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Multi-level Block Designs for Comparative
Experiments

Rodney N. Edmondson

Complete replicate block designs are fully efficient for treatment effects and are the
designs of choice for many agricultural field experiments. For experiments with a large
number of treatments, however, they may not provide good control of variability over
the whole experimental area. Nested incomplete block designs with a single level of
nesting can then improve ‘within-block’ homogeneity for moderate sized experiments.
For very large designs, however, a single level of nesting may not be adequate and
this paper discusses multi-level nesting with hierarchies of nested blocks. Multi-level
nested block designs provide a range of block sizes which can improve ‘within-block’
homogeneity over a range of scales of measurement. We discuss design and analysis of
multi-level block designs for hierarchies of nested blocks including designs with crossed
block factors. We describe an R language package for multi-level block design and we
exemplify the design and analysis of multi-level block designs by a simulation study of
block designs for cereal variety trials in the UK. Finally, we re-analyse a single large
row-and-column field trial for 272 spring barley varieties in 16 rows and 34 columns
assuming an additional set of multi-level nested column blocks superimposed on the
existing design. For each example, a multi-level mixed blocks analysis is compared with
a spatial analysis based on hierarchical generalized additive (HGAM)models.Wediscuss
the combined analysis of random blocks and HGAM smoothers in the same model.

KeyWords: Block designs;Mixedmodels; GAMmodels; HGAMmodels; Hierarchical
nesting; Nested blocks; Row-and-column blocks; D-optimality; Trend analysis.

1. INTRODUCTION

Comparative experiments in agriculture often involve the estimation of treatment effects
against a background of high plot variability. Effective control of plot variability is essential
for good treatment estimation and the most common method of control is the randomized
complete blocks design. Randomized complete blocks can be effective against a range of
nuisance effects such as patchy fertility, row-and-column effects or even the residual effects
of previous treatments. Randomized complete blocks, however, contain every treatment
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in every block and may be too large to give good control of variability for experiments
with many treatments. It is common practice, therefore, to subdivide large replicate blocks
into incomplete blocks for improved intra-block homogeneity, Bailey (1999, 2008), Dean
et al. (2015). Sometimes agricultural field trials have crossed blocks and then there are
many additional options for nesting and crossing of blocks within the same design, see, for
example, Piepho et al. (2015).

Complete replicate blocks can be chosen to account for known sources of non-treatment
variability such as location or management effects but the sources of variability within large
complete replicate blocks are likely to be unknown and may occur over a range of scales
of measurement. In that situation, a single size of nested blocks may not capture all the
important sources of variability and then multi-level nesting can be used to capture patchy
variability over a range of scales of measurement. Incomplete blocks confound treatment
information between blocks and an efficient analysis of treatment effects will require a
suitable model for the block analysis. One commonly used method is the mixed model
which assumes a mixture of fixed treatment effects and random block effects, see Pinheiro
and Bates (2000) and Piepho et al. (2003). Mixed models are of proven value for field trials
but other methods such as spatial trendmodels for spatially correlated plots are also feasible;
seeWilkinson et al. (1983), Gilmour et al. (1997), Cullis et al. (2006) andRodriguez-Alvarez
et al. (2016, 2018). Spatial models are commonly fitted by GAMmodels, see Wood (2017),
or HGAM models, see Pedersen et al. (2019).

This paper examines multi-level block designs for block and spatial effects in field exper-
iments. We first make a simulation study of 3 replicates of 48 varieties in complete random-
ized blocks with four levels of nesting using simulation data based on a spatial correlation
model from a study of 244 UK cereal variety trials by Patterson and Hunter (1983). We
then generalize the model for a 3 × 48 row-and-column design with 5 levels of nesting for
columns. Finally, we examine real data from a large 16× 34 row-and-column spring barley
variety trial (Durban et al. 2003). The original analysis of that trial assumed a row-and-
column design for 16 rows and 34 columns and we examine the potential improvement that
could have been achieved if a design with a hierarchy of nested column blocks had been
used instead. All the examples are fitted by both a mixed model analysis and an HGAM
smoothing model. HGAM’s can be expected to perform well for spatial models hence the
HGAM models provide useful standard reference models for the simulation examples. For
the spring barley variety trial, the underlying data distribution is unknown but comparison
by two independent methods of analysis provides a useful check on the consistency, or
otherwise, of the two analyses.

The example designs are built by a custom R (R Core Team 2020) design package,
blocksdesign by Edmondson (2020). Some authors have developed block design algorithms
based on an assumed known distribution for random block effects, Goos and Vandebroek
(2001), Goos (2002), Goos and Donev (2006) and Shah and Sinha (2012) but such meth-
ods necessarily make strong assumptions about the distribution of block effects. As block
variability will vary from field to field and year to year due to a range of factors such as
weather, field effects and crop interaction effects, we prefer to assume a fixed effects blocks
model at the design stage. The blocksdesign algorithm finds fixed block effects designs but
we believe that fixed effects designs are robust against a range of alternative methods of
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analysis so the assumption of fixed block effects at the design stage does not preclude the
choice of an alternative model at the analysis stage. See Gilmour and Trinca (2006) Section
5.1.1. for further discussion of fixed versus random effects block models.

2. MULTI-LEVEL BLOCK DESIGNS

In general, analysis should be based only on the block structures that were included at the
design stage of an experiment and, in this section, we discuss methods for the construction
of such designs.

