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Optimal Design of Experiments for Hybrid
Nonlinear Models, with Applications to
Extended Michaelis–Menten Kinetics

Yuanzhi Huang, Steven G.Gilmour , KalliopiMylona, and Peter Goos

Biochemical mechanism studies often assume statistical models derived from
Michaelis–Menten kinetics, which are used to approximate initial reaction rate data
given the concentration level of a single substrate. In experiments dealing with indus-
trial applications, however, there are typically a wide range of kinetic profiles where
more than one factor is controlled. We focus on optimal design of such experiments
requiring the use of multifactor hybrid nonlinear models, which presents a considerable
computational challenge. We examine three different candidate models and search for
tailor-made D- or weighted-A-optimal designs that can ensure the efficiency of nonlinear
least squares estimation. We also study a compound design criterion for discriminating
between two candidate models, which we recommend for design of advanced kinetic
studies.
Supplementary materials accompanying this paper appear on-line
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1. INTRODUCTION

Both empirical experimental research and physical and chemical theory play important
roles in the applied biological sciences. Mechanistic models built from widely accepted and
validated theories can help understanding and optimization of processes, though experimen-
tal data are often still required to validate themodel and/or to estimate some unknown param-
eters in the models. Such experiments should be designed carefully to meet the research
objectives, and optimal design of experiments (DoE) has an important role to play in ensur-
ing the experiments produce informative data. The purely mechanistic models typically
represent the effects of a single treatment factor on the response and are usually nonlinear.
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When theory does not suggest a specific model, on the other hand, purely empirical
models are used. This is often the case in experiments withmultiple treatment factors, whose
effects on the response, including interactions, need to be understood. In such experiments,
the use of polynomial linear regression models to approximate the response surface is
widespread. In this context, DoE is essential not only for parameter estimation, as with
mechanistic models, but also for model selection and testing.

In reality, the distinction between mechanistic and empirical models is not so clear-cut.
If theory gives the model form for the effect of a factor on the response, this model would be
used in a single-factor experiment. However, it might be that this factor is only one among
several which are being studied and there is no theory for the combined effects of all of the
factors. Rather than abandoning the theory and using a purely empirical model, we should
use a hybrid model, which reduces to the mechanistic model when the levels of all other
factors are fixed, but uses an empirical form for the effects of these other factors on the
response. Such hybrid models are used fairly extensively, though often rather informally,
but we believe they should probably be used much more. Like for any other models, it is
important to design experiments that allow the parameters of these hybrid models to be
estimated efficiently and facilitate the selection and testing of the empirically chosen model
parts. This paper develops optimal designs for such experiments.

Here, we focus on experiments on biochemical mechanisms involving kinetics leading
to the Michaelis–Menten (M–M) model and its extensions. Such models are often seen in
applied biosciences in areas including agriculture, environmental science, chemical engi-
neering and drug development (PK/PD modeling). The nonlinear M–M model is derived
as the stable solution of a set of theoretical differential equations with respect to the time
course of a biochemical reaction. It describes the mechanistic association between the initial
reaction rate ν and the (initial) substrate (i.e. the reaction reagent) concentration S. With the
substrate concentration chosen in n experimental runs, the M–M model is written as

νi = νmaxSi
k + Si

+ εi , for i = 1, 2, . . . , n, (1)

where νi is the initial reaction rate at observation i , Si is the substrate concentration used
at that observation, εi denotes the corresponding random error, νmax is a parameter giving
the maximal reaction rate, and k is a parameter called the Michaelis constant. Despite the
one-factor structure, the two nonnegative parameter values of the M–M model depend on
conditions such as the temperature and reaction time, different values of which could result
in different kinetic profiles.

In general, a nonlinear regression model takes the form

Yi = f (xi ; θ) + εi , (2)

for observations i = 1, . . . , n. In this expression, Yi is the response at observation i , xi
is the vector of factor settings at that observation and θ is the vector of model parameters
θ1, θ2, . . . , θp. For nonlinear least squares (NLS) estimation, the errors εi are assumed to
be uncorrelated and have constant variance σ 2. The covariance matrix of the parameter
estimators, σ 2(FTF)−1, can then be written in terms of the model matrix F, the (i, j)th
element of which is given by
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Fi j = ∂ f (xi ; θ)

∂θ j
.

