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Nearest-neighbour methods based on first differences are an approach to spatial anal-
ysis of field trials with a long history, going back to the early work by Papadakis first
published in 1937. These methods are closely related to a geostatistical model that
assumes spatial covariance to be a linear function of distance. Recently, P-splines have
been proposed as a flexible alternative to spatial analysis of field trials. On the surface,
P-splines may appear like a completely new type of method, but closer scrutiny reveals
intimate ties with earlier proposals based on first differences and the linear variance
model. This paper studies these relations in detail, first focussing on one-dimensional
spatial models and then extending to the two-dimensional case. Two yield trial datasets
serve to illustrate the methods and their equivalence relations. Parsimonious linear vari-
ance and random walk models are suggested as a good point of departure for exploring
possible improvements of model fit via the flexible P-spline framework.

Key Words: Linear mixed model; Geostatistics; Spatial correlation; Sweep operator;
Random walk.

1. INTRODUCTION

Plant-breeding field trials typically show considerable spatial variation. Blocked exper-
imental designs help to capture some of that spatial trend and provide efficient treatment
estimates (Edmondson 2005). If the spatial trend is irregular, however, blocking may only
be partly successful. In such cases, spatial adjustment using a suitable statistical model
can provide an improvement in accuracy. Designs and modelling methods developed for
field trials can also be applied with advantage in greenhouses (Hartung et al. 2019), growth
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chambers (Lee and Rawlings 1982) and with phenotyping platforms (Brien et al. 2013;
Cabrera-Bosquet et al. 2016; van Eeuwijk et al. 2019).

A variety of variance–covariance structures can be used for spatial adjustments, and such
structures are readily available in mixed model packages. Most spatial variance–covariance
models are nonlinear in the parameters (Stein 1999; Stroup 2002; Schabenberger and Got-
way 2004). Our paper is focused on linear models and methods for spatial adjustment.
Perhaps the oldest approach of this kind is nearest-neighbour adjustment (NNA) based
on differences among neighbouring plots (Papadakis 1937; Wilkinson et al. 1983; Piepho
et al. 2008). The first proposals involved one-dimensional adjustment, but extension to
two-dimensional spatial models has been subsequently proposed (Green et al. 1985; Kemp-
ton et al. 1994). A further option is to employ smoothing splines (Lee et al. 2020). The
most recent addition in a field-trial context is the use of P-splines (Eilers and Marx 1996),
which has been proposed under the acronym SpATS (Spatial Analysis of field Trials with
Splines) (Rodríguez-Álvarez et al. 2018), and is available as R-package on CRAN (https://
cran.r-project.org/package=SpATS). Perhaps the most important common feature of these
methods is that they all can be identified with a variance–covariance structure that is linear
in the parameters and as such can have computational advantages compared to nonlinear
structures.

Early work on spatial adjustment using NNA methods focused on second differences
(Wilkinson et al. 1983; Green et al. 1985), but it was soon recognized that first differences
(Besag and Kempton 1986), and the related linear variance (LV) model (Williams 1986)
often provide a good fit. The recently proposed SpATS approach was introduced in terms of
second differences. In this paper, we will specifically investigate how a P-spline approach
can be formulated based on first differences and how this reduced model compares to the
first-difference NNA method considered by Besag and Kempton (1986) and the LV model
of Williams (1986). We will also make a connection with random walk (RW) models (Lee
et al. 2020). A unified formulation of these different models will be provided to facilitate
the comparison.

The paper is structured as follows. In Sect. 2, we will describe our variance–covariance
models in detail and establish the equivalence relations for one-dimensional spatial models.
In Sect. 3 the models are applied to a breeding trial with oats. Extension to two dimensions
is considered in Sect. 4, followed by a second example involving wheat in Sect. 5. The paper
ends with a brief Discussion in Sect. 6.

2. THREE ONE-DIMENSIONAL MODELS FOR SPATIAL
CORRELATION

Field trials with plants typically have a two-dimensional layout that is indexed by rows
and columns, so spatial correlation can be considered in two spatial directions. To set the
stage, we will first consider models with spatial correlation in one dimension across n plots,
arranged in a single array within a replicate.

Three types of model will be considered: linear variance (LV)models (Sect. 2.1), random
walk (RW) models (Sect. 2.2) and P-splines (Sect. 2.3). Our main results will be that equiv-

https://cran.r-project.org/package=SpATS
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alence between models can be established when a fixed effect for the replicate is accounted
for. To establish these relations, it will be convenient to sweep out these fixed effects and
consider the corresponding reduced models (De Hoog et al. 1990).

