasions, indicating that
therewas approximately a 0.03 probability of a type 1 error (shown for each residual standard
deviation value in Table 3). The power of the test to detect random pairwise interactions in
all three years was always > 0.9, except for when the random pairwise interaction standard
deviation was close to the residual error standard deviation (Table 3). For random pairwise
interactions with standard deviation of 500, the power decreased from 0.992 to 0.571 to
0.076 for residual standard deviation 100, 200, and 300, respectively (although power to
detect interactions in at least one year was much higher). Therefore, to be distinguishable
from residual variance, random pairwise interactions must usually have sufficiently large
variance in comparison with the residual variance.

When no random pairwise interactions were included, the functional group model was
chosen as the best model in approximately 70%of cases, with the full pairwisemodel chosen

Table 3. The number of simulations from 1000 that gave 0, 1, 2, or 3 significant yearly random pairwise interac-
tions at the 0.05 significance level in each of three years for combinations of residual standard deviation
by random pairwise interactions standard deviation

Residual standard
deviation

Random pairwise
interactions stan-
dard deviation

Number of significant
yearly randomt
pairwise interactions

(1) Type 1 error probability (2) Power

0 1 2 3

100 0 966 33 1 0 0.034 –
100 500 0 0 8 992 – 0.992
100 1000 0 0 0 1000 – 1
100 1500 0 0 0 1000 – 1
100 2000 0 0 0 1000 – 1
100 2500 0 0 0 1000 – 1
200 0 976 24 0 0 0.024 –
200 500 1 49 379 571 – 0.571
200 1000 0 0 6 994 – 0.994
200 1500 0 0 0 1000 – 1
200 2000 0 0 1 999 – 0.999
200 2500 0 0 0 1000 – 1
300 0 971 28 1 0 0.029 –
300 500 211 409 304 76 – 0.076
300 1000 0 1 75 924 – 0.924
300 1500 0 0 2 998 – 0.998
300 2000 0 0 1 999 – 0.999
300 2500 0 0 0 1000 – 1

Two probabilities are shown: (1) for random pairwise interactions standard deviation = 0, the probability of a
type 1 error (i.e., the probably of falsely detecting a need for pairwise interactions in at least one year) and (2) for
random pairwise interactions standard deviation > 0 the power to detect a need for random pairwise interactions
in all three years (note that power to detect in at least one year would be higher)
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in all other cases. When random pairwise interactions were included, the functional group
model was chosen ahead of the identity and average pairwise models in all simulations, but
the full pairwise model was preferable to the functional group model in almost all cases,
regardless of residual error by pairwise interaction standard deviation combination.

5. DISCUSSION AND CONCLUSIONS

Diversity-Interactions models are a valuable tool in BEF research: they can simultane-
ously assess the impact of individual species, their proportions and their interactions on
ecosystem function (Kirwan et al. 2009). In this paper, we advance DI models using random
effects to model numerous pairwise interactions in a multi-year setting.We showed that ran-
dom effects component had a low probability of a type 1 error and strong power, although
the power depended on the gap between random pairwise interaction standard deviation
and the residual standard deviation. We applied the methods to a multi-year biodiversity
experiment with 16 species and identified functional group interaction effects and planting
spatial pattern effects.

The inclusion of the unusual random effects (indexed by pairwise species rather than by a
plot-level factor) provides a novel and parsimoniousway tomodel a large number of pairwise
interactions over multiple years, extending the methods for a single year from Brophy et al.
(2017). The ability of the modeling approach to detect the need for the random effects is
determined by the relative size of the random effects standard deviation to the residual error
standard deviation, but when relative size is sufficiently large, the model performs very well
at detecting the need for the additional variance components. Our simulation studies also
showed that when the random pairwise variance does not exist, the modeling approach has
a low probability of a type 1 error and will detect that it is required less than 5% of the time.
The analysis in Connolly et al. (2013) compared DI models to a reference model including a
parameter for each distinct community and blocking structure or treatment providing a lack
of fit test. The random effects approach here provides another lack of fit test, which focuses
specifically on the interactions component of the DI model and does not require replication
of distinct community compositions in the experimental design.