2.1. MODEL

Let t be a vector of fixed treatment effects for a set of v treatments and let bi , i = 1...u be
vectors of fixed block effects for u sets of blocks with ki , i = 1...u block levels, respectively.
Let T be a n × v treatment indicator design matrix and let Bi, i = 1...u be a set of n × ki
block indicator design matrices. Assuming y is a vector of observations and e is a vector of
model residuals, a multi-stratum blocks model for an experiment with n observations and
u sets of block factors can be written:

y = Tt + B1b1 + · · · + Bubu + e (1)

2.2. OPTIMIZATION

Let T f be a treatment design factor allocating treatments to plots, let B f i , i = 1...u be a
set of block design factors allocating plots to blocks and letDf = (

B f 1, · · · ,B f u
)
be a data

frame for the block factors in order of fitting. Then T f can be optimised by the blocksdesign
function:

optimised
(
T f

) = design
(
T f ,D f

)
$Design$treatments (2)

The blocksdesign algorithm conditionally swaps pairs of treatments between blocks for each
set of blocks Bi, i = 1...u, taken in order of fitting until no further improvement is possible.
Conditional swapping means that the treatment swaps for any particular set of blocks are
restricted within the levels of all previously optimized sets, which means that the blocks of
each successive set must be nested within or crossed with the blocks of all previous sets. In
particular, the algorithm cannot work if successive blocks are groupings of previous blocks
in the sequence, which means that the algorithm cannot be used for agglomerating smaller
blocks into larger blocks.

For crossed blocks factors, the relative importance of the various factorial block interac-
tion effects should also be considered and the design algorithm can differentially weight the
importance of 2-factor block interaction effects relative to block main effects. The relative
importance of the 2-factor interactions in a crossedmulti-factor block design decreases from
full importance to zero importance as the weighting decreases from 1 to zero. Higher-order
interactions, if any, are ignored. The most appropriate choice of weighting can be found
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by comparing the relative efficiency of main effects and 2-factor interaction effects, see
help(design) for details with further details in: vignette(’design_Vignette’).

2.3. OPTIMIZATION CRITERION

The optimization criterion used by blocksdesign is D-optimality, which maximizes the
determinant of the treatment information matrix or, equivalently, minimizes the determi-
nant of the treatment variance matrix. D-optimality is widely used and has the important
property of scale-invariance, which means that it can be used for designs with a range
of quantitative and qualitative treatments, see Mitchell (1974) and Atkinson et al. (2007).
For unstructured treatments, an alternative criterion is A-optimality, see John and Williams
(1995) Chapter 2. Assuming equal replication, A-optimality minimizes the average vari-
ance of the pairwise treatment differences and some authors consider that A-optimality is
a better criterion for unstructured treatment sets than D-optimality, see Jones et al. (2020).
Currently, A-optimality is not an option in blocksdesign.

3. MIXED MODELS AND HGAM MODELS

The standard package for mixed model analysis in R is lme4, Bates et al. (2015), which
includes the lmer() function for fitting linear mixed-effects models via REML or maximum
likelihood. There are various R packages available for fitting GAM models but the “rec-
ommended” package is mgcv, Wood (2017). The mgcv package has capabilities for fitting
HGAM’s but, for our purpose, we prefer the gamm4 package by Wood and Scheipl (2020),
which is specifically intended for models with a combination of random and smoothed
effects. The gamm4 package is based on the lme4 package and should, therefore, have good
comparability with the lme4 mixed-model analysis. Pedersen et al. (2019) give a full dis-
cussion of the analysis of HGAMmodels using R packages, including the gamm4 package.

3.1. MODEL FORMULATION

The general formulation for a gamm4 model has a response variable y, a set of fixed
effects X, a smoothing model S and a random blocks model U:

Z = gamm4 (y ∼ X + S, random =∼ U) (3)

Pedersen et al. (2019) outline five model specifications for hierarchically nested models
but two of the specifications use factorial effects for the levels of the nesting factor. As
we require a random effects model to allow for recovery of inter-block information, the
factorial smoother models will not be discussed here. Assuming blocks is a nesting factor
and plots is a nested factor, the remaining three possible smoothing models are summarized
in Table 1, where k is the ’basis dimension’ of the model, see Wood (2017); Section 5.9,
and m is the order of the penalized derivatives of the model, see Pedersen et al. (2019).

Model G1 corresponds to Model G in Pedersen et al. (2019), Model G2 corresponds
to Model GI and Model G3 corresponds to Model I. The random blocks model term U in
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Table 1. Specifications for three choices of smoother for HGAM models where blocks is the blocks nesting
factor, plots is the plots-within-blocks nested factor, k is the basis dimension and m is the order of the
penalized derivatives

S Description

G1 s (plots, k,m) Global smoother for plots-within-blocks.
G2 s (plots, k,m) + s (plots, by = blocks, k,m) Global smoother plus individual plots-within-blocks

smoothers.
G3 s (plots, by = blocks, k,m) Individual plots-within-blocks smoothers

Eq. (3) can be any random blocks structure and will be explained later for each example
analysis. In this paper, all model fitting is done by REML, which is also the recommended
method of Pedersen et al. (2019).

3.2. MODEL COMPARISON

Comparison of available block structures is sometimes necessary for model selection and
one of the most widely used tools for model comparison is the AIC information criterion,
Burnham and Anderson (2002). However, AIC calculated by REML can be used only for
comparing models with the same fixed effects terms X+ S in Eq. (3), see Wolfinger (1993)
and Zuur et al. (2009), therefore in this paper we cannot use AIC for comparing different
classes of model, such as random blocks versus HGAM models. Some further discussion
of model comparison methods is given by Muller et al. (2013). Throughout this paper, we
use the AIC given by the gamm4 package, which is based on marginal likelihood, therefore
the AIC statistic used here is based on the marginal number of model parameters. Other
information measures include the Bayesian information criterion BIC and the conditional
AIC, see Saefken et al. (2018).

