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Bayesian Optimization Approaches for
Identifying the Best Genotype from a

Candidate Population
Shin-Fu Tsai, Chih-Chien Shen, and Chen-Tuo Liao

Bayesian optimization is incorporated into genomic prediction to identify the best
genotype from a candidate population. Several expected improvement (EI) criteria are
proposed for the Bayesian optimization. The iterative search process of the optimization
consists of two main steps. First, a genomic BLUP (GBLUP) prediction model is con-
structed using the phenotype and genotype data of a training set. Second, an EI criterion,
estimated from the resultingGBLUPmodel, is employed to select the individuals that are
phenotyped and added to the current training set to update the GBLUP model until the
sequential observed EI values are less than a stopping tolerance. Three real datasets are
analyzed to illustrate the proposed approach. Furthermore, a detailed simulation study
is conducted to compare the performance of the EI criteria. The simulation results show
that one augmented version derived from the distribution of predicted genotypic values
is able to identify the best genotype from a large candidate population with an econom-
ical training set, and it can therefore be recommended for practical use. Supplementary
materials accompanying this paper appear on-line.

Key Words: Expected improvement; GBLUP model; Genomic prediction; Genomic
selection; Linear mixed effects model.

1. INTRODUCTION

Accelerating the genetic improvement of crops through innovative breeding techniques
and strategies is an urgent and important task when dealing with the problem of food
security (2010). Owing to the long history of domestication and selection in agriculture, elite
breeding populations or commercial cultivars have lost their genetic diversity (Reif et al.
2005). Thus, introgression of rich variation from wild, exotic, or indigenous germplasm
has become essential to promote genetic diversity and to enhance the efficiency of plant
breeding programs (McCouch et al. 2013). Plant breeders will therefore be faced with the
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need to identify superior accessions from germplasm collections. In this study, we attempt
to provide a solution to this problem via genomic prediction (GP).

GP,which has become an increasingly popular approach in plant or animal breeding, takes
advantage of denseDNAmarkers over an entire genome to predict genotypic values and then
applies these to select superior individuals from genetic resources (Meuwissen et al. 2001).
Typically, a training set with known genotype and phenotype data is employed to construct a
GP model. The trained GP model is then used to predict genomic estimated breeding values
(GEBVs) for the individuals of a breeding population with known genotype data. A linear
regression model fitting the phenotypic values by marker effects is often implemented for
GP. However, it is challenging to estimate all the regression coefficients in such a GPmodel,
because the number of marker effects is usually much greater than the number of observed
phenotypic values (the large-p-with-small-n problem). Therefore, shrinkage methods such
as ridge regression, the least absolute shrinkage and selector operator (LASSO) (Tibshirani
1996), and elastic nets have been applied to estimate marker effects in the whole-genome
regression model. Also, there are two kinds of linear mixed effects models for GP: (i) best
linear unbiased prediction (BLUP) based on markers and (ii) BLUP based on a relationship
matrix. In a marker-based model, marker effects are treated as random effects and GEBVs
of individuals are obtained by multiplying their marker scores by these BLUP estimates.
The ridge regression BLUP (rr-BLUP) model (Meuwissen et al. 2001) adopts this approach.
In a relationship matrix-based model, genotypic values of individuals are treated directly as
random effects and estimated through a genomic relationship matrix. The genomic BLUP
(GBLUP)model (Habier et al. 2007) is in the spirit. Tempelman (2015) provided an in-depth
review and discussion of the above GP models and noted that great care should be taken in
correctly inferring hyperparameters using hierarchical Bayesian models in GP.

In the genomic era, genotyping costs have fallen dramatically, while phenotyping costs
have remained relatively constant (Akdemir and Sanchez 2019). It would therefore be advan-
tageous to sample individuals for selective phenotyping in more than one stage, because a
sequential phenotyping approach can reduce the size of the required training set. Recently,
Tanaka and Iwata (2018) proposed such an approach to discover the best genotype from
a candidate population. They developed their procedure by incorporating Bayesian opti-
mization into GP. Bayesian optimization is a powerful tool for solving black-box global
optimization problems with computationally expensive function evaluation (Jones et al.
1998). The classical Bayesian optimization problem can be formulated as follows. The goal
of the Bayesian optimization is to maximize or minimize an objective function f (x) within
a feasible space �. That is, let x∗ be the desired optimum; then,

x∗ = argmaxx∈� f (x).

Also, let y denote the response of an experiment conducted to evaluate the objective function;
then

y = f (x) + e,

where e denotes the random error. The experiment is said to be noisy if the response is
measuredwith randomerror. Typically, the evaluation function is deterministic (fixed effect),
and the feasible space is a continuous and compact region.
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Theoptimization usually begins by evaluating a small number of randomly selected points
and fitting a Gaussian process to the response. The Gaussian posterior provides an estimate
of the object function at each point in the feasible space, as well as the uncertainty of this
estimate (Letham et al. 2019). An acquisition function, such as the expected improvement
(EI), is constructed based on the posterior estimation for determining new query points
to evaluate the object function. The choice of the new query points should be a trade-off
between exploration and exploitation so that one can optimize the objective function using
as few query points as possible (Gong et al. 2019). For the classical Bayesian optimization
problem of a continuous and compact feasible region, except in a few atypical cases, the EI
has been proved to generally converge to the optimum for both noisy experiments (Vazquez
et al. 2008; Letham et al. 2019) and noiseless function evaluation (Bull 2011). Additionally,
the EI-based approach has been well developed to tackle various practical problems (Jordan
et al. 2011; Shahriari et al. 2016).

