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Laplace Approximations for
Capture–Recapture Models in the Presence of

Individual Heterogeneity
Riki Herliansyah , Ruth King, and Stuart King

Capture–recapture studies are common for collecting data on wildlife populations.
Populations in such studies are often subject to different forms of heterogeneity that may
influence their associated demographic rates. We focus on the most challenging of these
relating to individual heterogeneity. We consider (i) continuous time-varying individual
covariates and (ii) individual random effects. In general, the associated likelihood is not
available in closed form but only expressible as an analytically intractable integral. The
integration is specified over (i) the unknown individual covariate values (if an individual
is not observed, its associated covariate value is also unknown) and (ii) the unobserved
random effect terms. Previous approaches to dealing with these issues include numerical
integration and Bayesian data augmentation techniques. However, as the number of
individuals observed and/or capture occasions increases, these methods can become
computationally expensive. We propose a new and efficient approach that approximates
the analytically intractable integral in the likelihood via a Laplace approximation. We
find that for the situations considered, the Laplace approximation performs as well as,
or better, than alternative approaches, yet is substantially more efficient.
Supplementary materials accompanying this paper appear on-line

Key Words: Closed population; Cormack–Jolly–Seber model; Individual covariates;
Numerical integration; Template model builder.

1. INTRODUCTION

Capture–recapture surveys are often used when studying wildlife populations to under-
stand the associated population dynamics necessary for management and conservation.
These surveys involve repeatedly sampling the population over a series of capture occa-
sions. Observations at each capture occasion may take the form of physical captures and/or
visual sightings of animals. Individuals are uniquely identified, using, for example, a ring
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or tag applied at initial capture or via natural markings. The observed data correspond to the
set of capture histories for each individual observed in the study, detailing whether or not
they are observed at each capture occasion. Capture–recapture studies may be assumed to
be closed or open, dependent on whether the population is constant throughout the study; or
may change due to births, deaths and/or migration, respectively. The corresponding parame-
ters of interest typically differ between such studies with closed populationmodels primarily
focusing on abundance estimation; while open population models often focus on the esti-
mation of survival probabilities, although these may also extend to abundance. For a review
of these data and associated models see for example McCrea and Morgan (2015), Seber and
Schofield (2019).

Incorporating heterogeneity in capture–recapture models can be important to model the
underlying system processes. Omitting such sources of heterogeneity can lead to biased
and/or misleading results (Rosenberg et al. 1995; Schwarz 2001; Chao et al. 2001; White
and Cooch 2017). Otis et al. (1978) described three main sources of heterogeneity: tempo-
ral, behavioural and individual. In this paper we focus on individual heterogeneity, which
can often be incorporated via the use of observable characteristics, such as gender, breed-
ing status or condition. King and McCrea (2019) categorised observed individual covari-
ates into 2 × 2 cross-classifications corresponding to continuous/discrete-valued and time-
varying/invariant. We focus on the more challenging case of continuous-valued covariates.
Missing data often arise for such covariate information due to, for example, imperfect data
collection or simply the structure of the experimental design. For example, for stochastic
time-varying covariates, if an individual is not observed, the corresponding covariate is
also unknown at that time. In general, for continuous-valued covariates, the observed data
likelihood is only expressible as an analytically intractable integral leading to model-fitting
challenges. Previous model-fitting approaches include using a Bayesian data augmentation
(Bonner and Schwarz 2006; King and Brooks 2008; Bonner et al. 2010); an approximate
discrete hidden Markov model (Langrock and King 2013); and a two-step multiple impu-
tation approach (Worthington et al. 2015). However, these approaches are computationally
expensive and not scalable to large datasets.

Alternatively, unobservable individual heterogeneity can be modelled via individual ran-
dom effects. These may either be specified as a finite mixture model (Pledger 2000; Pledger
et al. 2003); or an infinite mixture model (Coull and Agresti 1999; Dorazio and Royle 2003;
King and Brooks 2008). However, we note that identifiability issues may arise in terms
of the distributional assumption of this heterogeneity, with different models leading to the
same distribution for the observed data (Link 2003, 2006), indicating that some sensitivity
analyses are advisable in practice. For the finite case, a closed form expression for the likeli-
hood is available, summing over the mixture components; for the infinite case the necessary
integration is generally analytically intractable (though see Dorazio and Royle (2003) for a
special case for closed models assuming a Beta distribution). Again, within this paper we
focus on the case of continuous-valued individual random effects. A variety of approaches
have been applied to fit random effect individual heterogeneity models to data including
conditional likelihood (Huggins and Hwang 2011); Bayesian data augmentation (King and
Brooks 2008; Royle et al. 2007; Royle 2008); numerical integration (Coull andAgresti 1999;
Gimenez and Choquet 2010; White and Cooch 2017) and combined numerical integration
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and data augmentation (Bonner and Schofield 2014; King et al. 2016). Observed and unob-
served heterogeneity can be jointly considered via a mixed model specification, including
both covariate information and additional random effects with similar model-fitting tool
applied [see, for example, King et al. (2006), Gimenez and Choquet (2010), Stoklosa et al.
(2011)].