3.3. MEAN PAIRWISE SED

It is useful to have an overall measure of the precision of comparison of treatment means
and one overall measure of precision is the average standard error of pairwise treatment
differences (SED). Let Cov(t̂) be the v×v covariancematrix of a set of v estimated treatment
means t̂, let trace(Cov(t̂)) be the sum of the diagonal elements and let sum(Cov(t̂)) be
the grand sum of the elements of Cov(t̂). Then the average pairwise variance of all pairs of
treatments can be found by a simple counting argument and the required mean SED is the
square root of:

2 × (v × trace(Cov(t̂)) − sum(Cov(t̂)))/(v × (v − 1)) (4)

More usually, a linear model is parameterized by a constant intercept term µ followed by

v − 1 treatment differences τ and then the covariance matrix Cov
(
t̂
)
in Eq. (4) must be

replaced by the covariance matrix Cov
(
τ̂
)
, as shown in the Appendix.
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4. SIMULATED EXAMPLE OF A NESTED BLOCKS DESIGN

The following example examines multi-level nesting for three complete replicate blocks
of 48 treatments using simulated data based on a study of a large number of cereal trials by
Patterson and Hunter (1983).

4.1. SPATIAL DATA MODEL

Patterson and Hunter (1983) reviewed data from 244 UK cereal variety trials and exam-
ined the relationship between block size and precision. In most trials, plots were approxi-
mately 2 m wide by 20–25 m long and usually the plots of each replicate were arranged side
by side. They assumed an empirical exponential variance function for the semi-variance φx

of the difference between pairs of plots x plot units apart within the same replicate block,
as shown in Eq. (5):

φx = s2
(
1 − λr x

)
(5)

r is a serial correlation coefficient, s2 is the asymptotic semi-variance of widely separated
plots and λ is a parameter between 0 and 1. Based on data from theUK cereal trials, Patterson
and Hunter (1983) estimated the parameters as; r = 0.942; λ = 0.725; s = 0.4572.

4.2. SIMULATED DATA

Let Rn×n (r) be an n × n correlation matrix where the (i, j)th element equals r abs(i− j)

for i = 1...n, j = 1...n and let In×n be an n × n identity matrix. Define a correlation matrix
Cn×n (λ, r) such that:

Cn×n (λ, r) = (1 − λ) × In×n + λ × Rn×n (r) (6)

Then a variance matrix for three separate replicate blocks of 48 plots with plots arranged
side-by-side in linear arrays and with semi-variances based on Eq. (5), is given by the
Kronecker product:

V = s2 × (I3×3 ⊗ C48×48 (0.725, 0.942)) (7)

Let ZZ′ be a Choleski factorisation of V and let ε be a set of 144 random variables with
mean zero and unit variance. Let T be the treatment design indicator matrix of an optimized
treatment factor T f . Then y = Tt + Zε is a simulated data set with var(y) = V and
Cov(t̂) = (T′V−1T)−1, as required.

4.3. EXAMPLE NESTED BLOCKS DESIGN

Let N0 be a replicate blocks factor for 3 replicate blocks of 48 plots and let N1, N2, N3

and N4 be four nested blocks factors with 9, 18, 36 and 72 levels and blocks of size 16,
8, 4 and 2 respectively. Let D f = (N0,N1,N2,N3,N4) be a data frame of block factors
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Table 2. Mixed model analysis of 5000 simulations for each of the 16 factorial combinations of blocks N1, N2,
N3, N4 with replicate blocks N0 and showing the number of model terms, the counts of minimum AIC
simulations per model and the mean AIC and the mean SED for each model

Model Blocks U Model terms Classified counts Mean AIC Mean SED

B1.1 N0 50 27 239.0 0.306
B1.2 N0 + N1 51 350 220.6 0.263
B1.3 N0 + N2 51 1009 215.9 0.247
B1.4 N0 + N3 51 276 220.2 0.247
B1.5 N0 + N4 51 33 230.3 0.267
B1.6 N0 + N1 + N2 52 552 215.2 0.246
B1.7 N0 + N1 + N3 52 1093 214.8 0.242
B1.8 N0 + N1 + N4 52 379 218.0 0.248
B1.9 N0 + N2 + N3 52 447 215.2 0.240
B1.10 N0 + N2 + N4 52 427 215.8 0.241
B1.11 N0 + N3 + N4 52 34 221.2 0.244
B1.12 N0 + N1 + N2 + N3 53 98 214.5 0.238
B1.13 N0 + N1 + N2 + N4 53 174 215.1 0.239
B1.14 N0 + N1 + N3 + N4 53 78 215.8 0.239
B1.15 N0 + N2 + N3 + N4 53 19 216.3 0.237
B1.16 N0 + N1 + N2 + N3 + N4 54 4 215.6 0.235

in the required order of fitting, and let T f be a treatment factor for three replicates of 48
treatments. Then T f can be optimised by the function in Eq. (2) with parameters T f and
D f .

4.4. RANDOM BLOCKS ANALYSIS

A single optimized treatment design T f was realized and 5000 simulated data vectors
were generated for the assumed plot covariance matrix shown in Eq. (7). The choice of
treatment effects is arbitrary and, in this study, all treatment effects are assumed null. Each
simulation was analysed using the gamm4 function shown in Eq. (3) with fixed effects T f

and with random effects U corresponding to each of the 16 possible block combination of
the four block factors N1, N2, N3 , N4 together with the replicate blocks factor N0. Table 2
shows the mean AIC and the mean SED averaged over all simulations for each model and
also shows the number of times each model attained the minimum overall AIC for each
simulation. The theoretical mean pairwise treatment SED for the optimized design was
found from Eq. (4) using Cov(t̂) based on the treatment design indicator matrix T and the
variance matrix V as discussed above. For this particular design realization, the theoretical
mean pairwise treatment SED was found to be 0.2324.