Tanaka and Iwata (2018) considered the following GBLUP model:

y = μ1n + g + e, (1)

where y denotes the vector of phenotypic values, μ the general mean, 1n the unit vector of
length n, g the vector of genotypic values, and e the vector of random errors. It is assumed
that g follows amultivariate normal distribution, denoted by g ∼ MV N (0, σ 2

g K ), where0 is
the zero vector, σ 2

g is the additive genetic variance, and K is a known genomic relationship
matrix. Also, the vector of random errors e ∼ MV N (0, σ 2

e In), where σ 2
e is the random

error variance and In is the identity matrix of order n. Moreover, g and e are assumed to
be mutually independent. The evaluation function here is the unknown genotypic value for
an individual, which is evaluated through its DNA marker scores (genotype). Interestingly,
the evaluation function of genotypic value is stochastic (random effect) and the feasible
space is a finite candidate population set in the GBLUP model, which are different from
those in the classic Bayesian optimization problem. Tanaka and Iwata (2018) proposed an
EI criterion and showed their Bayesian optimization approach to have advantage compared
with the selection method based on posterior means and with a random sampling method.
The aim of our study is to investigate potential EI-based Bayesian optimization approaches
for identifying the best genotype from a large candidate population.

The rest of this article is organized as follows. In Sect. 2, we derive some modified
versions of the EI criterion proposed by Tanaka and Iwata (2018). In Sect. 3, we present
the search process of the Bayesian optimization approach and a stopping rule for real data
analysis. We illustrate the proposed approach through analysis of two rice (Oryza sativa
L.) and one wheat (Triticum aestivum L.) genome datasets in Sect. 4. We further conduct
a detailed simulation study to compare the performance of the EI criteria in Sect. 5. Some
concluding remarks are provided in Sect. 6.

2. THE EXPECTED IMPROVEMENT CRITERIA

It is known that the genomic relationship matrix K plays an important role in building
the GBLUP model (1). We considered the case where K = MM�/p, where M is the
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standardized marker score matrix and p is the number of DNA markers. Let mi j denote
the (i j)th element of M; then mi j = (ai j − ā j )/s j , where ai j is the (i j)th element of
the original marker score matrix, and ā j and s j are, respectively, the sample mean and the
sample standard deviation of the elements in column j . We first present the distributions
of predicted phenotypic values (PPVs) and predicted genotypic values (PGVs), and then
derive several EI criteria.

2.1. DISTRIBUTIONS OF PREDICTED PHENOTYPIC AND GENOTYPIC VALUES

Let y1 and g1, respectively, denote the vectors of phenotypic and genotypic values for the
training set, both of which are of size n1. Likewise, let y2 and g2 denote the corresponding
vectors for the remaining n2 individuals not chosen in the training set (the non-phenotyped
set), where n1 + n2 = n. Therefore, the GBLUP model (1) can be partitioned as

[
y1
y2

]
=

[
μ1n1
μ1n2

]
+

[
g1
g2

]
+

[
e1
e2

]

where [
g1
g2

]
∼ MV N

(
0, σ 2

g

[
K11 K12

K21 K22

])
.

Weuse theR packageBGLR (Perez and de los Campos, G. 2014) to perform theBayesian
reproducing kernelHilbert space (RKHS)method for estimatingμ,σ 2

g andσ 2
e , and theBLUP

of g1 using the training set. More precisely, the estimation is based only on the model

y1 = μ1n1 + g1 + e1,

where
g1 ∼ MV N (0, σ 2

g K11).

The resulting estimated values are denoted by μ̂, σ̂ 2
g , σ̂

2
e , and ĝ1. We refer to Xavier et al.

(2016) for more details regarding the Bayesian RKHS method.
Under the condition that μ̂, σ̂ 2

g , σ̂
2
e , and ĝ1 are all assumed to be fixed and known values,

the distribution of PPVs for the non-phenotyped set, i.e., the distribution of y2 conditioned
by y1 = ŷ1, is given by

ỹ2|(μ̂, σ̂ 2
g , σ̂ 2

e , ĝ1) ∼ MV N (μ̂p, �̂p), (2)

where μ̂p = μ̂1n2+K21K
−1
11 ĝ1 and �̂p = �̂22−�̂21�̂

−1
11 �̂12. Here, �̂22 = σ̂ 2

g K22+σ̂ 2
e In2 ,

�̂21 = σ̂ 2
g K21, �̂11 = σ̂ 2

g K11 + σ̂ 2
e In1 , and �̂12 = σ̂ 2

g K12. Likewise, the distribution of
PGVs for the non-phenotyped set, i.e., the distribution of g2 conditioned by g1 = ĝ1, is
given by

g̃2|(σ̂ 2
g , ĝ1) ∼ MV N (μ̂g, �̂g), (3)

where μ̂g = K21K
−1
11 ĝ1 and �̂g = σ̂ 2

g (K22 − K21K
−1
11 K12). Note that g̃2 = K21K

−1
11 g̃1,

where g̃1 is the BLUP of g1. From Henderson (1977), it follows that g̃2 is the BLUP of
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g2. Obviously, g̃2 differs from ỹ2 in distribution by the term μ̂ in the mean vector and the
term σ̂ 2

e in the covariance matrix. That is, μ̂p = μ̂g and �̂p = �̂g if μ̂ = σ̂ 2
e = 0. In other

words, the PPVs are affected by the random error, but the PGVs are free of this variation.
The best genotype for a target trait is defined as the individual with the maximal or minimal
genotypic value among the candidate population. Intuitively, an EI criterion derived from
the distribution of PGVs rather than PPVs should be more efficient in identifying the desired
best genotype. A construction method for the statistical tolerance interval for a distribution
free of measurement errors like that of PGVs can be found in Lin et al. (2008).

2.2. PLUG-IN EXPECTED IMPROVEMENT CRITERIA

Tanaka and Iwata (2018) considered the EI criterion based on the distribution of PPVs
in (2). Let ŷ1 = μ̂1n1 + ĝ1, representing the vector of estimated phenotyped values for the
training set, and f̂Mp be the maximal value among ŷ1. Also, let the marginal distribution
for each individual in (2) be denoted by

ỹ2i ∼ N (μ̂pi , σ̂
2
pi ).