We develop a computationally efficient Laplace approximation for the analytically
intractable integral in the likelihood function in the presence of individual heterogeneity for
capture–recapture data, which we subsequently numerically maximise to obtain the MLEs
of the parameters. We apply the approach to fit (i) a closed population model with individual
random effects (using a higher order Laplace approximation for improved accuracy) and
(ii) an open population model with time-varying continuous covariate information. For the
open populationmodel, we use the numerical automatic differentiation tool in the R package
TemplateModel Builder (TMB; Kristensen et al. 2016) to approximate the likelihood. TMB
builds on the approach of the Automatic Differentiation Model Builder (ADMB) package
where the objective function is written in C++. The approach is scalable to both large
dimensions and sample size i.e., it is designed to be fast for handling many random effects
(≈ 106) and parameters (≈ 103) (Kristensen et al. 2016) since computing the most chal-
lenging computation (the second derivatives) is no longer expensive due to the automatic
differentiation function within TMB.

In Sect. 2 we introduce the notation and individual heterogeneity models. In Sect. 3 we
describe the associated Laplace approximation for the closed and open capture–recapture
models we consider. In Sect. 4 we conduct a simulation study of these systems, before
analysing two real datasets in Sect. 5. Finally we conclude with a discussion in Sect. 6.

2. CAPTURE–RECAPTURE MODELS

We begin with a brief description of the general notation for capture–recapture studies
andmodel parameters, before describing the specificmodels for closed and open populations
that we consider in detail with their associated observed data likelihoods.

2.1. NOTATION

We let t = 1, . . . , T denote the capture occasions within the study; and i = 1, . . . , n the
observed individuals over all the capture occasions. Then, for each individual i = 1, . . . , n
and capture occasion, t = 1, . . . , T we let,

xit =
{
1 if individual i is observed at time t;
0 if individual i is unobserved at time t.

The capture history associated with individual i = 1, . . . , n is denoted by xi = {xit :
t = 1, . . . , T }; and the set of capture histories x = {xit : i = 1, . . . , n; t = 1, . . . , T }.
Finally, we let fi and �i denote the first and last time individual i is observed, respectively,
for i = 1, . . . , n.
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The associated model parameters depend on the specific capture–recapture model being
fitted. We describe the general set of parameters and indicate whether they apply to the
closed or population models considered within this paper:

– N = the total population size (closed);

– pit = P(individual i is observed at time t| available for capture at timet) (open and
closed);

– φi t = P(individual i is alive at time t+1| alive at time t) (open).

We let p = {pit : i = 1, . . . , N ; t = 1, . . . , T }, and similarly for φ.
We consider the individual heterogeneitymodel component denoted by y = { yobs, ymis},

where yobs and ymis denote the observed and unobserved individual heterogeneity compo-
nents, respectively. For example, yobs may correspond to observed covariate values; while
ymis the missing covariate values or random effect terms. In this paper we assume that
ymis is continuous-valued. We let ψ denote the associated individual heterogeneity model
parameters; and θ the model parameters to be estimated.

The corresponding data are given by {x, yobs}, with associated observed data likelihood,

f (x, yobs|θ,ψ) =
∫
ymis

f (x|θ, y) f ( y|ψ)d ymis, (1)

where f (x|θ , y) denotes the complete data likelihood; and f ( y|ψ) the random effect or
covariate model component. This likelihood is, in general, analytically intractable. (If there
are discrete-valued elements of ymis the integral becomes a summation). We now describe
both a closed and open capture–recapture model, considering a continuous-valued random
effects model, and time-varying continuous-valued individual covariate model, respectively.