The simulation study showed mixed results in the ability of the approach to identify
the best fixed effects model: when there was no random pairwise variation included, the
functional group model was identified as best the majority of the time, but when random
pairwise interaction variationwas included, the full pairwisemodelwas frequently identified
as the best model. However, this result was not surprising, because as well as functional
group interactions, there was additional variability due to the random pairwise interactions
in the true underlying model and that variation was detected by the full pairwise model. In
some experiments with large numbers of species and therefore a high number of pairwise
interactions, it may not be possible to fit all of these pairwise interactions as fixed effects.
If the fixed pairwise interactions can all be fitted, it might still not make biological sense
to fit it due to a lack of interpretability with the high number of parameters. Including the
additional variability as random pairwise interactions in our model allows us to account
for the variability in a more parsimonious way as it uses one additional parameter for each
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year. However, this simulation study focused on one particular experimental design and set
of fixed effects. Performing simulation studies in advance of designing/conducting similar
experiments is recommended to help ensure there is sufficient power to observe any random
pairwise interaction effects.

In our application to the SPaCE data, we identified varying abilities of species to resist
weed invasion, with legumes proving particularly susceptible to invasion in monoculture.
We also found that interaction effects were driven by functional group membership and that
the functional group effects varied according to species spatial pattern. Thus, the spatial
pattern effects depended on which species were in the mixture and could not be general-
ized to any mixture. Examining the raw data, when plots were grouped by spatial pattern
within year, no apparent effect of spatial pattern treatment was observed in any of the years,
except for a slightly inferior weed suppression in aggregated plots in 2013 and 2014 (sup-
plementary materials S.9), highlighting the benefit of our approach over traditional ANOVA
based methods for analyzing this type of data. Designing experiments intended for response
surface analyses (Box and Draper 2007), such as our Diversity-Interactions model, can
lead to more efficient designs (Cornell 2002). Previous studies have found that aggrega-
tion of plant species helped maintain diversity (Houseman 2014) and reduce weed invasion
by allowing less competitive species to persist (Wassmuth et al. 2009). However, model
predictions here suggested that aggregated plots were more prone to invasion outside the
year of establishment, which is consistent with Yurkonis et al. (2012). We also identified a
species-specific effect of the proportion of legumes in mixtures on the interaction effects:
predicted weed biomass showed that dispersed spatial pattern communities in particular
changed with increasing proportions of legumes. The results supported the argument that
increasing the number of species with different functional traits has a positive impact on
weed suppression (Hector et al. 2001; Pokorny et al. 2005).

We assumed that the random effects were normally distributed in the application of the
approach to the SPaCE data and verified this was reasonable. The data in the simulation
studywere generated under the normality assumption for the random effects and future work
could explore deviations from this. It is advisable to verify the random effects normality
assumption in any application of themodeling approach. It may also be reasonable to assume
a year-to-year covariance in the random pairwise interactions (nonzero covariances in the
off-diagonals of the Mi,j matrices described after Eq. (3)); code to illustrate implementing
this is included in supplementary materials S.10.

The model applied to the SPaCE data adjusted interaction effects according to a spatial
pattern treatment. At establishment, aggregated plots had higher mean total intraspecific
interactions than dispersed plots, and the difference became larger with increasing richness
because there was a higher chance of separation in the dispersed plots with more species
(supplementary materials S.11). Future work could make bigger same-species clusters in
the aggregated plots to increase the intraspecific interactions and further differentiate them
from the dispersed plots (e.g., Seahra et al. 2016).

A log transformation of weed biomass is a possible alternative method of ensuring that
the linear mixed model, as proposed here, provides a good fit to the data. However, a log
transformation would reduce parameter interpretability. While allowing the block diagonal
matrices of the R matrix to vary according to plot characteristics introduces complexity to
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the model, it allows the parameters of the model to stay on the same scale as the response.
Our approach respects the heterogenous variance pattern across the weed biomass responses
while maintaining the analysis on the original scale of the data.

The SPaCE experimental design in this study partially confounded species richness and
functional group richness: all two-species plots contained two functional groups (always
a warm-season or cool-season grass with a legume or a forb), and all four-species and all
eight-species plots contained four functional groups. The design was suitable for the aim of
the study to investigate the interactions among different functional groups as they relate to a
reconstructed grassland. However, there are implications of the restricted design space; for
our estimated model, it was not reasonable to predict for two species plots with both species
being from the same functional group, or for two grasses (warm and cool season) together,
or a legume and a forb together. Generally, when predicting from DI models, consideration
should be given to the representation around the simplex space in the study.

In conclusion, we have developed an advanced DI model incorporating spatial planting
pattern treatment, heterogeneous residual variance, and a parsimonious description of high
number of species interactions over multiple years. These models can be fitted using SAS
and R providing techniques for analyzing multi-year BEF experiments with high number
of species that do not rely on species richness as the sole driver of species mixing effects.
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