It will be convenient to consider a linear mixed model of the form

y = Xgβg + Xrβr + u + e (1)

where y is the response vector, ordered by replicates and plots within replicates, βg is
a vector of fixed effects for genotypes with associated design matrix Xg , βr is a vector of
fixed effects for replicates with associated design matrix Xr = Ir ⊗1n , where⊗ denotes the
Kronecker product and 1n is an n-vector of ones, n is the number of plots per replicate, u is
a vector of spatially correlated plot errors, and e is a vector of independently distributed plot
errors, having (nugget) variance σ 2. We take genotypic effects as fixed throughout, but our
results apply equally with random genotypic effects (see Discussion). Spatial correlation
will be modelled among plots in the same replicate, but plots in different replicates are
modelled as independent. We note that for the linear spatial covariance models considered
here (LV, RW and P-splines), the same result would be obtained if spatial correlation were
modelled across replicates. It follows from results in Williams et al. (2006) that the reduced
model after sweeping out the fixed replicate effect has independent replicates even if the
original model assumes correlation across replicates according to a LV model (the authors
show this for columns of plots but their results for column sweeps apply equally to sweeps
for replicates). Spatial models differ in the assumptions they make about the covariance
function for u. The variance–covariance matrix for the composite plot error, f = u + e,
within a replicate will be denoted as V . Thus, the variance–covariance matrix of the data
takes the form

var (y) = Ir ⊗ V (2)

where Ir is the r -dimensional identity matrix, ⊗ denotes the Kronecker product, and V is
an n × n variance–covariance matrix for n plots per replicate. Similarly, the spatial errors
have variance–covariance structure

var (u) = G = Ir ⊗ �nσ
2
u (3)

where �n is a symmetric n × n matrix and σ 2
u is a spatial variance component. Hence, we

have V = σ 2 In + σ 2
u �n . It is noted that model (1) does not have incomplete blocks. Such

effects can also be added with resolvable incomplete block designs, and we will do so in
Sect. 3.

In what follows, we will mainly focus on the form of Vn for specific spatial models.
Occasionally, where necessary, explicit reference will also be made to model (1).
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2.1. LINEAR VARIANCE MODEL

Piepho and Williams (2010, Eq. 3) give the one-dimensional LV matrix as

V = σ 2 In + ηJn + φMn (4)

whereMn = (n − 1) Jn−Ln , Jn is the n×nmatrix of ones, Ln has (i, j)th element equal to
|i − j | as given byWilliams (1986), and σ 2 > 0, η > 0 and φ > 0 are variance parameters.
The component ηJn can be omitted in our case because it is confounded with the replicate
effect and hence will cancel when sweeping out the replicate effect as is done in the next
step. Thus, in relation to model (1) we have Mn = �n and φ = σ 2

u . Note that all elements
in Mn are non-negative, ensuring that all pairwise covariances in V will be non-negative.
The variance matrix for the reduced model (after sweeping out the fixed replicate effect)
becomes

V ∗ = QnV Qn (5)

where Qn = In − n−1 Jn . So from (4) and (5),

V ∗ = σ 2Qn + φ�+
n (6)

where �+
n = −QnLnQn as given in Eq. (10) of Williams (1986) is the Moore–Penrose

inverse of�n , themodified second difference operator as given byPatterson in the discussion
of Wilkinson et al. (1983), namely

�n = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · · · · 0

−1 2 −1
...

0 −1 2 −1
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . −1 2 −1

0 · · · · · · 0 −1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

2
DT
n Dn (7)

where

Dn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · · · · 0

0 1 −1
...

0 0 1 −1
. . .

...
...

. . .
. . .

. . .
. . . 0

...
. . . 1 −1 0

0 · · · · · · 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8)

is an (n − 1)×nmatrix generatingfirst differences.On the other hand, for incomplete blocks,
Williams (1986) has Eq. (8) as V = In+γ PB−φF , where PB is the block projectionmatrix
and F is block-diagonal with components 3Lki /

(
k2i − 1

)
, and in the absence of incomplete

blocks, the variance matrix for the reduced model becomes equivalent to the form in (6)
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above.Our exposition in this section is tailored to designs having several complete replicates,
where n is the number of plots per replicate, but the sweep operator could also be applied
with non-resolvable designs to remove the overall intercept, where n would be the total
number of plots, leading to results equivalent to the ones presented in this section.

2.2. RANDOM WALK MODEL

Besag and Kempton (1986) propose a model that assumes first differences to remove
trend. Let ui denote spatially correlated trend value for the i th plot. Then the assumption is
that first differences ui − ui−1 = ri are independently distributed with ri ∼ N (0, λ), such
that ui = ui−1+ri defines a non-stationaryRW(Lee et al. 2006, p. 233). Besag andKempton
(1986) consider the model for first differences, involving Dnu = r ∼ N (0, λIn−1), where
here u denotes the vector of spatially correlated plot errors for a single replicate. There is a
need to introduce an extra (imaginary) boundary plot to start the RW and impose a border
constraint. One option is u0 = 0 for an imaginary plot next to the first, leading to (Lee et al.
2020) u1 = u0 + r1 and hence

ui = r1 + · · · + ri for i = 1, . . . , n and (9)

var(u) = λSn , where (10)

Sn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · · · · 1

1 2 2
...