The improvement function for ỹ2i is defined as

Im(ỹ2i ) =
{
0 if ỹ2i < f̂Mp,

ỹ2i − f̂Mp otherwise.
(4)

Here, Im(ỹ2i ) is a random variable associated with the distribution of ỹ2i . From Jones et al.
(1998), the expected improvement function has an elegant closed form given by

E I (ỹ2i ) = (μ̂pi − f̂Mp)�(Z pi ) + σ̂piφ(Z pi ), (5)

where Z pi = (μ̂pi − f̂Mp)/σ̂pi , �(·) is the cumulative density function of the standard
normal distribution, and φ(·) is the probability density function of the standard normal
distribution. The EI in (5) was referred as a “plug-in” strategy by Picheny et al. (2013)
because f̂M P is used for a noisy experiment. We simply call it EI-PPV. Alternatively, we
consider the plug-in EI criterion based on the distribution of PGVs in (3). Likewise, we have
the EI-PGV given by

E I (g̃2i ) = (μ̂gi − f̂Mg)�(Zgi ) + σ̂giφ(Zgi ), (6)

where g̃2i ∼ N (μ̂gi , σ̂
2
gi ) (the corresponding marginal distribution in (3)) and f̂Mg is the

maximal value among ĝ1 and Zgi = (μ̂gi − f̂Mg)/σ̂gi .

2.3. FORWARD EXPECTED IMPROVEMENT CRITERIA

Clearly, both of the above EI-PPV and EI-PGV ignore the genomic correlation among the
candidate individuals. Thus, we take into account in the criterion the property that selection
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of future individuals could be associated with the current selected individual. We rewrite
the distribution of PPVs as

ỹ2 =
[
ỹ∗
ỹc

]
, μ̂p =

[
μ̂∗
μ̂∗c

]
, �̂p =

[
σ̂ 2∗ �̂p12

�̂p21 �̂p22

]
,

where ỹ∗ represents the PPV of the individual with the largest E I (ỹ2i ) from (5), i.e., the
individual with ỹ∗ is the first chosen from the non-phenotyped set. Subsequently, we search
for the next individual with the largest E I (ỹ2i ) among the remaining candidate individuals
whose PPVs follow the conditional distribution

ỹc|(ỹ∗ = μ̂∗) ∼ MV N (μ̂cp, �̂cp), (7)

where μ̂cp = μ̂∗c and �̂cp = �̂p22 − �̂p21(σ̂
2∗ )−1�̂p12. We here adjust the distribution of

ỹc for the mean value of ỹ∗. Let

ỹci ∼ N (μ̂cpi , σ̂
2
cpi ),

representing a marginal distribution for individual i in (7); then, the corresponding EI can
be derived as

E I (ỹci ) = (μ̂cpi − f̂Mp)�(Zcpi ) + σ̂cpiφ(Zcpi ), (8)

where Zcpi = (μ̂cpi − f̂Mp)/σ̂cpi . Similarly, we have the corresponding EI for the distri-
bution of the PGVs as

E I (g̃ci ) = (μ̂cgi − f̂Mg)�(Zcgi ) + σ̂cgiφ(Zcgi ), (9)

where Zcgi = (μ̂cgi − f̂Mg)/σ̂cgi . We abbreviate the EI in (8) as EI-PPV-fwd, and the
EI in (9) as EI-PGV-fwd. Note that “fwd” here means forward selection. For a specific
candidate individual i , μ̂cpi = μ̂pi and σ̂cpi ≤ σ̂pi . That is to say, EI-PPV-fwd has a smaller
prediction standard error than EI-PPV for a candidate individual. Similarly, the prediction
standard error in EI-PGV-fwd is smaller than that in EI-PGV.

2.4. AUGMENTED EXPECTED IMPROVEMENT CRITERIA

Huang et al. (2006) proposed an augmented EI criterion to handle noisy experiments. We
adopt such an augmented version for the above EI-PGV and EI-PGV-fwd. The augmented
EI-PGV is modified from (6) and is given by

Aug.E I (g̃2i ) = [(μ̂gi − f̂ ∗
Mg)�(Z∗

gi ) + σ̂giφ(Z∗
gi )]

⎛
⎝1 − σ̂e√

σ̂ 2
gi + σ̂ 2

e

⎞
⎠ , (10)
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and the augmented EI-PGV-fwd is modified from (9) and is given by

Aug.E I (g̃ci ) = [(μ̂cgi − f̂ ∗
Mg)�(Z∗

cgi ) + σ̂cgiφ(Z∗
cgi )]

⎛
⎝1 − σ̂e√

σ̂ 2
cgi + σ̂ 2

e

⎞
⎠ , (11)

where f̂ ∗
Mg denotes the current “effective best solution,” Z∗

gi = (μ̂gi − f̂ ∗
Mg)/σ̂gi , and

Z∗
cgi = (μ̂cgi − f̂ ∗

Mg)/σ̂cgi . The current effective best solution f̂ ∗
Mg is obtained from ĝ1 and

maximizes the utility function

u(ĝ1i ) = ĝ1i − γ σ̂1gi ,

where γ is a constant that reflects the degree of risk aversion. That is,

f̂ ∗
Mg = argmaxĝ1i∈ ĝ1(ĝ1i − γ σ̂1gi ).

We specify γ = 1, which implies that 1 unit of ĝ1i is traded for 1 unit of σ̂1gi . Following
Huang et al. (2006), f̂ ∗

Mg is used to reduce prediction uncertainty, and the heuristicmultiplier
of the EI accounts for the diminishing return of additional replicates as the prediction
becomes more accurate. The EIs in (10) and (11) are abbreviated as aug-EI-PGV and aug-
EI-PGV-fwd, respectively.