2.2. CLOSED Mh -TYPE MODELS: UNOBSERVED HETEROGENEITY

We consider the closed models, Mtbh , proposed by Otis et al. (1978), where the sub-
scripts correspond to temporal, behavioural and individual heterogeneity, respectively. The
subscripts denotewhich heterogeneities are present in a givenmodel.Additional heterogene-
ity can bemodelled via observed covariates (Stoklosa et al. 2011), butwe do not consider this
case here. The total population size, N , is the parameter of primary interest. The recapture
probabilities, pit , are expressed such that, h(pit ) = αt +λSit + εi , where Sit = 0 if t ≤ fi ;
and Sit = 1 if t > fi ; and h denotes some function constraining the recapture probabilities
to the interval [0, 1]. Within this paper we assume a logistic relationship, so that h ≡ logit.
The αt terms correspond to the temporal component; λ the behavioural component and εi

the individual random effect term which we assume to be of the form εi ∼ N(0, σ 2). The
individual heterogeneity sub-models Mh , Mth , Mbh are obtained by setting restrictions on
the parameters. For example, in the absence of a behavioural effect λ = 0; and when there
are no temporal effects αt = α for all t = 1, . . . , T . The conditional likelihood, given the
capture probabilities, p = {pit : i = 1, . . . , N , t = 1, . . . , T }, is of multinomial form
(omitting the constant coefficient terms):
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f (x|N , p) = N !
(N − n)!

n∏
i=1

T∏
t=1

pxiti t (1 − pit )
(1−xit ).

However, the capture probabilities are specified as a random effect component. The model
parameters are θ = {N ,α, λ} with individual heterogeneity model parameters ψ = {σ 2}.
Thus, assuming there is no additional observed individual covariate information within the
study, we have yobs = ∅, and ymis = {εi : i = 1, . . . , N } . We let x0 = {x01, . . . , x0T }
denote the unobserved capture history with all entries equal to zero (i.e. x0t = 0 for all
t = 1, . . . , T and all individuals i = n + 1, . . . , N ). Further, the associated random effect
of an unobserved individual is denoted by ε0, with associated capture probability at time t
given by h(p0t ) = αt + ε0. The observed data likelihood of Eq. (1) can be expressed as,

f (x|θ , σ 2) ∝ N !
(N − n)!

n∏
i=1

[∫
f (xi |θ, εi ) f (εi |σ 2) dεi

]

×
[∫

f (x0|θ , ε0) f (ε0|σ 2) dε0

]N−n

, (2)

where f (εi |σ 2) denotes the density function for the unobserved heterogeneity process; and
f (xi |θ , εi ) the probability of the associated capture history, such that

f (xi |θ, εi ) =
T∏
t=1

pxiti t (1 − pit )
(1−xit ).

We note that the likelihood can be written more efficiently by further considering only
unique observed capture histories, but for notational simplicity we retain the product over
all observed individuals within this expression.

Previous approaches for dealing with the intractable likelihood include the use of Gauss–
Hermite quadrature to estimate the integral (Coull and Agresti 1999). White and Cooch
(2017) evaluated this approach further via simulation for different parameter values, and
concluded that the results were generally unbiased except for relatively low recapture prob-
abilities and/or few capture events. Further, they demonstrated that for larger individual
heterogeneity variances a greater number of quadrature points are required to retain accu-
racy. Alternatively, a Bayesian data augmentation approach has been applied, treating the
individual heterogeneity terms as additional parameters (or auxiliary variables) and calculat-
ing the joint posterior distribution over both parameters and auxiliary variables. However, in
this approach the number of auxiliary variables is also an unknown (it is equal to the unknown
parameter, N ), leading to the use of a reversible jump algorithm (King and Brooks 2008) or
super-population approach (Durban and Elston 2005; Royle et al. 2007). To address these
issues King et al. (2016) proposed a computationally efficient semi-complete data likelihood
model fitting approach, combining a data augmentation approach for the individual hetero-
geneity terms of observed individuals, with a numerical integration scheme for the likelihood
component corresponding to the unobserved individuals. A similar approach was proposed
by Bonner and Schofield (2014), for the case of individual continuous covariates for closed
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populations (assumed constant within the study period), using a Monte Carlo approach to
perform the numerical integration necessary for the likelihood component associated with
the unobserved individuals.

2.3. OPEN CAPTURE–RECAPTURE MODELS: OBSERVED HETEROGENEITY

WeconsiderCormack–Jolly–Seber-type (CJS)models (Cormack 1964; Jolly 1965; Seber
1965) for open populations,which permit entries and exits from the population over the study
period. We focus on the case where the survival probabilities are modelled as a function
of individual time-varying continuous covariates, to explain the individual and temporal
variability.