1 2
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . n − 2

... n − 1 n − 1
1 · · · · · · n − 2 n − 1 n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11)

In relation to model (1), we have Sn = �n and λ = σ 2
u . Here, the variance increases linearly

with increasing index i along the spatial axis. Alternatively, we may start the RW at the
other end, imposing the constraint un+1 = 0, yielding the RW ui−1 = ui − ri , such that
(Lee et al. 2020)

ui = −rn − · · · − ri and (12)

var(u) = λTn , where (13)

Tn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n n − 1 n − 2 · · · · · · 1
n − 1 n − 1 n − 2

...

n − 2 n − 2
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 1

... 2 1
1 · · · · · · 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)
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Now the variance decreases linearly with i . With these specifications, adding error and a
general intercept for the replicate, the variance–covariancematrix of the data may be defined
as either

V = σ 2 In + ηJn + λSn or (15)

V = σ 2 In + ηJn + λTn (16)

Noting that 2Sn = 1ncT +c1Tn −Ln with cT =
(
1 2 . . . n

)
and 2Tn = 1ncT +c1Tn −Ln

with cT =
(
n n − 1 . . . 1

)
, it follows that in both cases V ∗ = QnV Qn takes the same

form as in Eq. (6) with φ = 1
2λ, implying that LV and RW are equivalent when a fixed

intercept for replicates is fitted.

2.3. P-SPLINES

P-splines were introduced by Eilers and Marx (1996) as a general combination of B-
splines (De Boor 1978) of arbitrary degree and arbitrary order of difference penalty. They
used a B-spline basis with equidistant knots. For example, Fig. 1 gives a first degree B-spline
basis, Fig. 2 a cubical B-spline basis. An important property of B-splines is that they are
locally defined, which makes them computationally attractive. For example, the first-degree
B-spline in Fig. 1 is nonzero on the interval [0,2], the second one on [1,3] etc. Another
important property of B-splines is that their sum is equal to one (De Boor 1978), which
makes them attractive as a natural extension of design matrices. P-splines have been used
in a wide range of applications, for a recent overview see Eilers et al. (2015). For the field
trials described in this paper all data are observed on an equidistant grid, and a first-degree
B-spline basis amounts to the use of an the identity matrix as a basis. See also Fig. 1, where
we can place the plot positions at the knots 1, 2, …, 8. Note that using the identity matrix
leads to the Whittaker smoother (Whittaker 1923; Eilers 2003; Eilers et al. 2015).

To introduce general B-splines into our mixed model, the random effect u (1) would be
replaced with Zu, where Z = Ir ⊗ B and B is an n × q matrix of a B-spline basis for q
knots (see Figs. 1, 2 for examples), with B1q = 1n . This extension includes (1) as a special
case, with B = In for first-degree B-splines and q = n, and here we restrict attention to this
case, for which Zu = u. The regression coefficients u in (1) are assumed to be random with
variance–covariance matrix var(u) = G with G = Ir ⊗ σ 2

u �n (see Eq. 3). For penalized
spline (P-spline) modelling, G involves a contrast matrix Dn , which determines the penalty
term (Ruppert et al. 2003). Here, we will use the first difference penalty based on Dn as
defined in (8).

A P-spline representation as a mixed model may be based on a spectral decomposition
of the matrix DT

n Dn = 2�n = Udiag (d)UT with UTU = In (Welham et al. 2007; Wand
and Ormerod 2008), where d is the vector of eigenvalues (sorted from largest to smallest)
and U is a matrix containing the corresponding eigenvectors. For first-order differences,

there is one zero eigenvalue, with corresponding eigenvector
√

1
n 1n . The n − 1 positive

eigenvalues are denoted by dz , where dz is a (n − 1) × 1 vector, with corresponding eigen-
vectors in the columns of the n × (n − 1) matrix Uz . The nonzero eigenvalues are equal to
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Figure 1. Example of a first-degree B-spline basis for a continuous coordinate x .

Figure 2. Cubical B-spline basis for a continuous coordinate x .

2 [1 − cos (iπ/n)] for i = 1, 2, . . . , n − 1 (Williams 1985). With these results, our mixed
model for P-splines is given by Wand and Ormerod (2008) as

y = Xgβg + Xrβr + Z̃w + e (17)
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with Z̃ = Ir ⊗ BUzdiag
(
d−1/2
z

)
and var(w) = Ir ⊗ σ 2

u In−1. The random effect term may

now be re-written as u = Z̃w, where u =
[
Ir ⊗Uzdiag

(
d−1/2
z

)]
w, such that

�n = Uzdiag
(
d−1
z

)
UT
z = 1

2
�+

n (18)

In (18) we have made use of the fact that the Moore-Penrose inverse of the singu-
lar matrix �n can be computed from its spectral decomposition by simply inverting the
nonzero eigenvalues (Bronson 1989, p.193). Lee et al. (2020, Results 1 and 2) show that the
covariance can be uniquely characterized by the singular form in (18), provided the linear
model contains a fixed effect with design matrix X0, such that �+

n X0. In the case at hand,
a fixed intercept per replicate, i.e. X0 = 1n , meets this requirement. The P-spline penalty
is uTj �

+
n u j/σ

2
u = 2uTj �nu j/σ

2
u = uTj D

T
n Dnu j/σ

2
u , where u j is the sub-vector of u corre-

sponding to the j th replicate. From (18), we find that V = σ 2 In +σ 2
u �n = σ 2 In + 1

2σ
2
u �+

n ,
which after sweeping out the replicate mean, i.e. pre- and post-multiplication with Qn ,
yields V ∗ = σ 2Qn + 1

2σ
2
u �+

n , showing that this kind of P-spline is equivalent to LV with
φ = 1

2σ
2
u (see Eq. 6) and hence to RW.