The above EI criteria are all developed for the situation in which the best genotype is
assumed to give the maximal genotypic value for some target trait such as grain yield of a
crop. The corresponding EI criteria for the situation in which the best genotype is desired
to give the minimal genotypic value, such as plant height or flowering time of a crop, are
provided in the Appendix.

3. SEARCH PROCESS

For a given candidate population in which all the individuals have been genotyped but
not phenotyped, the iterative search process to identify the best genotype from the candidate
population can be described as follows.

Step 0: Randomly choose n0 individuals from the candidate population to be phenotyped
for a target trait. The chosen individuals serve as the starting training set, denoted
by S0. Initialize ntr ← n0 and Str ← S0, where Str denotes the current training
set and ntr is its sample size.

Step 1: Perform the Bayesian RKHS method using the phenotype and genotype data of
Str to construct the GBLUP model, and obtain the estimated values of μ̂, σ̂ 2

g , σ̂
2
e ,

and ĝ1.

Step 2: Select nsel individuals from the non-phenotyped set using each of the above EI
criteria.
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Step 3: If the average of the realized EI values among the nsel selected individuals is less
than a stopping tolerance δ, then STOP the search and GO TO Step 4. Otherwise,
phenotype the selected nsel individuals, denoted by Ssel , and add them to the
current training set. That is, the union of Str and Ssel forms the new training set,
expressed as Str ← Str ∪ Ssel . Similarly, ntr ← ntr + nsel . GO TO Step 1.

Step 4: Identify the individual with the maximal (or minimal) estimated genotypic value
among the current selected individuals as the best genotype.

Since the candidate population is a finite set, it is easy to argue that all the EI criteria
converge to 0. For example, from the definition of the improvement function in (4), the EI
value becomes equal to 0 if all ỹ2i < f̂Mp, and this surely happens for a finite candidate
set. In other words, f̂Mp definitely can be found after all candidate individuals have been
evaluated.

4. ILLUSTRATIVE EXAMPLES

We use the following three genome datasets to illustrate the search process.

EXAMPLE 1: 44K RICE GENOME DATASET

This dataset was presented in Zhao et al. (2011) and contains 413 accessions and 44,100
single nucleotide polymorphism (SNP) markers. This dataset consists of five subpopula-
tions and one admixed group. SNPs with missing rate > 0.05 and minor allele frequency
< 0.05 were removed from the dataset, with the result that 36,901 out of the 44,100 SNPs
were retained. The SNP genotype at each locus was coded as −1, 0, or 1, where 1 indi-
cates the homogeneous genotype of the major allele, −1 the homogeneous genotype of the
minor allele, and 0 the heterogeneous genotype. After SNP coding, any missing locus was
taken as 1. Only 300 out of the 413 accessions with no missing phenotypic values on the
flowering time in all three locations—Arkansas (FT-Ark), Faridpur (FT-Far), and Aberdeen
(FT-Abe)—were used for the demonstration. We fixed the stopping tolerance as δ = 0.1 for
the above three target traits.

Example 2: Tropical Rice Genome Dataset

This dataset was presented in Spindle et al. (2015) and contains 73,147 SNPmarkers and
363 elite breeding lines belonging to indica or indica-admixed group. Phenotypic observa-
tions included 4 years (2009–2012, with two seasons (dry and wet) per year) of data on
grain yield (GY), flowering time (FT), and plant height (PH), although PH data were not
available for the wet season of 2009. Phenotypic values of 35 out of the 363 individuals
were missing; therefore, adjusted means of only 328 individuals were used for this example.
Additionally, only 10,772 out of the 73,147 SNPs were used in this study. One SNP marker
was selected per 0.1cM interval over each chromosome, because the chosen subset of the
full marker set has been shown to be sufficient for genomic selection in this collection of
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rice germplasm (Spindle et al. 2015). The SNP coding was the same as in Example 1. We
set the stopping tolerance as δ = 0.01 for this dataset.

Example 3: Wheat Genome Dataset

This dataset was used in Crossa et al. (2010) and contains 599 historical wheat lines from
the International Maize and Wheat Improvement Center (CIMMYT ) and 1279 diversity
arrays technology (DArT) markers. The wheat dataset is from CIMMYT’s Global Wheat
Program, which conducted numerous international trials across a variety of producing envi-
ronments. These environments were grouped into four mega-environments (E1 to E4) com-
prising four main agro-climatic regions. The phenotypic value was the average grain yield
of the 599 wheat lines evaluated in each of these four mega-environments. The marker score
for each DArT marker was coded as 1 for presence and 0 for absence. We set the stopping
tolerance as δ = 0.001 for all the target traits E1 to E4.

We set n0 = 10 and nsel = 20 in the search process for all three of the above datasets.
The sample size of the training set when the search was stopped and the identified best
genotype according to each of the EI criteria are displayed in Table 1, from which it can be
seen that most of the EI criteria found a common best genotype for a specific target trait.
However, the final sample sizes of the training set may differ from different EI criteria,
and even from different traits within the same dataset. Certainly, the specification of the
stopping tolerance and the convergence rate of the EI criteria can have a significant impact
on the final sample size. The convergence process of the EI criteria for the three datasets
is displayed in Figures S1 to S3 of the Supplementary Materials. The figures reveal that
those EI criteria considering the random error variance, EI-PPV, EI-PPV-fwd, aug-EI-PGV,
and aug-EI-PGV-fwd, have relatively quick convergence rates and smooth curves compared
with EI-PGV, and EI-PGV-fwd, both of which don’t take σ̂ 2

e into account. In particular, the
convergence process of aug-EI-PGV appears to be the fastest and stablest for most of the
cases. An R code for the analysis of the tropical rice dataset by the aug-EI-PGV criterion is
provided in the Supplementary Materials.