Notationally, we let yit denote the covariate value associatedwith individual i = 1, . . . , n
at time t = fi , . . . , T ; and set yi = {yit : t = fi , . . . , T }. The survival probability is
specified as a function of the covariate values such that h(φ(yit )) = β0 + β1yit , for all
t = fi , . . . , T − 1 and i = 1, . . . , n, where h denotes some function that maps to the
interval [0, 1]; and β0 and β1 denote the corresponding regression parameters. Similarly
we may also specify the recapture probabilities to be a function of the covariate such that
h(p(yit )) = γ0 + γ1yit , for t = fi + 1, . . . , T and i = 1, . . . , n, assuming the same
functional form for h for simplicity; and where γ0 and γ1 are the associated regression
parameters. For notational convenience, we let β = {β0, β1} and γ = {γ0, γ1}. Further
we define the stochastic model for the covariate values, assuming a first-order Markovian
process, such that, for t = fi , . . . , T − 1 and i = 1, . . . , n,

yit+1|yit ∼ N (yit + μt , σ
2
y ). (3)

Clearly, suitable covariate models will be dependent on the given covariate(s) and bio-
logical knowledge. We note that in the case where the covariate value may not be observed
at initial capture we also need to specify an initial state distribution for the initial covariate
values. However, for simplicity, we assume the covariate values at initial capture are known
for each individual, as is the case in our case study, but the approach is easily generalisable.

For capture–recapture studies we do not observe all the individual covariate values.
Assuming that the covariatemodel is stochastic, if an individual is unobserved the associated
covariate value is, by definition, also unknown; further if an individual is observed, the
covariate value may still not be recorded. Finally, we let ζ 1

i denote the set of times for which
the covariate values are observed for individual i and ζ 0

i the set of times following initial
capture for which the covariate value is unknown for individual i .

To express the likelihood, we let yobsi = {yit : t ∈ ζ 1
i } and ymis

i = {yit : t ∈ ζ 0
i } denote

the observed and unobserved covariate values associated with individual i = 1, . . . , n. The
full set of observed and unobserved covariate values are yobs = { yobsi : i = 1, . . . , n}
and ymis = { ymis

i : i = 1, . . . , n}. The model parameters are θ = {β, γ }, with covariate
parameters ψ = {μ1, . . . , μT−1, σ

2
y }. The observed data likelihood in Eq. (1) is given by,
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f (x, yobs|θ,ψ) =
n∏

i=1

[∫
f (xi | yi , θ) f ( yi |ψ) d ymis

i

]
,

and is again analytically intractable. The term f (xi | yi , θ) denotes the complete data like-
lihood component corresponding to the probability of the capture history xi ; and f ( yi |ψ)

the joint probability density function of the covariate values associated with individual i .
The probability of a given capture history, conditional on initial capture and all covariate
values yi , is given by,

f (xi | yi , θ) =
⎡
⎣�i−1∏
t= fi

φ(yit )

⎤
⎦

⎡
⎣ �i∏
t= fi+1

p(yit )
xit (1 − p(yit ))

1−xit

⎤
⎦χi�i ,

where χi�i denotes the probability that individual i is not recaptured again after time �i . We
can express χi t via the recursive function, χi t = 1 − φ(yit ) + φ(yit )(1 − p(yit+1))χi t+1,

such that χiT = 1, for all i = 1, . . . , n. The covariate model component of the observed
data likelihood, conditioning on the initial covariate value (which we assume to be known,
but can easily be relaxed by the inclusion of an initial state distribution) is given by,

f ( yi |ψ) =
T−1∏
t= fi

f (yit+1|yit ,ψ),

where f (yit+1|yit ,ψ) denotes the associated density for the given covariate model.
Previous attempts for dealing with missing covariate values include both classical and

Bayesian model-fitting approaches. In particular, Catchpole et al. (2004) derived a condi-
tional likelihood approach, conditioning on only the known observed covariate values. This
approach is computationally fast but leads to a (potentially substantial) reduction in the
precision of the parameter estimates due to the amount of discarded information (Bonner
et al. 2010); and cannot be applied when the observation process parameters (i.e. capture
probabilities) are covariate dependent. To use all the available information, Worthington
et al. (2015) consider a two-step multiple imputation approach, which involves initially fit-
ting a model to only the observed covariate values and imputing the unobserved covariates
before conditioning on these imputed values and using a complete-case likelihood approach
for the associated capture histories. Alternatively Langrock and King (2013) numerically
approximate the likelihood by finely discretising the integrals and estimate the integral
via a hidden Markov model, providing improved parameter estimates. The integral can be
made arbitrarily accurate by increasing the level of discretisation. However there is a trade-
off between the accuracy of the estimate and the computational expense. Finally, within a
Bayesian framework, a data augmentation approach has been applied, treating the missing
covariate values as auxiliary variables and sampling from the joint posterior distribution of
the parameters and auxiliary variables (Bonner and Schwarz 2006; King et al. 2008).
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3. LAPLACE APPROXIMATION