Subsequently in this paper,whenweuse the plain termP-spline for simplicity, it is implied
that the P-spline is of this particular kind unless stated otherwise, i.e. it has a first-degree
B-spline basis, a knot placed at every plot and a first-difference penalty.

3. APPLICATION OF THE ONE-DIMENSIONAL MODELS

Hereweuse the spring oats data reported in John andWilliams (1995, p.146) to investigate
the one-dimensional models (Fig. 3a). The response is grain yield in kg per hectare. The
design was an alpha design with 24 varieties, three replicates and six incomplete blocks
of size four per replicate. The 72 plots were arranged in a single linear array. The models
fitted always comprised fixed effects for varieties and replicates, but differed with regard to
effects for blocks within replicates, which were assumed absent (Sect. 3.1), fitted as fixed
(Sect. 3.2), or fitted as random (Sect. 3.3). If no spatial covariance is included, these models
constitute a baseline that represents the randomization structure. For resolvable designs, as
in this example, replicates would always be fitted as fixed effect in these models because
this ensures the effect cannot drop out and because there is no inter-replicate information
to be recovered and any differences between replicates can be removed in this way (John
and Williams 1995). Fitting a replicate effect allows a chunk of variation to be removed
orthogonal to treatments and this results in a smaller block variance component and hence a
better recovery of inter-block information. For example,when replicates need to be harvested
at different dates owing to logistical reasons, any date effects can be removed via the replicate
effects. We note that a baseline model with an effect for incomplete blocks would normally
be the randomization-based starting point of analysis, followed by an exploration whether
addition of a spatial variance–covariance structure improves model fit (Piepho andWilliams
2010).Whenblock variance is low, analysiswithout a block effect and assuming independent
plot errors would have a backing in randomization theory (Speed et al. 1985) and so provides



684 M. P. Boer et al.

a viable baseline in Sect. 3.1. Different spatial models were fitted, i.e. LV, RW and P-splines.
When blocks were fitted, spatial covariance was generally modelled within blocks, whereas
different blocks were assumed independent. All models are fitted by residual maximum
likelihood assuming normality of random effects. The fit statistics reported are −2 log LR,
where LR is the maximized residual likelihood, and AIC = −2 log LR +2p, where p is the
number of fitted variance parameters with estimates unequal to zero. All variance parameter
estimates were constrained to be non-negative. All analyses were done using the GLIMMIX
procedure of SAS. For P-splines, the type=pspline structure was employed.

3.1. RESULTS FOR MODEL WITHOUT BLOCK EFFECTS

The fitted P-spline is shown in Fig. 3b. Fit statistics shown in Table 1 confirm the equiv-
alence of LV, RW and P-splines. These models fit better than the baseline model, which
only had an independent plot error with variance σ 2. We fitted the same models allowing
the spatial covariance to extend across the whole field. As expected from theory (Williams
et al. 2006), the fits were identical to those restricting spatial covariance to occur only within
replicates (results not shown; full SAS code available in Supplementary Information). To
illustrate the flexibility of P-splines, we also fitted a third degree B-spline with 12 segments,
corresponding to knots at half the number of plots per replicates. As can be seen from Fig. 4,
the predicted plot effects u for LVmodel and cubic P-splines are similar, as are the predicted
genotype means (Fig. 5). The fit of the cubic P-spline is slightly inferior to the first-degree
models in terms of AIC.

For comparison, we also fitted several nonlinear spatial models, i.e. AR(1), Gaussian,
spherical and Matérn (Schabenberger and Gotway 2004), both with and without nugget
variance. Results in Table 2 indicate that these nonlinear models gave fits that were compa-
rable in AIC to the linear models in Table 1. It is noteworthy that with the AR(1) model the
autocorrelation θ converges to a value close to unity, meaning that the spatial covariance
is nearly confounded with the fixed effect for replicates (Piepho et al. 2015). This, in turn,
explains why the spatial variance σ 2

s converges to a value that is much larger than for the
other spatial models, in particular the AR(1) model without nugget. The Matérn model is
afflicted with a similar problem, indicated by the excessively large values for σ 2

s in the
models with and without nugget variance.

3.2. RESULTS FOR FIXED BLOCK EFFECTS

We here additionally fit a fixed block effect nested within replicates, meaning that inter-
block information is not utilized. This analysis is presented mainly for illustration of equiv-
alence; in practice blocks would normally be fitted as random for recovery of information.
The spatial covariance is assumed to only extend to pairs of plots in the same block. The fit
statistics in Table 3 again confirm the equivalence of all spatial models. In this case, spatial
modelling does not provide any improvement in fit, indicating that the blocks did a good
job capturing most of the spatial trend.
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(a)

(b)

Figure 3. a Raw data of the oats data set. The dashed red horizontal lines are the means of the replicates, and are
spatial effects. b The black points show the spatial trend for the P-spline model, modelled as replicate effect plus
correlated plot effects within replicates. The dashed red lines are the replicate effects.
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Figure 4. Comparison of plot effects u for the oats data. The red points are the estimates for the LV model and
equivalent to first-order P-splines. The black curve is based on P-splines, using a third degree B-splines with 12
segments, so half the number of plots per replicates.