4.5. INTERPRETATION

Table 2 shows sub-models based on all possible factorial combinations of the nested block
factors and counts of the number of times each model gave the best overall fit, based on
AIC, for each simulation. The sub-model counts show the relative importance of the various
block sizes and depths of nesting for fitting the individual simulations. Model selection is
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an important methodology for fitting parsimonious and repeatable models to treatment data,
Burnham and Anderson (2002), and based on the classification by minimum AIC, the full
additive blocks model B1.16 would hardly ever be selected as the best model for data based
on the spatial model in Eq. (5). However, as a mixed model analysis automatically finds a
best fitting set of model coefficients, possibly zero, and as the full blocks model B1.16 has a
mean AIC close to the minimum of all the models and a pairwise treatment SED of 0.2355,
which is quite close to its theoretical value of 0.2324, it is not obvious whether selection of
a more parsimonious blocks model would be useful or worthwhile.

4.6. HGAM ANALYSIS

For comparison, the same set of simulations was fitted by the gamm4 function shown
in Eq. (3) with fixed effects T f + S where S is fitted by G2 or G3 from Table 1 and the
random effects model U is fitted by the replicate blocks factor N0. Smoother G1, which
assumes a single common smoother for all levels of the grouping factor, is unrealistic for
a design with separate complete randomized blocks and has not been fitted. Pedersen et al.
(2019) found that with a random grouping factor, it was important to specify m = 1 instead
of m = 2 for group-level smoothers to avoid instabilities therefore a choice of m = 1 is
fixed for the G2 individual block level smoothers. For the remaining smoothers, the choice
of m is data dependent and Table 3 shows choices of m = 1 or m = 2 for these smoothers.
A range of values of k � 10 was tested (not shown) but increasing k beyond 10 made little
difference therefore k = 10 has been used throughout. Table 3 shows the mean estimated
degrees of freedom (EDF) per model averaged over all simulations, the number of marginal
fitted terms per model, the mean marginal AIC averaged over all simulations and the mean
pairwise marginal SED averaged over all simulations. Pairwise SED’s were calculated by
extracting the treatments covariance matrix from the gamm4model for each simulation and
using the method shown in Eq. (4).

4.7. INTERPRETATION

Following Pedersen et al. (2019), the models in Table 3 can be compared by AIC and
the best model based on AIC was either H1.1 or H1.3. The mean SED for both models
was about 0.231, which is slightly less than the theoretical value of 0.2324. There seems

Table 3. Hierarchical GAM models with complete replicate blocks N0 and two choices of m for the order of the
penalized derivatives of the global smoother in G2 or the separate smoothers in G3

Blocks U Smoothing model S Model terms Mean EDF Mean AIC Mean SED

H1.1 N0 s(plots,m = 1) + s(plots, by = N0, m = 1) 54 61.0 209.6 0.231
H1.2 N0 s(plots,m = 2) + s(plots, by = N0, m = 1) 55 61.1 213.4 0.231
H1.3 N0 s(plots, by = N0, m = 1) 53 61.3 208.2 0.231
H1.4 N0 s(plots, by = N0, m = 2) 56 57.3 219.0 0.236

The tabulation shows the number of fitted model terms, the mean EDF, the mean AIC and the mean SED averaged
over all simulations. A basis dimension of k = 10 was used for all smoothers
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little reason to fit a common global smoother over the three separate independent complete
blocks therefore on theoretical grounds H1.3 should be a more appropriate choice of model
than H1.1.

4.8. COMPARISON OF MIXED MODEL VERSUS HGAM ANALYSIS

The mean SED based on the full nested blocks model, B1.16, was 0.235 compared with
a mean SED of 0.231 from H1.3, the best fitting HGAM model. The theoretical mean
SED value was 0.2324 so both models appear to fit the data reasonably well. Comparison of
model complexity can be based on either the number of fittedmodel terms or on the effective
degrees of freedom (EDF). The complexity of B1.16 andH1.3 based on the number ofmodel
terms, 54 and 53 respectively, appears similar. The lme4 package does not provide an EDF
for mixed models but Wood (2017): Section 2.4.6. suggests that the EDF of a mixed model
should be less than the total number of model terms. In that case, and based on a comparison
of EDF’s, H1.3 appears substantially more complex than B1.16.

The blocksdesign algorithm does not generally find a unique global optimum therefore
the results may differ slightly for different optimizations. The simulation model was tested
a number of times using different optimizations (not shown) but no evidence was found that
the particular treatment optimization had any significant impact on the conclusions of the
study.

5. SIMULATED EXAMPLE OF NESTINGWITHIN A SET OF
CROSSED BLOCKS

Crossed row-and-column block designs are useful for 2-dimensional spatial arrays of
plots, especially if there is no obvious preferred direction of blocking. Patterson and Hunter
(1983) did not study field variability in two dimensions but spatial models for field and
ecological experiments have been extensively studied, Cullis and Gleeson (1991), Dutilleul
(1993), Eccleston and Chan (1998) and Hu and Spilke (2009). One of the simplest 2-
dimensional spatial models, and the model used here, is a separable first-order autoregres-
sive model AR1 ⊗ AR1 where each plot effect is the product of two separable autoregres-
sive processes, one for rows and one for columns. There are many other possible models,
for example Rodriguez-Alvarez et al. (2016) discuss random spatial components for 2-
dimensional field trials based on penalized splines but these are beyond the scope of this
paper.

5.1. SIMULATED DATA

For designs with long narrow plots arranged side-by-side in rows and lengthwise in
columns, spatial correlation is likely to be less within columns than within rows and it will
be assumed here that the semi-variance of the difference between pairs of plots separated
by x plot units in the same column is s2 (1 − λr x ) with r = 0.5 and λ = 1 which gives
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C3×3 (1, 0.5) for the within-column correlation matrix. Equation (7) then generalizes to:

V = s2 × (C3×3 (1, 0.5) ⊗ C48×48 (0.725, 0.942)) (8)

Let ZZ′ be a Choleski factorisation of V and let ε be a set of 144 random variables with
mean zero and unit variance. Let T be the treatment design indicator matrix of an optimized
treatment factor T f . Then y = Tt + Zε is a simulated data set with var (y) = V and
Cov(t̂) = (T′V−1T)−1, as required.