The Laplace approximation is a numerical closed-form approximation of an integral
and can be regarded as an alternative form of Gauss–Hermite quadrature (Liu 1994). The
underlying idea of the Laplace integration is to approximate the negative log-likelihood
by a second (or higher) order Taylor expansion. When the negative-log likelihood is well
approximated by a Gaussian curve the Laplace approximation can be shown to have high
precision. In particular, in a study from Liu (1994) the standard error of the estimate was
shown to be of order O(m−1), where m denotes the number of observations. Adding in
further leading terms can further improve the accuracy to the order of O(m−2) (Wong and
Li 1992; Breslow and Lin 1995; Raudenbush et al. 2000). Using an analytical expression for
the Laplace approximation is generally only feasible when the dimension of the integral is
small (for example, of dimension 2 or 3) due to the computational complexity in computing
the higher order derivatives. However, numerical approximations of the required derivatives
can be obtained using automatic differentiation. In particular we use the Template Model
Builder (TMB) automatic differentiation tool developed by Kristensen et al. (2016) that
enables the use of the Laplace approximation using a computationally efficient implemen-
tation. We apply the Laplace approximation to individual heterogeneity capture–recapture
models applying the TMB tool for numerically calculating the derivatives, when these are
analytically intractable. We note that Laplace approximations have been used previously
for capture–recapture models but within a Bayesian context for approximating the marginal
posterior densities of the parameter of interest (Smith 1991; Chavez-Demoulin 1999).

3.1. CLOSED Mh -TYPE MODELS

We consider the general Mtbh model with corresponding likelihood specified in Eq. (2).
The integrand of the likelihood can be rewritten in exponential form, such that,

f (x|θ, σ 2) ∝ N !
(N − n)!

n∏
i=1

[∫
exp{−g(xi , εi |θ, σ 2)} dεi

]

×
[∫

exp{−g(x0, ε0|θ, σ 2)} dε0
]N−n

, (4)

where,

g(xi , εi |θ , σ 2) = − log f (xi |θ, εi ) − log f (εi |σ 2),

for i ∈ {0, 1, . . . , n}. Dropping the subscript notation on i for notational brevity, let ε̂ denote
the value of ε that minimises g(x, ε|θ , σ 2) given model parameters θ and heterogeneity
parameter σ 2, so that g′(x, ε|θ , σ 2) = 0 and g′′(x, ε|θ) > 0. A second-order Taylor series
expansion is given by,

g(x, ε|θ , σ 2) ≈ g(x, ε̂|θ, σ 2) + g′′(x, ε̂|θ, σ 2)(ε − ε̂)2

2
.
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Laplace’s method approximates the integrands in Eq. (4) using the properties of normal
density functions such that the contribution to the observed data likelihood takes the form,

∫
exp{−g(x, ε|θ, σ 2)} dε ≈ exp{−g(x, ε̂|θ, σ 2)}

∫
exp

{
(ε − ε̂)2

2g′′(x, ε̂|θ, σ 2)−1

}
dε

= exp{−g(x, ε̂|θ, σ 2)}
√

2π

g′′(x, ε̂|θ , σ 2)
.

To improve the accuracy of the approximation, we can also consider a higher-order
Laplace approximation involving higher-order derivatives (Raudenbush et al. 2000). We
use the fourth-order Taylor expansion to obtain the fourth-order Laplace approximation.
Applying the one-dimensional Laplace approximation on the integral yields,

∫
exp{−g(x, ε|θ , σ 2)} dε ≈ exp{−g(x, ε̂|θ, σ 2)}

√
2π

g′′(x, ε̂|θ , σ 2)

×
[
1 + 5(g(3)(x, ε̂|θ , σ 2))2

24(g′′(x, ε̂|θ , σ 2))3
− 3g(4)(x, ε̂|θ, σ 2)

24(g′′(x, ε̂|θ, σ 2))2

]
,

(5)

where g(3)(.) and g(4)(.) denote the third and fourth derivatives with respect to the random
effect term ε. A closed form expression for the fourth-order Laplace approximation is
presented inWebAppendixAof the SupplementaryMaterial wherewe assume the recapture
probabilities are specified using the logistic function, so that logit (pit ) = αt + λSit + εi .

3.2. CJS MODEL WITH INDIVIDUAL TIME-VARYING CONTINUOUS COVARIATES

For the open population CJS model with individual time-varying continuous covariates,
the observed data likelihood in Eq. (1) can be expressed in the form,

f (x, yobsi |θ,ψ) =
n∏

i=1

[∫
exp{−g(xi , yi |θ,ψ)} d ymis

i

]
,

such that for i = 1, . . . , n,

g(xi , yi |θ,ψ) = −
�i−1∑
t= fi

logφ(yit ) −
�i∑

t= fi+1

{xit log p(yit ) + (1 − xit ) log(1 − p(yit ))}

− logχi�i −
T−1∑
t= fi

log f (yit+1|yit ,ψ).