5. SIMULATION STUDY

We further conducted a simulation study to compare the EI criteria using the above
three datasets as templates. The genomic relationship matrix K was first calculated from all
available genotype data for each dataset, and then the GBLUP model (1) was employed to
generate the simulated datasets. Genotype data of 373, 328, and 599 individuals for the 44k
rice, tropical rice, and wheat datasets, respectively, were used in this simulation study. The
procedure of the simulation study can be described as follows.

Step 1: Generate the vector of genotypic values g from MV N (0, σ 2
g K ), where σ 2

g is
set to be 25. The simulated g is treated as the vector of true genotypic values,
and the individual with the largest genotypic value is assumed to be the best
genotype.
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Table 1. Sample sizes of the required training sets and the identified best genotypes (in parentheses) for the three
datasets

EI criteria†
Dataset Trait PPV PGV PPV-fwd PGV-fwd aPGV aPGV-fwd

44k FT-Ark 70 70 110 110 70 70
rice (#192) (#192) (#164) (#192) (#164) (#164)

FT-Far 70 50 70 70 50 50
(#161) (#226) (#226) (#226) (#161) (#161)

FT-Abe 110 270 170 290 110 150
(#186) (#186) (#186) (#186) (#161) (#161)

Tropical GY 328∗ 250 328∗ 310 230 310
rice (#94) (#94) (#94) (#94) (#94) (#94)

FT 210 150 150 70 250 70
(#92) (#92) (#92) (#96) (#92) (#11)

PH 110 70 50 90 50 50
(#261) (#197) (#261) (#136) (#197) (#136)

Wheat E1 90 90 110 110 90 110
(#367) (#367) (#367) (#222) (#367) (#278)

E2 130 150 310 190 110 130
(#463) (#463) (#463) (#559) (#463) (#463)

E3 110 130 150 210 110 110
(#594) (#478) (#594) (#594) (#594) (#594)

E4 70 110 170 170 70 110
(#537) (#537) (#549) (#564) (#537) (#549)

† PPV denotes EI-PPV; PGV denotes EI-PGV; PPV-fwd denotes EI-PPV-fwd; PGV-fwd denotes EI-PGV-fwd;
aPGV denotes aug-EI-PGV; aPGV-fwd denotes aug-EI-PGV-fwd.

∗ indicates the case in which all candidate individuals have been evaluated

Step 2: Generate the vector of random errors e from MV N (0, σ 2
e In), where σ 2

e =
σ 2
g (1 − h2)/h2. Here, h2 represents the trait heritability fixed at 0.2, 0.5, and

0.8 for low, intermediate, and high heritability, respectively.

Step 3: Repeat the above two steps 5,000 times to generate 5,000 simulated datasets of
phenotypic values for each of the fixed values of h2. That is, y = μ1+ g + e,
where μ is set to 100.

Step 4: Conduct steps 1 to 3 of the search process presented inSect. 3 for each simulated
dataset. Instead of the rule for stopping tolerance that was used in the real data
analysis, we stop the search once the best genotype has been identified from a
simulated dataset, and then record the number of the individuals that have been
selected at this point. We set n0 = 10 and nsel = 10, 20, 40 for this simulation
study.

The sample size of the training set required to discover the best genotype for each EI crite-
rion obtained from Step 4 was used as a measure of the performance for the EI criterion. The
mean and the standard deviation over the training set sizes from the 5,000 simulated datasets
are reported in Table 2. As expected, the performance generally improves with increasing
heritability h2 and with decreasing size nsel of the training set selected at each batch. Also,
the EIs based on PGVs slightly outperform their counterparts based on PPVs. Interestingly,
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Table 2. Mean and standard deviation (in parentheses) of the required training set sizes obtained from the 5,000
simulated datasets for the EI criteria

EI criteria†

Dataset nsel h2 PPV PGV PPV-fwd PGV-fwd aPGV aPGV-fwd

44k 10 0.2 80.03 76.02 97.63 94.95 76.19 96.60
rice (63.12) (58.91) (70.21) (68.98) (59.37) (70.43)

0.5 68.56 63.90 84.06 82.55 62.79 81.25
(53.45) (47.65) (61.83) (59.83) (46.72) (60.15)

0.8 59.42 55.60 73.28 70.41 54.26 69.69
(44.14) (40.46) (52.07) (49.72) (39.11) (50.26)

20 0.2 83.13 79.53 106.14 101.73 79.22 103.35
(63.29) (59.56) (73.38) (70.11) (60.54) (72.40)

0.5 72.58 67.94 91.11 89.55 66.24 88.35
(54.49) (48.58) (64.28) (62.46) (47.86) (61.73)

0.8 63.89 60.39 81.11 78.91 58.24 78.23
(45.72) (42.51) (56.05) (53.92) (40.88) (53.99)

40 0.2 90.31 85.32 112.48 109.09 83.79 110.38
(65.47) (62.14) (74.58) (72.53) (62.28) (73.83)

0.5 79.04 74.21 100.26 97.70 71.41 97.55
(56.94) (52.35) (66.65) (64.40) (50.19) (64.09)

0.8 70.55 66.53 90.71 88.06 64.53 87.87
(49.24) (46.04) (59.86) (57.35) (44.38) (57.05)

Tropical 10 0.2 36.81 36.24 44.77 44.10 35.93 43.69
rice (43.66) (42.47) (50.99) (49.43) (41.78) (48.88)

0.5 34.49 34.15 42.77 42.68 34.01 42.18
(36.71) (35.83) (45.00) (44.83) (35.63) (43.81)

0.8 31.70 31.39 39.02 38.92 31.37 38.76
(31.88) (31.01) (39.75) (38.98) (30.88) (38.92)

20 0.2 37.05 36.31 46.52 45.54 36.22 45.15
(44.04) (42.31) (53.35) (51.42) (42.23) (50.89)