5.2. EXAMPLE CROSSED BLOCKS DESIGN

LetR0 be a replicate blocks factor for 3 replicate rows of 48 plots and letQ1,Q2,Q3,Q4

and Q5 be five hierarchically nested column block factors with 3, 6, 12, 24 and 48 levels,
respectively, where the column blocks are assumed to be fully crossed withR0. Let T f be a
treatment factor for 3 replicates of 48 treatments and let D f = (R0,Q1,Q2,Q3,Q4,Q5).
ThenT f can be optimised by the function inEq. (2)with parametersT f andD f , as discussed
in the previous example. The weighting option for crossed blocks interactions has a default
of 0.5 but can be reset to any other value between 0 and 1 to give less or more importance
to the factorial block interactions, as required.

5.3. RANDOM BLOCKS ANALYSIS

The possible combinations of the five nested columnsQ1,Q2,Q3,Q4,Q5, including pos-
sible interactions with R0, is too large for tabulation. Table 4 shows just three fitted models,
B2.1, which is the basic additive row-and-column model with three rows and 48 columns,
B2.2, which is an additive row-and column model with a full set of nested column blocks
and B2.3, which is an interactive row-and-column model with a full set of nested column
blocks including all possible interactions between rows and nested column blocks. Note
that the intersection blocks betweenR0 andQ5 are single plot blocks therefore theR0 ×Q5

interactions cannot be estimated and must be assumed null.
As in the previous example, there were 5000 simulations all based on the same treatment

design and Table 4 shows the minimum AIC counts per model, the mean AIC per model

Table 4. Mixed model analysis of 5000 simulations of three rows R0 and five sets of nested columns
Q1,Q2,Q3,Q4,Q5 comprising B2.1, a basic additive row-and-column model, B2.2, an additive row-
and-column model with a full set of nested columns and B2.3, a fully interactive row-and-column model
with a full set of nested columns

Model Blocks U Model terms Classified counts Mean AIC Mean SED

B2.1 R0 + Q5 51 731 225.1 0.256
B2.2 R0 + Q1 + Q2 + Q3 + Q4 + Q5 55 911 218.3 0.242
B2.3 R0 × (Q1 + Q2 + Q3 + Q4) + Q5 59 3358 210.7 0.206

The tabulation shows the number of model terms, the counts of minimum AIC simulations per model, the mean
marginal AIC and the mean SED for each model
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and the mean SED per model for the full set of simulations. The theoretical mean pairwise
treatment SED for the optimized design was found from Eq. (4) using Cov(t̂) based on the
treatment design indicator matrix T and the variance matrix V, as discussed in the previous
example. For this example, the theoretical mean pairwise treatment SED was found to be
0.2043.

5.4. INTERPRETATION

The comparisons show that the mean AIC decreased substantially with increasing model
complexity and that there was a corresponding improvement in the mean SED over the three
models. B2.3 was the best overall model for about 66% of the simulations with B2.2 best
for about 18% and B2.1 best for the rest. The mean SED of the best fitting model, B2.3,
was 0.206 which is within about 1.3% of the theoretical value of 0.2043. These results show
that for most of the simulations, the full interactive model, B2.3, was required for a good
model fit. As with the previous example, it is not obvious if selection of a parsimonious
block model using a criterion such as the AIC would be useful or worthwhile but further
study of the utility, or otherwise, of model selection could be of value.

5.5. HGAM ANALYSIS

The same set of simulations was also fitted by a HGAM model with smoothers fitted
within complete replicate rows R0 using the gamm4 function shown in Eq. (3). For this
study, two alternative random blocks models were fitted, either simple replicate row blocks
R0, as in the previous example, or a basic additive row-and-and-column blocks model,
R0 +Q5. Table 5 shows eight combinations of two random blocks models, R0 or R0 +Q5,
two smoothing models, G2 or G3, and two choices of m = 1 or m = 2 for the global
smoother in G2 or the separate smoothers in G3. A preliminary analysis showed that G1
gave a very poor fit to the data therefore G1 is not considered further here. For each model

Table 5. HGAMmodels G2 or G3 with two choices of random blocks, R0 or R0 +Q5, and two choices of m for
the order of the penalized derivatives of the global smoother in G2 or the separate smoothers in G3 and
with basis dimension of k = 10 for each smoother

Blocks U Smoothing model S Model terms Mean EDF Mean AIC Mean SED

H2.1 R0 s(plots,m = 1) + s(plots, by = R0, m = 1) 54 59.8 204.6 0.227
H2.2 R0 s(plots,m = 2) + s(plots, by = R0,m = 1) 55 59.5 209.2 0.228
H2.3 R0 s(plots, by = R0,m = 1) 53 61.4 206.6 0.232
H2.4 R0 s(plots, by = R0,m = 2) 56 57.4 217.3 0.237
H2.5 R0 + Q5 s(plots,m = 1) + s(plots, by = R0,m = 1) 55 60.8 198.0 0.204
H2.6 R0 + Q5 s(plots,m = 2) + s(plots, by = R0,m = 1) 56 60.3 201.8 0.204
H2.7 R0 + Q5 s(plots, by = R0,m = 1) 54 61.4 198.6 0.206
H2.8 R0 + Q5 s(plots, by = R0,m = 2) 57 57.2 209.0 0.210

The analysis shows the number of model terms, the mean EDF, the mean AIC and the mean SED averaged over
simulations
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combination, the table shows the number of marginal model terms, the mean EDF, the mean
AIC and the mean SED, calculated as described in the previous example.