Table 1. Fit statistics for one-dimensional LV, RW and P-spline models fitted to spring oats data in John and
Williams (1995, p. 146) when no effects are fitted for blocks within replicates

Model −2 log LR AIC σ 2 φ/λ/σ 2
u

Baseline 69.91 71.91 0.1346 –
LV 54.49 58.49 0.05742 0.009802
RW (Sn ) 54.49 58.49 0.05742 0.01960
RW (Tn ) 54.49 58.49 0.05742 0.01960
P-spline (1)§ 54.49 58.49 0.05742 0.01960
P-spline (3)§ 54.72 58.72 0.06721 0.03714

§(1) = first-order penalty; knots are plot positions; first-degree B-spline basis; implemented via type =
pspline(degree = 1 difforder = 1) in the SAS procedure GLIMMIX
§(3)= first-order penalty; third-degree B-spline basis with 12 segments; implemented via type = pspline(degree =
3 difforder = 1) in the SAS procedure GLIMMIX
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Figure 5. Comparison of estimated genotypic effects for the oats data, for LV model (equivalent to RW models
and first degree P-splines) and cubic P-splines using 12 segments per replicate (24 plots per replicate).

Table 3. Fit statistics for one-dimensional LV, RW and P-spline models fitted to spring oats data in John and
Williams (1995, p. 146) when fixed effects are fitted for blocks within replicates

Model −2 log LR AIC σ 2 φ/λ/σ 2
u

Baseline 51.58 53.58 0.08346 –
LV 50.88 54.88 0.04615 0.02285
RW (Sn ) 50.88 54.88 0.04615 0.04570
RW (Tn ) 50.88 54.88 0.04615 0.04570
P-spline§ 50.88 54.88 0.04615 0.04570

§First-order penalty; knots are plot positions; first-degreeB-spline basis. Implemented via type = pspline(degree =
1difforder = 1) in the SAS procedure GLIMMIX
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Table 4. Fit statistics for one-dimensional LV, RW and P-spline models fitted to spring oats data in John and
Williams (1995, p. 146) when random effects are fitted for blocks within replicates

Model −2 log LR AIC σ 2 σ 2
b
$ φ/λ/σ 2

u

Baseline 64.90 68.90 0.08523 0.06194 –
LV 62.36 66.36 0.01973 0 0.04272
RW (Sn ) 64.90 68.90 0.08522 0.06194 0
RW (Tn ) 61.04 65.04 0.04137 0 0.04633
P-spline§ 60.92 66.92 0.03820 0.03850 0.05427

§First-order penalty; knots are plot positions; first-degreeB-spline basis. Implemented via type = pspline(degree =
1difforder = 1) in the SAS procedure GLIMMIX
$Variance for blocks

3.3. RESULTS FOR RANDOM BLOCK EFFECTS

In the previous sub-section, blocks were modelled as fixed. Here, blocks are fitted as
random for recovery of inter-block information. This time, the equivalence of fits is lost
as expected (Table 4). Comparison to results in Table 1 indicates that an analysis without
effects for incomplete blocks, leaving the recovery of information entirely to the spatial
model component, is preferable in this case. In fact, when allowing the spatial correlation
to extend across the whole replicate and adding a random block effect to the model, the
variance for blocks converges to zero for all spatial models, leading to the fits in Table 1.
Obviously, the smooth component and the block component compete in capturing the spatial
trend, and in this case the former wins.

4. EXTENSION TO TWO DIMENSIONS

Next, we will consider extensions to two dimensions, where the variance–covariance
structure is additive in components that can be written as Vs ⊗ Vk , where Vs is a s × s
variance–covariance structure associated with the s columns within a replicate, Vk is a k×k
variance–covariance structure associated with the k rows within a replicate, and ⊗ denotes
the Kronecker product.

4.1. LINEAR VARIANCE MODEL

Piepho and Williams (2010, Eqs. 3 and 10) give

V = σ 2 In + κ Js ⊗ Jk + φ′
C Js ⊗ Mk + φ′

RMs ⊗ Jk + φ′
RCMs ⊗ Mk (19)

So looking again at V ∗ in (2), we get (following some algebra) after sweeping out the
replicates

V ∗ = QnV Qn = σ 2Qn + φ∗
C Js ⊗ �+

k + φ∗
R�+

s ⊗ Jk + φ′
RCQn (Ls ⊗ Lk) Qn (20)
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where φ∗
C = φ′

C+(s − 1) φ′
RC and φ∗

R = φ′
R+(k − 1) φ′

RC.Wemay also consider sweeping
out fixed row and column effects, leading to

V ∗∗ = (Qs ⊗ Qk) V (Qs ⊗ Qk) = σ 2Qs ⊗ Qk + φ′
RC�+

s ⊗ �+
k (21)

This form is useful in comparisons with the two-dimensional RW model considered in the
next sub-section.