0.5 35.03 34.69 44.32 44.48 34.69 44.21
(37.20) (36.67) (47.48) (47.45) (36.80) (47.44)

0.8 32.34 32.04 40.46 40.39 32.04 40.05
(32.82) (32.05) (41.36) (41.19) (32.04) (40.97)

40 0.2 37.56 36.72 46.50 46.23 36.22 45.59
(44.70) (42.58) (53.37) (52.30) (41.58) (51.97)

0.5 36.16 35.70 45.47 45.73 35.72 45.19
(39.26) (38.26) (48.53) (49.04) (38.30) (48.81)

0.8 33.56 33.32 41.69 41.85 33.21 41.44
(34.56) (34.12) (43.17) (43.35) (33.71) (43.46)

Wheat 10 0.2 105.12 103.98 132.40 131.26 106.17 134.34
(83.19) (84.03) (100.38) (101.24) (86.67) (105.11)

0.5 78.54 76.23 99.02 97.30 77.83 99.77
(59.93) (58.44) (75.69) (75.74) (60.40) (76.64)

0.8 67.99 65.86 84.63 81.63 66.34 84.05
(49.06) (47.49) (61.52) (60.13) (47.59) (62.12)

20 0.2 108.45 107.39 143.22 142.20 107.11 144.76
(83.83) (84.52) (107.05) (106.97) (85.75) (109.48)

0.5 83.64 80.38 110.32 108.01 80.76 108.47
(61.99) (59.92) (81.07) (80.21) (59.80) (80.97)

0.8 72.50 70.33 94.61 92.09 70.63 92.64
(50.81) (49.01) (67.41) (65.62) (49.09) (65.56)

40 0.2 114.72 112.65 155.29 153.54 112.23 153.44
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Table 2. (Continued )

EI criteria†
Dataset nsel h2 PPV PGV PPV-fwd PGV-fwd aPGV aPGV-fwd

(86.83) (85.23) (111.78) (111.44) (87.12) (112.23)
0.5 90.07 86.96 122.92 121.13 87.08 120.33

(64.21) (61.57) (85.71) (85.56) (62.33) (85.24)
0.8 79.69 77.52 105.59 105.14 77.42 105.47

(54.12) (52.62) (72.10) (71.81) (52.58) (71.00)

† PPV denotes EI-PPV; PGV denotes EI-PGV; PPV-fwd denotes EI-PPV-fwd; PGV-fwd denotes EI-PGV-fwd;
aPGV denotes aug-EI-PGV; aPGV-fwd denotes aug-EI-PGV-fwd

Table 3. Proportions over the 5,000 simulation repetitions that the required training set size of one EI criterion is
smaller than another under the setting of n0 = 10 and nsel = 10

Pairwise comparisons†

Dataset h2 n(PPV ) < n(PGV ) n(PPV ) < n(aPGV ) n(PGV ) < n(aPGV )

44k 0.2 0.397 0.410 0.443
rice 0.5 0.377 0.392 0.435

0.8 0.356 0.384 0.426
Tropical 0.2 0.190 0.204 0.211
rice 0.5 0.201 0.212 0.215

0.8 0.195 0.212 0.222
Wheat 0.2 0.408 0.427 0.473

0.5 0.383 0.418 0.465
0.8 0.376 0.415 0.557

† n(PPV ), n(PGV ), and n(aPGV ) denote the numbers of individuals required to identify the true best genotype
using EI-PPV, EI-PGV, and aug-EI-PGV, respectively

the forward EIs of EI-PPV-fwd, EI-PGV-fwd, and aug-EI-PGV-fwd have relatively unsatis-
factory performance, which could be because their smaller prediction variances reduce the
exploration capacity and hence increase the size of the required training set. The aug-EI-
PGV performs quite similarly to EI-PGV, probably because the prediction standard errors
are almost the same for all candidate individuals (the diagonal elements of the genomic
relationship matrix are all equal to or close to 1). Thus, the current effective best solution
f̂ ∗
Mg and the heuristic multiplier in the aug-EI-PGV have little impact on the identification

of the best genotype. We thus made a more detailed comparison between EI-PPV, EI-PGV,
and aug-EI-PGV. Let n(PPV ), n(PGV ), and n(aPGV ) denote the numbers of individuals
required to identify the true best genotype from one repetition of simulation using EI-PPV,
EI-PGV, and aug-EI-PGV, respectively. Then, the proportions over the 5,000 repetitions that
n(PPV ) < n(PGV ), n(PPV ) < n(aPGV ), and n(PGV ) < n(aPGV ) under the setting
of n0 = 10 and nsel = 10 are displayed in Table 3. From the table, both EI-PGV and aug-
EI-PGV have better performance than EI-PPV because they often require less individuals to
identify the true best genotype. Moreover, aug-EI-PGV slightly outperforms EI-PGV based
on both the 44k rice and wheat templates, but shows a significant advantage over EI-PGV
based on the tropical rice template. The corresponding scattered plots, displayed in Figures
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Table 4. The resulting stopping tolerance (δ∗), the sample size average required to meet the standard set by the
stopping tolerance (n̄tr (δ∗)), and the sample size average required to identify the true best genotype
(n̄tr ) using aug-EI-PGV under the setting of n0 = 10 and nsel = 10

h2

Dataset 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

44k δ∗ 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

rice n̄tr (δ∗) 163.3 137.2 118.3 108.7 96.1 90.1 84.5 78.2 73.4
n̄tr 82.2 76.5 68.4 66.1 61.3 60.2 57.8 54.8 52.6

Tropical δ∗ 10−2 10−2 10−2 10−2 10−2 10−2 10−2 10−2 10−2

rice n̄tr (δ∗) 87.8 68.1 57.5 54.7 52.4 49.2 48.0 47.4 45.7
n̄tr 37.5 35.7 35.5 34.3 33.6 33.0 32.0 31.7 31.1

Wheat δ∗ 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3 10−3

n̄tr (δ∗) 147.2 125.8 106.3 97.3 90.6 86.7 78.8 74.7 69.7
n̄tr 125.3 105.3 91.7 84.7 78.3 75.0 69.5 65.9 61.3

†

S4 to S6 of the Supplementary Materials, reflect the consistent results. In consequence,
aug-EI-PGV can be recommended for practical use.