5.6. INTERPRETATION

Comparison of the mean AIC and the mean SED of the models with a single random
block factorR0 versus the models with two additive random blocks factorsR0 + Q5 shows
clear evidence of a substantial reduction in both the mean AIC and the mean SED due to the
addition ofQ5. The best overall model was either H2.5 or H2.7, consistent with the previous
example, and the mean SED of 0.204 for H2.5 was slightly smaller than the theoretical value
of 0.2046. The mean SED for models without random block factor Q5 was at least 14%
larger than the theoretical value which shows that Q5 is essential for a good model fit.
Smoothing alone is not sufficient to account for trends between columns and the best model
requires a combination of smoothing to account for smooth trendswithin rows plus a random
blocks model to account for residual column block effects. The residual random variability
between columns makes the recovery of inter-column treatment information by a mixed
model analysis essential.

5.7. COMPARISON OF NESTED BLOCKS VERSUS HGAM ANALYSIS

FromTable 4, themean SED of the full row-and-column blocksmodel including interact-
ing row and column effects, B2.3, was 0.206 whereas from Table 5, the best fitting HGAM
model, H2.5, had an SED of 0.204. The theoretical mean pairwise treatment SED for the
design was 0.2043 therefore there is very little to choose between the fit of the two models.
The full row-and-column blocks model required 59 model terms whereas the best fitting
HGAM model required 55 marginal model terms or a mean EDF of 60.8. As discussed
previously, more work is needed on the comparison of model complexity of mixed models
versus HGAM’s based on the numbers of fitted model parameters.

The simulation model was tested several times using different treatment optimizations
(not shown) and although the outcome of the analysis was slightly different each time,
the overall interpretation remained the same and there was no evidence that the particular
treatment optimization had any significant impact on the conclusions of the study.

6. A LARGE ROW-AND-COLUMN FIELD TRIAL EXAMPLE

Durban et al. (2003) discussed an experiment with two replicates of 272 spring barley
varieties arranged in an array of 34 columns (east–west) and16 rows (north–south), subject to
the constraint that rows 1–8 contained one complete set of treatment replicates and rows 9–16
contained the other. They showed that a conventional row-and-columnmodelwas inadequate
due to residual trends within rows and they sought to improve model efficiency by fitting a
2-dimensionalGAM loess smoothingmodel, Hastie (2020) andHastie andTibshirani (1986,
1987). In this paper, the data is re-analysed both by a mixed model random blocks analysis
assuming four additional sets of nested column blocks superimposed on the original design
and by an HGAM smoothing model with smoothers nested within rows. The treatment
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design will not be optimal for the additional nested column blocks but, nevertheless, should
provide insight into the utility of multi-level block designs for field trials.

The data was obtained from the agridat package, Wright (2020), and is available in the
blocksdesign package, see supplementary material.

6.1. SUPERIMPOSED COLUMN BLOCKS

LetR0 represent the original replication factor with 2 levels, letR1 represent the original
rows factorwith 16 levels and letQ5 represent the original columns factorwith 34 levels fully
crossed withR0 andR1. LetQ1,Q2,Q3,Q4 represent four additional column block factors
with 2, 4, 8 and 16 levels, respectively, all fully crossed with rows. Unlike the simulated
row-and-column example discussed previously, not all of the nested column blocks can be
of equal width and two column blocks from each of Q2, Q3 and Q4 must be an extra plot
wide. It will be assumed here that the extra wide column blocks are always located down
the two outside edges of the design. Some further discussion of a design layout that avoids
this issue is given later.

6.2. RANDOM BLOCKS ANALYSIS

As was done in the previous example, we analyse three random blocks models for the
observed data, B3.1, the original row-and-column blocks model with additive row and
column effects, B3.2, a full additive model for a full set of rows and columns including the
extra superimposed columns and B3.3, a full interactive model for the full set of rows and
columns including the extra superimposed columns. Table 6 shows the number of model
terms, the model AIC statistic and the model pairwise SED for these three models.

6.3. INTERPRETATION

TheAIC statistic shows significant improvement inmodel fit for B3.2 relative to B3.1 and
for B3.3 relative to B3.2, which is good evidence that inclusion of the extra superimposed
columns improves model fit. The mean pairwise SED of B3.1, the original row-and-column
design, was .291 which is approximately 12% larger than the mean pairwise SED of B3.3,
the interactive full row and column model including the extra column blocks, which was
0.260. The mean pairwise SED for model B3.2, which included the extra column blocks but

Table 6. Mixed model analysis of spring barley variety trial yield data showing the AIC and SED statistics for
B3.1, the original additive row and column blocks model, B3.2, a fully additive row and column blocks
model including the extra superimposed column blocks and B3.3, a fully interactive row and column
blocks model including the extra superimposed column blocks

Model Random Blocks Model terms Model AIC Mean SED

B3.1 R0 + R1 + Q5 276 887.2 0.291
B3.2 R0 + R1 + Q1 + Q2 + Q3 + Q4 + Q5 280 874.7 0.285
B3.3 (R0 + R1) × (Q1 + Q2 + Q3 + Q4) + Q5 288 864.1 0.260
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Table 7. HGAM models G2 or G3 with two choices of random blocks U and two choices of m for the order of
the penalized derivatives of the global smoother in G2 or the separate smoothers in G3 and with a basis
dimension of k = 10 for each smoother