4.2. RANDOM WALK MODEL

Consider the ’locally quadratic representation’ proposed by Besag and Higdon (1999),
given by

ui j − ui−1, j − ui, j−1 + ui−1, j−1 = ri j (22)

where ri j ∼ N (0, λRC) is a random effect associated with the i th row and j th column. If
plots are ordered by columns and by rows within columns, this corresponds to the penalty
uT�+

RCu, where �RC = DT
n Dn/λRC with Dn = Ds ⊗ Dk . Hence, this model is equivalent

to fitting the variance–covariance matrix �RC = λRCD+
n D+T

n = 1
4λRC�+

s ⊗�+
k , provided

we also fit fixed effects X0 = (1sk, Is ⊗ 1k, 1s ⊗ Ik) (Lee et al. 2020). Thus, in this case we
also need to fit fixed row and column effects, and then the RWmodel is equivalent to the LV
model in Eq. (11). With resolvable designs, as considered in our examples, one also needs to
fit a fixed replicate effect, and row and column effects are then nested within replicates. We
may also replace the matrices �+

s and �+
k with Ss and Sk or Ts and Tk to obtain equivalent

fits when the model comprises fixed effects for rows and columns.
When fitting random row and column effects, we may also impose RW models for both

of these effects, amounting to variance–covariance structures �+
R = 1

2λR Js ⊗ �+
k and

�+
C = 1

2λC�+
s ⊗ Jk , providing an interesting alternative to the LV⊗LVmodel with random

rowand column effects. Thesemodelswill not be equivalent, norwill there be an equivalence
when replacing the matrices �+

s and �+
k with Ss and Sk or Ts and Tk in the RW model.

4.3. P-SPLINES

Using the fact that in the one-dimensional case the variance–covariance for a P-spline
with B = In and q = n is proportional to �+

n , a natural tensor-product extension (Ruppert
et al. 2003, p. 240) in two dimensions is to fit variance terms for Js ⊗ �+

k , �+
s ⊗ Jk and

�+
s ⊗ �+

k , which are mutually orthogonal. For a similar decomposition into main effects
and interaction effects see Verbyla et al. (2018), Wood et al. (2013) and Wood (2017, p.
233). We will have equivalence between LV, RW and P-splines when fitting fixed row and
column effects. With random row and column effects that equivalence will be lost. Here,
we have used first differences. If first differences were replaced with second differences, we
would obtain an interaction that is similar but not fully identical to the term fu,v (u, v) in
the smooth part of the SpATS model (Rodríguez-Álvarez et al. 2018).

In SpATS, there are two options to model the smooth part. The first one is based on so-
called overlapping penalties, based on a proposal laid down in detail in Rodríguez-Álvarez
et al. (2015) and further extended in Rodríguez-Álvarez et al. (2019). These overlapping
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Table 5. Fit statistics for two-dimensional LV, RW and P-spline models fitted to wheat data of Gilmour et al.
(1997) when fixed effects are fitted for rows and columns within replicates

Model −2 log LR AIC σ 2 φ′
RC/λRC/σ 2

u(RC)

Baseline 1769.86 1771.86 2421.48 –
LV 1753.81 1757.81 1621.75 66.352
RW (S) 1753.81 1757.81 1621.75 265.41
RW (T ) 1753.81 1757.81 1621.75 265.41
P-spline§ 1753.81 1757.81 1621.75 265.41

§First-order penalty; knots are plot positions; first-degree B-spline basis. Implemented by fitting a variance–
covariance matrix proportional to 1

4�+
s ⊗ �+

k

penalties are not directly available in linear model packages and so are not considered here.
Another option is the P-spline ANOVA decomposition (Lee and Durban 2011; Rodríguez-
Álvarez et al. 2018), which leads to five variance components for second differences, and
three variance components for first differences as used here.

4.4. EQUIVALENCE WHEN THE INTERACTION TERM IS OMITTED

When the interaction terms are dropped, i.e. Sk ⊗ Ss or Tk ⊗ Ts for RW, �+
s ⊗ �+

k for
P-splines, and Mk ⊗ Ms for LV, we obtain equivalence also with random row and column
effects. For example, it can be shown that

Qn (Jk ⊗ Ms) Qn

= 2Qn (Jk ⊗ Ss) Qn = 2Qn (Jk ⊗ Ts) Qn = Qn
(
Jk ⊗ �+

s

)
Qn = Jk ⊗ �+

s (23)

5. APPLICATION OF THE TWO-DIMENSIONAL MODELS

We here use the wheat trial of Gilmour et al. (1997) that was also considered in Piepho
and Williams (2010; Example 2). The trial comprised three replicates, 22 rows and five
columns within replicate. The models fitted always comprised fixed effects for varieties and
replicates, but differed with regard to effects for rows and columns nested within replicates,
which were either fitted as fixed (Sect. 5.1) or as random (Sect. 5.2). Spatial covariance
was assumed among all plots in a replicate, but replicates were independent. All variance
parameter estimates were constrained to be non-negative. All analyses were done using the
GLIMMIX procedure of SAS. For P-splines, the specification type = pspline could not be
employed. Instead, we provided 1

2 Js ⊗ �+
k ,

1
2�

+
s ⊗ Jk and 1

4�
+
s ⊗ �+

k via type = LIN(p)
structures.