In real data analysis, we propose a feasible stopping rule for the search process according
to the fact that the empirical EI values are expected to converge to 0 as the number of selected
individuals increases. However, the specification of stopping tolerance δ can significantly
affect the final sample size of the required training set. It is therefore desirable to provide
some tool to determine the stopping tolerance before performing the real data analysis. For a
dataset with known genotype data, following the above simulation steps, we could similarly
obtain the smallest sample size of the training set required to meet the standard set by a fixed
δ. That is, the empirical EI value with the training set size is less than the fixed δ. Let n̄tr (δ)
and n̄tr denote the sample size averages over the 5,000 simulation repetitions of meeting
the standard set by the fixed δ and of identifying the true best genotype, respectively. Then,
the largest stopping tolerance δ∗ among those under consideration such that n̄tr (δ∗) ≥ n̄tr
is recommended for the dataset. Let δ be evaluated over 10−k , for k = 1, 2, . . . , 6, and the
trait heritability h2 be set from 0.1 to 0.9 by increment of 0.1, then the resulting δ∗ based
on the three templates using aug-EI-PGV under the setting of n0 = 10 and nsel = 10 is
displayed in Table 4. From Table 4, the stopping tolerance δ can be pre-specified as 10−3,
10−2, and 10−3 for the datasets of 44k rice, tropical rice, and wheat, respectively. An R code
is provided in the Supplementary Materials for users to determine the stopping tolerance
for their own datasets.

As mentioned earlier, the genomic relationship matrix K plays an important role in
construction of the GBLUP model, and might also affect the result of searching the best
candidate in the current study. Again, following the above simulation steps, we could com-
pare different relationship matrices in identifying the true best genotype for each simulated
dataset generated according to the original relationship matrix described in Sect. 2. For the
sake of clarity, let this original relationship matrix be denoted as K0. Another three possi-
ble formulas for calculating the genomic correlation discussed in Rincent et al. (2012) are
summarized in Eq. (A1)–(A3) of the Appendix. Let the relationship matrices corresponding
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Table 5. Mean of the training set sizes required to discover the true best genotype from the 5,000 simulated
datasets using the different relationship matrices by aug-EI-PGV under the setting of n0 = 10 and
nsel = 10

Relationship matrices†
Dataset h2 M0 M1 M2 M3

44k 0.2 76.2 79.4 79.8 80.2
rice 0.5 62.8 67.9 67.2 68.8

0.8 54.3 58.8 58.9 59.8
Tropical 0.2 35.9 54.0 54.2 52.5
rice 0.5 34.0 50.2 50.0 48.8

0.8 31.4 46.9 47.3 45.9
Wheat 0.2 106.2 115.4 114.4 114.9

0.5 77.8 84.9 85.6 85.0
0.8 66.3 73.2 73.2 72.8

† M0 denotes the original relationship matrix; and M1, M2, and M3 are the relationship matrices corresponding
to Eqs. (A1), (A2), and (A3), respectively

to Eq. (A1)–(A3) be denoted by K1, K2, and K3, respectively. The mean of the training set
sizes required to discover the true best genotype from the 5,000 simulated datasets using the
different relationship matrices by aug-EI-PGV under the setting of n0 = 10 and nsel = 10
is displayed in Table 5. From the table, it is interesting to find that K1, K2, and K3 perform
almost equally well in identifying the true best genotype. Notice that this study somewhat
favors the original relationship matrix K0 because the datasets were simulated based on it.

6. CONCLUDING REMARKS

TheEI-basedBayesian optimization approach allows a trade-off between exploration and
exploitation. From the definition of the improvement function, when there are genotypes
better than the best identified at the current stage, the EI-based approach tends to select the
genotypes with the large predicted means (exploitation). On the other hand, when there is no
genotype better than the best, it tends to select the genotypes with large estimated standard
deviations (exploration). The exploration here can enhance the genomic diversity of the
training set and thereby increase the chance of discovering the true best genotype in the
next search. The problem of interest in this study is actually a batch Bayesian optimization
problem, i.e., one in which multiple query points are to be selected simultaneously. Some
advanced approaches to such batch Bayesian optimization discussed in Gong et al. (2019)
may be adapted for our current study.

To the best of our knowledge, there are no reports in the literature of sequential phe-
notyping experiments for GP studies in plant breeding. This could be due to the practical
constraint that plant breeders are usually able to collect phenotypic data such as grain yield
only after a whole growing season of a crop. This can make sequential phenotyping experi-
ment unfeasible if the growing season is too long. From the simulation results, even though
a scenario with a small batch size (nsel = 10) at a specific heritability can be more efficient
than a large one (nsel = 40), the difference is not remarkable in practice. This indicates
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that breeders can trade a little efficiency to phenotype a large batch of individuals in one
stage instead of small batches in several stages. It is known that phenotype is affected by
the genotype (G), environment (E), and G×E interaction. In reality, environment can have
a significant impact on the performance of individuals selected at each batch. Thus, the
proposed multi-stage strategy may need more extensive evaluation to make sure the method
works.