Blocks U Smoother S Model terms EDF AIC SED

H3.1 R0 + R1 s(plots,m = 1) + s(plots, by = R1,m = 1) 292 305.9 846.4 0.249
H3.2 R0 + R1 s(plots,m = 2) + s(plots, by = R1,m = 1) 293 305.7 854.3 0.250
H3.3 R0 + R1 s(plots, by = R1,m = 1) 291 329.9 901.1 0.272
H3.4 R0 + R1 s(plots, by = R1,m = 2) 307 319.4 948.0 0.271
H3.5 R0 + R1 + Q5 s(plots,m = 1) + s(plots, by = R1,m = 1) 293 305.9 847.4 0.248
H3.6 R0 + R1 + Q5 s(plots,m = 2) + s(plots, by = R1,m = 1) 294 307.8 854.4 0.248
H3.7 R0 + R1 + Q5 s(plots, by = R1,m = 1) 292 308.2 876.8 0.257
H3.8 R0 + R1 + Q5 s(plots, by = R1,m = 2) 308 310.2 928.4 0.258

The analysis shows the number of fitted model terms, the EDF, the AIC and the SED for the observed data

assumed additivity of row and column effects, was 0.285 which is only a small improvement
over the original row and column model. These results show that a highly structured row-
and-column design with nested column blocks and proper allowance for row-by-column
interaction effects gives a better design for modelling spatial positional effects.

6.4. HGAM MODELS

Asdiscussed in the previous examples, aHGAMwith suitable randomblocks and suitable
smoothers can be used to fit local trends within block levels and Table 7 shows eight HGAM
smoothing models for trends fitted within the rows of the barley variety trial data. These are
essentially the same eight smoothing models that were discussed in the previous row-and-
column example (see Table 5), except that the replicate blocks factor R0 has been included
as an extra factor in the random row blocks model.

6.5. INTERPRETATION

Unlike the previous crossed blocks example, the effects of the inclusion or exclusion of
the crossed blocks factorQ5 in the blocks model depends on whether the smoothing model
includes a global smoother or not. Q5 had little effect on H3.5 and H3.6 versus H3.1 and
H3.2, all of which had global smoothers, whereas it gave a clear improvement to H3.7 and
H3.8 versus H3.3 and H3.4, none of which had global smoothers. Overall, the best fitting
models from Table 7 were H3.1 and H3.5 and, in the remainder of this analysis, H3.1 will
be used as the best fitting HGAM model.

6.6. COMPARISON OF NESTED BLOCKS MODELS WITH HGAM MODELS

The mean pairwise SED for H3.1 was about 0.249 compared with about 0.260 for B3.3,
which suggests that the best fitting HGAM model gave an improvement in precision of
about 4% compared with the best fitting multi-level blocks model. However, H3.1 required
292 fitted (marginal) terms and about 305.9 EDF compared with the 288 model terms for
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B3.3, which suggests that the HGAM model is more complex and requires more model
parameters than the mixed model.

It is not possible to compareB3.3 andH3.1 directly usingAIC because they have different
numbers of fixed model effects. In principle, maximum likelihood ratio tests can be used to
provide a general AIC for comparing model fit (see Pinheiro and Bates 2000) but as we use
REML to estimate model coefficients and smoothing parameters and residual variances, it
does not seem consistent to useML to compare model fit. Instead, we prefer to use graphical
and other informal methods to examine model fit and to compare the outputs of the different
models.

6.7. RESIDUAL COPLOTS

Coplots are graphical plots that fit locally-weighted polynomial regression lines to data
within the levels of a conditioning variable, Cleveland (1979 and 1993). Figures 1 and 2
show coplots of genotype adjusted residuals for B3.3, the best fitting row-and-column blocks
model, andH3.1, the best fittingHGAMmodel, all plotted against plot position for each row.
The coplots show residual trends within rows after adjusting for row and genotype effects
where the 16 panels taken in order from bottom left to top right represent the individual
rows running from rows 1–16.

Both models seem to account for most of the residual trends in the different rows. How-
ever, comparison of Fig. 1 with Fig. 2 does show there are some small differences in fit
between the two models with some rows being fitted better by one model and some by the
other. Overall, it does not seem practicable to choose between the models on the basis of
their residual plots.

6.8. WIREFRAME PLOTS OF FIELD VARIABILITY

Awireframe plot is a graph that can be used to visualize a 3-dimensional surface such as
the trend surface of plot yields in a field trial. Figures 3 and 4 show wireframe plots based
on the lattice package, Sarkar (2008), for the predicted plot yields of a nominal genotype as
a function of plot position for the best mixed model B3.3 and the best HGAM model H3.1.

Comparison of the two plots shows that the shape of the fitted surface is very similar for
both plots except that Fig. 3 shows discrete block effects whereas Fig. 4 shows smoothed
trends within individual rows. As the true surface is unknown, it is impossible to judge
which is the better model but as both models give a similarly shaped trend surface, both
models seem to fit the data equally well. In this analysis, the smoothing model works well
because there are smooth trends within rows but in other situations, positional effects within
rows might be patchier, in which case the nested blocks model might be more useful. It is
important to note that there is very little good evidence of smooth trends between rows,which
helps explains why a 2-dimensional smoothed surface, as discussed by Durban et al. (2003),
is unsuitable for this data and why a random model for row effects is more appropriate than
a smoothing model.
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Figure 1. Residuals for mixed model B3.3.

6.9. COMPARISONS OF MODEL PREDICTIONS

Model predictions are important for comparing alternative models since, if different
models give different predictions, not all the models can be valid and a further investigation
might be needed. Table 8 compares the correlations between the raw treatment means and
the predictions of B3.3, the best mixed model and H3.1, the best HGAM model.

The correlations between the raw means and the predicted yields of B3.3 and H3.1 are
0.8456 and 0.8462, respectively,which shows that bothmodels give predictions substantially
different from the raw means. The correlation of 0.9721 between B3.3 and H3.1 shows that
the predictions of these twomodels are quite strongly correlated. Figure 5 shows a scatter plot
of the fitted values for H3.1 versus B3.3, which shows a strong linear relationship consistent
with a linear correlation model. The two models produce highly correlated predictions but
there is still sufficient scatter to change the order of ranking of the highest yielding genotypes,
which could be critically important for genotype selection.
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Figure 2. Residuals for HGAM model H3.1.