5.1. RESULTS FOR FIXED ROW AND COLUMN EFFECTS

The results in Table 5 confirm the equivalence of all models when fitting fixed effects for
rows and columns.
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Table 6. Fit statistics for two-dimensional LV, RW and P-spline models fitted to wheat data of Gilmour et al.
(1997) when random effects are fitted for rows and columns within replicates

Model −2 log LR AIC σ 2 σ 2
r

$ σ 2
c

& φ′
R/λR/ σ 2

u(R)
φ′
C/λC/ σ 2

u(C)
φ′
RC/λRC/ σ 2

u(RC)

Baseline 2574.24 2580.24 2391.01 843.32 12226 – – –
Models without interaction term
LV 2561.91 2571.91 2388.76 363.31 3541.06 60.24 3706.06 –
RW (S) 2561.91 2571.91 2388.85 363.28 3571.93 120.48 7356.95 –
RW (T ) 2561.91 2571.91 2388.85 363.28 3571.93 120.48 7356.95 –
P-spline§ 2561.91 2571.91 2388.85 363.28 3571.93 120.48 7356.95 –
Models with interaction term
LV 2543.49 2553.49 1638.27 342.34 3595.47 0 2122.20 59.40
RW (S) 2541.99 2551.99 1695.25 257.82 2621.66 0 6937.41 188.52
RW (T ) 2552.55 2564.55 1780.03 214.06 4461.05 207.69 4921.93 159.70
P-spline§ 2541.68 2553.68 1594.30 422.74 3611.80 148.64 7354.56 275.54

§First-order penalty; knots are plot positions; first-degree B-spline basis. Implemented by fitting variance–
covariance matrices for 1

2 Js ⊗ �+
k ,

1
2�+

s ⊗ Jk and 1
4�+

s ⊗ �+
k ; in model without interaction, this can also

be obtained using type = pspline(degree = 1 difforder = 1)
$Variance for row blocks
&Variance for column blocks

5.2. RESULTS FOR RANDOM ROW AND COLUMN EFFECTS

Here we fitted spatial structures not only for the plots, but also for rows and columns
within replicates as described in Sect. 4. Thus, for example, the RWmodel for Tn contained
variance terms for Jk ⊗ Ts , Tk ⊗ Js and Tk ⊗ Ts . For the P-spline models, the components
were Js ⊗�+

k ,�
+
s ⊗ Jk and�+

s ⊗�+
k . The LVmodel contained terms for Jk ⊗Ms , Mk ⊗ Js

and Mk ⊗ Ms . We also considered additive models, were the interaction term was dropped,
that is, we dropped Sk ⊗ Ss or Tk ⊗ Ts for RW, �+

s ⊗ �+
k for P-splines, and Mk ⊗ Ms

for LV. Results in Table 6 demonstrate that the full models are not equivalent when fitting
random row and column effects, but equivalence is achieved when the interaction term is
dropped as expected. The nonlinear AR(1)⊗AR(1) model with nugget yields a deviance of
2538.41 and anAIC of 2548.41 (Piepho andWilliams 2010), which is slightly better than the
linear models with interaction terms. When the nugget was dropped, the deviance and AIC
rose to 2554.95 and 2564.95, respectively, indicating that the nugget is clearly needed. For
various variations of this model applied to the same data, including purely spatial models
for within-field heterogeneity that do not have randomization-based replicate effects, see
Verbyla (2019).

6. DISCUSSION

This paper has demonstrated that there are very close links between the LV model as
proposed byWilliams (1986), RWmodels as introduced by Besag and Kempton (1986) and
first-degree P-splines with first difference penalty. Thus, what may seem like an entirely
new methodology for field trials (i.e. P-splines) is in fact rooted in similar proposals made
several decades ago.
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When the model is extended to two dimensions and when random effects are fitted for
rows and columns, full equivalence holds when the interaction term is excluded (Table 6)
but not otherwise, and the choice between these models may make a slight difference. The
complexity of these models is comparable, and so there should be little practical difference
between them.

P-splines provide a very rich class of smoothing models, which hold much promise for
application in large plant breeding trials. An advantage of P-splines over LV and RWmodels
(shared by many nonlinear spatial models) is that they can also be applied when plots are
not equally spaced. Also, the number of knots can be smaller than the number of plots. The
recently proposed modelling approach called SpATS (Rodríguez-Álvarez et al. 2018) is a
case demonstrating the great versatility of the framework. It uses second differences rather
thanfirst differences as penalties and also uses higher-degreeB-splineswith a limited number
of knots. Themain challengewith P-splines is that some choices need to bemade, such as the
number of segments and the degree of the B-spline basis. Rodríguez-Álvarez et al. (2018)
show that the results from SpATS based on second differences (five parameters) are very
similar to those from the LV model which uses first differences (three parameters). Hence
it is possible that a SpATS model based on first differences could provide a simpler but
still effective approach. This suggestion would be consistent with the early findings on
spatial adjustment mentioned in the Introduction. Note that the performance of P-splines is
deemed relatively insensitive with respect to the specific choice of penalty and spline basis,
as well as the number of knots, and that there is usually some compensating effect between
these components, so long as the choice provides sufficient flexibility to accommodate the
underlying trends (Wood 2006, p.161).