Applying the multivariate k-dimension second-order Laplace approximation, we obtain,

∫
exp{−g(xi , yi |θ ,ψ)} ymis

i ≈ exp{−g(xi , yobsi , ŷmis
i |θ ,ψ)}(2π)k/2|g′′(x, d yobsi , ŷmis

i |θ ,ψ)|−1/2,
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where ŷmis
i denotes the value of ymis

i that minimises g(xi , yi |θ,ψ). There is no closed form
for the derivatives (due to the χ term) and so we use numerical automatic differentiation
function provided in TMB, to evaluate the Laplace approximation for this model.

4. SIMULATION STUDY

To assess the performance of the Laplace approximation for both closed and open
capture–recapture models we conduct a simulation study, using 1000 datasets for each simu-
lation. For the closed populationMh-typemodels, we apply both the second and fourth order
Laplace approximations (LA2 and LA4, respectively) and compare with a Gauss–Hermite
quadrature (GHQ) approximation. For the open population CJS model with covariates we
compare the Laplace approximation with an HMM approximation (Langrock and King
2013). All methods use TMB for computational comparability for calculating the MLEs of
the parameters.

Appendix B of the Supplementary Material provides a detailed discussion of the simu-
lation study and associated results. For the closed population Mh-type models the MLEs
of the parameters, N and σ , appear to be slightly negatively biased. However this bias was
consistently less for LA4 and GHQ than for LA2. Further, the coverage probabilities for
the LA2 approximation were also consistently smaller than the alternative approaches. See
Table 1 of Appendix B for further details. We conducted a further simulation study focusing
on model Mh to investigate the performance of the Laplace approximations and GHQ for
increasing values of the individual heterogeneity variance, σ 2, as White and Cooch (2017)
showed that as σ 2 increases the model-fitting becomes more challenging. Within our study,
the LA2 approximation again performs relatively poorly; while the performance of the LA4
and GHQ approaches are very similar in terms of both relative bias and coverage probabil-
ities (see Table 2 of Appendix B). Of further note, for the GHQ approach the width of the
confidence interval increases as σ increases. This relationship is not observed for LA4 with
similar width confidence intervals across the different values of σ , yet both approximations
return very similar levels of coverage probabilities for the parameters. For the CJS model
we consider a range of scenarios, based on sample size (n = 200, 400), capture regimes
(p = 0.5, 0.75) and length of study (T = 4, 6). We assume that there is a single covariate
and consider two possible covariate models over time corresponding to (i) a random walk;
and (ii) a random walk with time-dependent effects. The second-order Laplace approach is
compared to the alternative HMM approximation (Langrock and King 2013). For all sce-
narios, both approaches perform consistently well and similarly in terms of estimating the
model parameters (see Tables 3 and 4 of Appendix B).

Finally, we consider the comparative computational expense. The Laplace approxima-
tions are consistently faster than the competing methods across all models, however as the
model complexity increases, this difference is accentuated. For example, for model Mh the
Laplace approximations are nearly twice as fast at evaluating the log-likelihood function as
the given implementation of GHQ; but for model Mth this increases to 8–10 times faster.
For CJS-type models the differential in computational expense is even more substantial. For
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example, the Laplace approximation was often (at least) one order of magnitude faster, and
dependent on the size of the data and implementation of the HMM approximation, increases
to two orders of magnitude faster. For further discussion, andmore specific details regarding
computational comparisons, see Appendix B.

5. EXAMPLES

We consider two case studies corresponding to the closed Mh-type models (St. Andrews
golf tees data) and open CJS model with individual time-varying continuous covariates
(meadow voles). We again compare the Laplace approximation with alternative approaches.
All the codes used in these example are provided in the github repository detailed in the
information regarding additional Supplementary Material.

5.1. ST. ANDREWS GOLF TEES

We consider the St. Andrews golf tees data from Borchers et al. (2002). The dataset
consists of N = 250 tees differing in size, colour and visibility resulting in individual
capture heterogeneity. A total of T = 8 independent observers (i.e. capture occasions)
were assigned to predefined transects and recorded all golf tees observed. A total of 546
observations were recorded and n = 162 unique tees observed in the study (additional
size/colour data were not recorded).