For example, G112 was in 4th place in the raw means, 53rd place in the B3.3 means
and 81st place in the H3.1 means. Examination of the plot positions and yields of the two
replicates of genotype G112 show that replicate 1, with a yield of 6.67 tonnes per hectare,
was in row 1, column 34 whereas replicate 2, with a yield of 5.91 tons per hectare, was in
row 14, column 19. Thus, replicate 1 of G112 was located on a very high yielding corner
plot, which means that the correct choice of model could be of critical importance for this
genotype.

6.10. COMMENT ON DESIGN LAYOUT

A difficulty with the original spring barley trial design was that the design had 16 rows
and 34 columns, which meant that not all of the nested column blocks could be of equal
width. An alternative layout with 17 rows and 32 columns allows all nested column blocks to
be of equal width but requires eight and one-half rows per complete replicate. An example in
the supplementary material shows how this can be done by using blocksdesign to create one
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Figure 3. Predicted yield surface for mixed model B3.3.

Figure 4. Predicted yield surface for HGAM model H3.1.

complete replicate from rows 1–8 plus 16 plots from row 9 with the other complete replicate
from rows 10–17 plus the remaining plots of row 9. Usually, there is some flexibility in the
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Table 8. Correlations between the raw treatment means, the predicted treatment means of the mixed model B3.3
and the predicted treatment means of the HGAM model H3.1

Raw B3.3 H3.1

Raw 1 0.8456 0.8462
B3.3 0.8456 1 0.9721
H3.1 0.8462 0.9721 1

Figure 5. Predicted yield from H3.1 versus B3.3.

actual plot layout and, wherever possible, it is best to ensure equal block sizes in the same
level of nesting.

7. DISCUSSION

The advantages of simplicity, flexibility and robustnessmake block designs the designs of
choice for many agricultural experiments. Cultural operations such as planting or harvesting
might occur over several days and it is often useful for the main replicate blocks to form
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management units so that all cultural operations on the same replicate block are carried out
at the same time Bailey (2008): Chapter 4. Incomplete block designs with a single level
of nesting are widely used for the control of variability within replicate blocks in large
field trials. Unlike replicate blocks, however, there is usually no prior information about the
likely effects of incomplete blocks and therefore no information to guide the choice of size
of blocks. Furthermore, there is no good reason to assume that any single size of block will
be sufficient to account for variability over the wide range of scales of measurement in large
replicate blocks.

Modern software has the capability to deal with very complex blocking systems involving
crossed and nested block designs and there is no reason why modern experimental design
should be restricted to designs with a single level of nesting. Modern software can fit very
general block models either by fitting all the available block structures simultaneously
or by using appropriate software to search for the best sub-model that fits the data. This
methodology provides a very flexible and general approach to block modelling but the
models must be based on structures that were envisaged and built into the design at the
design stage. It would be highly risky to make post hoc searches for block models based on
block structures that were not envisaged as part of the original design.

Our analysis has comparedmixedmodels andHGAMmodels and has shown that amixed
model can be very effective even when the data is generated by a spatial correlation process.
However, our row-and-column examples have also shown that model fit can sometimes
be improved by including both random block effects and HGAM smoothers in the same
analysis. In our examples, the HGAM row smoothers accounted for smooth plots-within-
rows trend componentswhile the randomcolumn block terms accounted for residual random
column block components. Including both random blocks and spatial smoothers in the
same model can be expected to fit smooth trends both within and between blocks while
simultaneously accounting for block deviations from smoothness. This approach can be
applied to any field block design and further reinforces the argument for a highly structured
block design at the design stage to provide maximum freedom for model fitting at the
analysis stage.

Nesting is a recursive process that starts with a minimum number of block constraints
in the top level of blocking and then adds additional constraints at each level of nesting.
Usually this process gives good efficiency at each level of nesting except that as the block
sizes become very small the blocks become more constrained and then there may be some
small loss of efficiency due to the constraints of blocking. A referee has suggested that, in
some situations, a nested design could be built by starting with the smallest blocks and then
grouping them into larger blocks, as required. However, constraints would still need to be
added to ensure good properties for the larger blocks so it is not clear if this is a useful or
practicable approach.

One issue that has not been fully addressed in this paper is whether an analysis should
include every block design structure or whether model selection should be used to find a
subset of block structures that are adequate for the data. There is usually no interest in the
block structures themselves so the actual block model is irrelevant provided that it ensures
maximum precision on the treatment estimates. Throughout this paper we have fittedmodels
with a full set of block factors and have relied on lmer() to provide proper weighting for
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the various random block components. As far as we can judge, this process works well,
although lmer() does provides warnings when models fail to converge or are ’over-fitted’.
We recognize that more work could be done to clarify model selection methods for multi-
level block designs.
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APPENDIX

Let 1 be a (v-1) dimensional vector of unit elements, let I be a (v − 1)× (v − 1) identity
matrix and let U = (−1, I). Let t̂ be a vector of estimated treatment means and let C be
the covariance matrix of t̂. Then τ̂ = Ut̂ is a vector of estimated treatment differences and
UCU′ is the covariance matrix of τ̂ . Assuming a suitable partition of C, the matrix UCU′
can be expanded to give:

Cov
(
τ̂
) = 11′C11 − C211′ − 1C12 + C22 (A1)

It then follows that v×trace(Cov(τ̂))−sum(Cov(τ̂)) = v×trace(Cov(t̂))−sum(Cov(t̂)),
as required.
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