A major computational advantage of all spatial models considered in this paper is that
they are linear in the variance parameters, meaning that convergence is usually quick and
stable. This is in contrast to nonlinear spatial models, where numerical problems such as
lack of convergence to the maximum of the likelihood, dependence on good starting values
and large numbers of iterations are common with some models (Diggle and Ribeiro 2007,
p. 114; Slaets et al. 2020). In our experience convergence issues are particularly pertinent
when a nugget effect, i.e. an independent error term e is fitted in addition to a spatially
correlated component u (Piepho et al. 2015; Velazco et al. 2017; Rodríguez-Álvarez et al.
2018). For example, it may happen with nonlinear models that the correlation structure for
u converges to either an identity matrix (I ) or to a square matrix of ones (J ), in which case
there is confounding with either the nugget or the intercept (replicate effect), thus causing
numerical problems. It is a common experience, however, that a nugget effect is frequently
needed (H. D. Patterson in the discussion of Wilkinson et al. 1983; Pilarcyk 2009; Piepho
and Williams 2010), so omitting this effect, and be it only to achieve easier convergence,
is not advisable. As a conservative modelling approach, we suggest that a nugget should
always be included. A good thing about all linear models considered in this paper is that a
nugget is always included with necessity.

LV and RW models have the advantage that the inverses of the variance–covariance
matrices are sparse (see “Appendix”). Figure 6 gives the nonzero elements of the mixed
model coefficient matrix for the LV and P-splines model, showing that the LV one is sparser
than the P-spline one. Algorithms from sparse matrix algebra can be used to find the REML
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Figure 6. Graphical representation of mixed model equation coefficient matrix for a one-dimensional LV model
and b one-dimensional P-spline for the oats data.

estimates in an efficient way (Misztal and Perez-Enciso 1993; Smith 1995;Meyer and Smith
1996).

Our results have focused onmodels with fixed genotypic effects but equivalence relations
hold equally when genotypes are modelled as random, which is becoming increasingly
common in breeding programs (Cullis et al. 2020; Heslot and Feoktistov 2020). Note that
our equivalence relations rely on a model reduction for fixed block effects, and the model
reduction does not alter the estimates of any other effects in themodel (DeHoog et al. 1990).
This general result means that our findings apply equally to models with fixed or random
genotypic effects.

We would like to re-iterate that for the linear covariance models considered in this paper,
model fits are identical regardless of whether covariance is allowed to extend only within
replicates or across replicates. The reason for this equivalence is that the presence of a fixed
effect for replicates absorbs any correlation at the replicate boundary (Williams et al. 2006).
The same equivalence relations apply with fixed incomplete block effects, but they do not
hold for models with random block effects. In practice, analysis assuming random block
effects will usually be preferred as this allows inter-block information to be recovered. Our
empirical results suggests that the different linear covariance models provide comparable
fits, and where necessary model choice may be guided by likelihood-based criteria as usual
(Verbyla 2019).

The equivalence, in the presence of a fixed replicate effect, between linear covariance
models with correlation extending across the whole trial vs. correlation confined within
replicates does not carry over to nonlinear models such as AR(1). It may be noted, however,
that LV, and hence RW and P-splines, can be seen as a first-order approximation of the
most commonly used non-linear AR(1) model (Piepho and Williams 2010) and are in fact a
limiting form of AR(1) as the correlation parameter approaches one; Williams et al. (2006)
note that in practice, estimates of this parameter are often quite high. This was also evident
in the oats data. When correlation was confined within replicates, the AR(1) autocorrelation
converged to 0.9962, and then likelihood was indistinguishable from that of the linear
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models (Tables 1, 2 ). When the correlation is allowed to extend across the whole field, the
correlation converges to the boundary of 1.0, and again the likelihood is identical to that of
the linear models in Table 1.

All SAS code used to perform the analyses for the two examples is provided as Supple-
mentary Electronic Material, along with the two published datasets.
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APPENDIX

The precision matrix of the LV and RW models is of the general form

�−1
n = α

(
2�n + cnc

T
n

)
(A1)

where α is a constant and cn is a vector of length n, with condition cn �= 0. For the LV
model, we have

�−1
n = M−1

n = 1

2

(
2�n + cnc

T
n

)
with cTn =

(√
1

n−1 0 0 · · · 0 0
√

1
n−1

)
(A2)

Similarly, for the two RW models we find

�−1
n = S−1

n = 2�n + cnc
T
n with cTn =

(
1 0 0 · · · 0 0

)
(A3)

and

�−1
n = T−1

n = 2�n + cnc
T
n with cTn =

(
0 0 · · · 0 0 1

)
(A4)

Obviously, the precision matrices for LV and RW are sparse because of the sparsity of
both �n and cn .
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