Borchers et al. (2002) showed that omitting the presence of individual heterogeneity
vastly underestimates the true population size, thus we consider the set of closed population
models with individual heterogeneity present. Table 1 provides the estimated population size
and 95% non-parametric bootstrap confidence interval fitted to the four individual hetero-
geneity Mh-type models for the Laplace approximations and GHQ approach. In general, the
higher order Laplace approximation (LA4) and the GHQ give relatively similar maximum
likelihood estimates for N , varying from approximately 242 to 262; while the lower order
Laplace approximation (LA2) gives somewhat varying estimates, as previously observed
within the simulation study in Sect. 4. The higher order Laplace approximation tends to
consistently produce slightly larger estimates of N than the GHQ approach for all individ-
ual heterogeneity models. For example, the estimates of N under Mh model are 251.3 and
242.4 for the LA4 and GHQ approaches, respectively.

The bootstrap confidence intervals for the GHQ approach are noticeably wider than the
LA4 approximation, with a consistently substantially larger upper limit (we note that the
lower limit is bounded by the number of observed individuals). In particular, the highest
upper bound of the LA4 approximation is approximately 310, with the width ranging from
90 to 100;while the lowest upper bound in theGHQapproach is 358 and thewidths generally
double. King et al. (2008) report a similar uncertainty interval as the LA4 approximation,
using a Bayesian approach with a model-averaged 95% credible interval of [194, 288], over
the same set of models. Further, the estimate of σ for each of these models is relatively large
(approximately 2 for all fitted models). We note that as observed in the second simulation
study (see Sect. 4 andAppendix B), as σ increases, thewidth of the 95% confidence intervals
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Table 1. The estimates of the total population of St. Andrews golf tees and associated non-parametric bootstrap
95% confidence interval (in brackets) for the four individual heterogeneity models using second-order
(LA2) and fourth-order (LA4) Laplace approximations and Gauss–Hermite quadrature (GHQ) with 50
quadrature points

Model LA2 LA4 GHQ

Mh 224 251 242
(192, 285) (199, 284) (198, 360)

Mth 224 254.1 242.6
(191, 284) (198, 282) (197, 358)

Mbh 272 262 261
(196, 353) (203, 308) (202, 406)

Mtbh 350 260 255
(189, 439) (198, 299) (195, 450)

for N using the GHQ approach are increasingly larger than for the Laplace approximations,
yet providing comparable coverage probabilities.

Finally,we compared the comparative computational times. In general, the computational
speed is fast in terms of absolute time, and on the order of milliseconds for each of the
methods. However, comparing the Laplace approximations toGHQ, the Laplace approaches
are approximately twice as fast for model Mh , increasing to fives times as fast for model
Mtbh (Table 1).

5.2. MEADOW VOLES

We consider capture–recapture data collected on meadow voles (Microtus pennsylvani-
cus) at Patuxent Wildlife Research Center, Laurel, Maryland over T = 4 capture occasions
from 1981 to 1982 (Nichols et al. 1992). A total of 512 voles were observed over the study
period. When an individual was observed, its corresponding body mass was also recorded.
We follow Bonner and Schwarz (2006) by classifying individuals as immature (body mass
≤ 22 g) andmature (bodymass> 22 g) and consider data only for themature voles observed
for the first time prior to the final capture occasion. This provides a total of n = 199 unique
capture histories corresponding to a total of 450 observed sightings and associated body
mass recordings. We note that approximately 40% of body mass recordings were unknown,
following initial capture.

We follow Bonner and Schwarz (2006) and consider the model where the survival and
recapture probabilities are dependent on body mass. In particular, we let yit denote the body
mass of individual i = 1, . . . , n at time t = fi , . . . , T − 1 and set,

logit(φi t ) = β0 + β1yit ; and logit(pit+1) = γ0 + γ1yit+1.

Similarly, we specify the model for body mass to be of the form,

yit+1|yit ∼ N(yit + μt , σ
2),
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for i = 1, . . . , n and t = fi +1, . . . , T . The set of model parameters is θ = {β0, β1, γ0, γ1},
and the heterogeneity parametersψ = {μ1, μ2, μ3, σ

2}. All covariate values were recorded
when an individual was observed, so we do not need to specify an initial distribution for
body mass.

We compared the Laplace approximation, HMM-approximation using 20 intervals (Lan-
grock and King 2013), two-step multiple imputation approach (Worthington et al. 2015) and
Bayesian data augmentation approach (as fitted by Bonner and Schwarz 2006). Figure 1 pro-
vides the parameter estimates of the fitted CJS model for the different approaches, in terms
of MLE/posterior mean and associated 95% confidence/credible interval. All approaches
provide generally similar results, and in particular we note that the results for the Laplace
approximation and HMM-approximation are very similar. There are however some differ-
ences in the results obtained via the two-step multiple imputation approach for the parame-
ters associated with recapture probability in terms of the MLEs and with noticeably larger
confidence intervals (the latter is also true for the estimation of σ ). Some differences are
not unexpected since the regression model parameters are estimated independently by fit-
ting the given covariate model to the observed covariate values only, ignoring the capture
observations.