Clearly, the application of Bayesian optimization in this study is not to build training and
testing sets for GP, but only to identify the best candidate that may be used to serve as a
commercial cultivar or to form the parents for the next breeding generation. The EI-based
approach could be particularly useful when the phenotyping process is expensive or not
very time-consuming, and in addition, the experimenter is able to phenotype individuals
sequentially in the order that our proposed approach suggests. For example, for a stress-
resistance breeding program, plant breeders need to identify superior accessions with the
relevant resistance genes from a germplasm collection. They can then transfer the genes of
the identified accessions to a cultivar, thereby enabling it to perform to a desired degree in
spite of being subjected to stress (Acquaah 2007). Suppose that the phenotyping cost for a
large number of candidate accessions is not affordable to breeders. In such a situation, our
proposed sequential phenotyping strategy is a potentially useful choice. Recently, Wu et al.
(2019) proposed a GP procedure to assess pumpkin hybrid performance and then identified
potential F1 hybrids with large fruit weight. There were 10,011 possible F1 hybrids that
needed to be evaluated. In this case, our proposed sequential phenotyping strategy might
be recommended to the breeder if they are unable to phenotype a large number of the F1
hybrids during a growing season.

Even though the vector of phenotypic values is assumed to follow a multivariate normal
distribution in the GBLUP model (1), it seems not possible to assess the multivariate nor-
mality assumption based on such data with no replication on the phenotypic value vector.
The multivariate normality assumption is actually imposed on the GBLUP model due to
the genomic correlation between individuals, i.e., it is assumed that g ∼ MV N (0, σ 2

g K ).
This single-trait GBLUP model is in essence a derivation from the univariate Gaussian
regression model (Tempelman 2015), so it might be sufficient to make a univariate normal-
ity assessment using the phenotypic values of a single trait. Several graphic approaches or
statistical tests can be applied for such normality assumption assessment (Garson 2012).
For the proposed Bayesian optimization approach, the search process begins with a training
set randomly selected from the candidate population. It would be beneficial to construct a
better starting training set from some optimization algorithms (Ou and Liao 2019; Heslot
and Feoktistov 2020). Also, from the results of the simulation study, it is reasonable to
conclude that the selection efficiency generally improves with increasing trait heritability.
The impact of other factors, such as trait genetic architecture, marker density, and linkage
disequilibrium, needs further study. Another interesting issue for future study is the inves-
tigation of Bayesian optimization approaches with the aim of discovering a set of superior
genotypes.
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APPENDIX

THE EI CRITERIA WITH THE MINIMAL GENOTYPIC VALUE

The EI criteria for the situation in which the best genotype is assumed to give the minimal
genotypic value are summarized below.

Plug-in Expected Improvement Criteria

EI-PPV: E I (ỹ2i ) = ( f̂mp − μ̂pi )�(Z pi ) + σ̂piφ(Z pi ),

where Z pi = ( f̂mp − μ̂pi )/σ̂pi and f̂mp is the minimal value of ŷ1;

EI-PGV: E I (g̃2i ) = ( f̂mg − μ̂gi )�(Zgi ) + σ̂giφ(Zgi ),

where Zgi = ( f̂mg − μ̂gi )/σ̂gi and f̂mg is the minimal value of ĝ1.

Forward Expected Improvement Criteria

EI-PPV-fwd: E I (ỹci ) = ( f̂mp − μ̂cpi )�(Zcpi ) + σ̂cpiφ(Zcpi ),

where Zcpi = ( f̂mp − μ̂cpi )/σ̂cpi ;

EI-PGV-fwd: E I (g̃ci ) = ( f̂mg − μ̂cgi )�(Zcgi ) + σ̂cgiφ(Zcgi ),

where Zgi = ( f̂mg − μ̂cgi )/σ̂cgi .

http://creativecommons.org/licenses/by/4.0/
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Augmented Expected Improvement Criteria

Aug-EI-PGV: Aug.E I (g̃2i )

= [( f̂ ∗
mg − μ̂gi )�(Z∗

gi ) + σ̂giφ(Z∗
gi )]

⎛
⎝1 − σ̂e√

σ̂ 2
gi + σ̂ 2

e

⎞
⎠ ,

Aug-EI-PGV-fwd: Aug.E I (g̃ci )

= [( f̂ ∗
mg − μ̂cgi )�(Z∗

cgi ) + σ̂cgiφ(Z∗
cgi )]

⎛
⎝1 − σ̂e√

σ̂ 2
cgi + σ̂ 2

e

⎞
⎠ ,

where Z∗
gi = ( f̂ ∗

mg − μ̂gi )/σ̂gi , Z∗
cgi = ( f̂ ∗

mg − μ̂cgi )/σ̂cgi , and f̂ ∗
mg is obtained from ĝ1 and

minimizes the utility function, i.e.,

f̂ ∗
mg = argminĝ1i∈ ĝ1(ĝ1i + γ σ̂1gi ),

where γ = 1.

THE FORMULAS FOR CALCULATING THE GENOMIC CORRELATION

Let (a1, a2, · · · , ap) and (b1, b2, · · · , bp) be the marker score vectors for individuals A
and B, respectively. Then, the genomic correlation between these two individuals can be
calculated by the following three formulas.

corr(A,B) =
∑p

i=1 (aibi + (1 − ai )(1 − bi ))

p
, (A1)

where the marker score is coded as 0, 0.5, or 1 for the genotype of M1M1, M1M2, or M2M2.
Here, M1M1 and M2M2 denote the two homogenous genotypes, and M1M2 denotes the
heterogenous genotype.

corr(A,B) =
∑p

i=1 (1 − 0.5|ai − bi |)
p

, (A2)

where the marker score is coded as 0, 1, or 2 for the genotype of M1M1, M1M2, or M2M2.

corr(A,B) = 1

p

p∑
i=1

(ai − qi )(bi − qi )

qi (1 − qi )
, (A3)

where the marker score is coded as 0, 0.5, or 1 for the genotype of M1M1, M1M2, or M2M2,
and qi is the proportion among the n individuals that the marker score is coded as 1 at marker
i , for i = 1, 2, . . . , p.
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