Finally, we compared the associated computational times for each of the different
approaches. To obtain the MLE of the parameters, the Laplace approximation takes < 1 s;
the multiple imputation approach approximately 3 s; and the HMM-approximation approx-
imately 9 s for these data. Thus, using 999 bootstrap replicates to obtain the 95% confidence
intervals, the computation times are of the order of approximately 15 min; 45 min and 2.5 h
for theLaplace approximation, imputation approach andHMM-approximation, respectively.
TheBayesian data augmentation approach using aMarkov chainMonteCarlo algorithmwill
depend on the updating algorithm used, number of iterations required for the Markov chain
to converge to the stationary distribution and to obtain reliable posterior summary statistics
with small Monte Carlo error following convergence and thus will be comparatively slower,
particularly in relation to the fast Laplace approximation.

6. DISCUSSION

In this paper, we describe a Laplace approximation to estimate the analytically intractable
observed data likelihood for capture–recapture models in the presence of individual hetero-
geneity. The complexity of the likelihood function influences the order of the Taylor expan-
sion that can be analytically calculated. For closed population Mh-type models a fourth-
order expression can be analytically derived; whereas for the CJS model with continuous
time-varying covariates we use automatic differentiation (via TMB) to obtain the necessary
numerical derivatives, as they are analytically intractable. The Laplace approximation for
these models provide a reliable and efficient mechanism for evaluating the likelihood func-
tion, and hence obtaining the maximum likelihood estimates, and associated confidence
intervals.

In particular, comparing this approach to the current “gold-standards”, namely GHQ for
Mh-type models, and an HMM-approximation for the CJS model with continuous covari-
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Figure 1. Comparison of the parameter estimates (MLE or posterior mean) and associated 95% uncertainty
interval (non-parameteric confidence interval or symmetric credible interval) for theLaplace approximation,HMM-
approximation, multiple imputation and Bayesian data augmentation approaches .
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ates, the Laplace approximation consistently performs at least as well but at substantially
lower computational cost. However, we note that for the Mh-type models, the fourth-order
Laplace approximation is required for this performance. Further, for the scenarios consid-
ered, the coverage probabilities were essentially identical between the fourth-order Laplace
approximation and the GHQ approach, yet the width of the associated 95% confidence
intervals were significantly larger for the quadrature approach with increasing individual
heterogeneity variability (i.e. σ 2). Wider confidence intervals for increasing variability is
also discussed by White and Cooch (2017) when using the quadrature approach. Under-
standing this apparent difference is the focus of current research. In addition the Laplace
approximation is scalable to higher dimensions and thus this approach is potentially a very
attractive avenue to pursue for more complex models (for example, in the presence of multi-
ple continuous individual covariates), particularly as the GHQ and the HMM approximation
generally suffer from the curse of dimensionality (Langrock and King 2013). Huber et al.
(2004) explain that summation-based approaches such as GHQ and HMMmay have larger
bias when the dimension of integrals increases. The reason of this behaviour is due to GHQ
and HMM-approximation being based on pre-specified and fixed quadrature points. These
fixed points can easily become too coarse, particular in higher dimensions, such that the
peak of the log-likelihood is missed.

Computational efficiency continues to be an important consideration, as models become
more complex and/or datasets/studies increase in size. For example, Warton et al. (2015)
describe and compare several approaches in terms of speed and accuracy for fitting joint eco-
logical mixed models, including Laplace approximations, adaptive quadrature, data impu-
tation approaches and variational approximations. Within their applications considered,
the Laplace approximation was again a very computationally efficient approach, but less
accurate for small samples; while adaptive quadrature appeared a reasonable compromise
between accuracy and speed. The Expectation–Maximisation (EM) algorithm and Bayesian
data augmentationwere accurate but relatively slow.Variational approximations, appeared to
be as computationally efficient as Laplace approximations whilst also providing moderately
accurate estimates. Further, Niku et al. (2019) showed that variational approximations coded
in TMB had smaller bias for negative binomial generalized linear latent variable models
compared with the second order Laplace approximation. Exploring the use of variational
approximations for capture–recapture models is also an area of current research, as well
as investigating the robustness of Laplace approximation to models where the individual
heterogeneity component is non-Gaussian.

SUPPLEMENTARYMATERIAL

Web Appendices referenced in Sects. 3.1, 4 and 5.1 are available with this paper in the
online Supplementary Material. The codes used in this paper can be assessed at https://
github.com/riki-herliansyah/capture-recapture.

https://github.com/riki-herliansyah/capture-recapture
https://github.com/riki-herliansyah/capture-recapture
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