Depending on both the unknown “true” parameter values and the chosen factor levels
of the design X, FTF is identical to the Fisher information matrix, which measures the
informativeness of the design.

While the M–Mmodel gives a reliable approximation to the simplest biochemical mech-
anisms (e.g. for two-step reactions), more advanced kinetic studies require more complex
nonlinear models. Such kinetic models, derived from a number of differential equations and
reaction rate laws, are often written in terms of rational functions in the initial substrate
concentration; e.g. see Wong (1975) for the biochemical theory and Wang et al. (2019) for
recent work on parameter estimation. We can treat (1), a first-order rational function, as a
special case of the higher-order kinetic models. In model-oriented studies, we need to build
one or several reasonable tentative models based on relevant theories. The data collected
would be used to estimate the treatment effects and unknown kinetic constants, requiring
careful allocation of factor levels to different runs of the experiment.

Both standard and optimal design approaches can improve statistical results expected in
treatment comparison, parameter estimation, statistical inference and model discrimination
(Cornish-Bowden 2014). Standard multifactor designs are appropriate for purely empiri-
cal modeling. Apart from basic full factorial designs (such as 2q or 3q designs), central
composite designs and Box–Behnken designs are commonly used for kinetic studies and
second-order linear models are assumed to analyze the data. Nevertheless, in the event that
a mechanistic model developed from (1) is assumed, we should construct and use a tailor-
made optimal experimental design (OED) because the model is nonlinear in the kinetic
constants. OEDs are highly flexible in that they can deal with any model structure and any
constraints on the factor levels. Several authors have obtained approximate optimal designs
for two-factor experiments with models based on the M–M equation, e.g. Bogacka et al.
(2011), Chen et al. (2017) and Schorning et al. (2018). In this paper, we focus on exact
designs, since they are more easily generalizable to more than two factors.

In Sect. 2, we introduce three nonlinear candidate models that might describe a two-
factor M–M mechanism. DoE for such models is of considerable value but has received
little attention in the literature. One interesting question we try to answer is to what extent
the partially linear structure of eachmodel canbe exploited to simplify the resultingOED.We
will use data from an experimental investigation of a similar M–M mechanism. Our results
in Sects. 3 and 4 are based on the assumed model(s) and the parameter priors we calculate
using these reference data. The same idea should fit various other applications in agriculture,
environmental science, chemical engineering and medicine, as we discuss in Sect. 5.

2. MULTIFACTOR NONLINEAR KINETIC MODELS

2.1. ALTERNATIVE MODELS

While the M–M model can be used in theoretical studies of one-factor mechanisms, we
focus on OED for multifactor M–Mmechanisms requiring an extension of (1). In advanced
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kinetics studies, often in an industrial context, there could be several factors to investigate but
no biochemical theory explaining how these factors affect the reaction rate simultaneously.
As factors such as temperature and pH influence M-M kinetics, a multifactor model should
be used to describe the extended reaction mechanism. Common practice is to assume an
empirical model that is, for instance, a second-order polynomial. However, since one of the
factors is the substrate concentration defined in (1), when all other factors are held constant,
the M–Mmodel should hold as well. Therefore, it makes sense to assume a “hybrid model,”
which could contain both M–M kinetics and some empirical model elements, as the best
approximation to the kinetic data at hand. Similar models for multifactor response surfaces
can be seen in Bogacka et al. (2017), Moyano et al. (2018), Strouwen et al. (2019) and
Weilandt and Hatzimanikatis (2019).

Let x be a controlled variable in addition to the substrate concentration S. Then we can
revise (1) to get, for instance, the Additive Model

νi = (a0 + a1xi + a2xi 2)Si
k + Si

+ εi , for i = 1, 2, . . . , n. (3)

The Additive Model is considered to be partially linear, as it involves a second-order
linear predictor in x , which assumes a linear (in the parameters) relationship between x
and the reaction rate ν when the substrate concentration is fixed, but reduces to the M–M
model when x is fixed. The model parameters are k, a0, a1 and a2. This linear predictor in
x can be modified before we decide on the most suitable model structure. It is also possible
to substitute k with another linear function in x , though that could lead to an undesirably
complex model and, in many biochemical mechanisms, factors such as the temperature and
pH affect the response, but not the Michaelis constant.

In the Additive Model, we substitute the maximum reaction rate νmax (a nonnegative
parameter) with a linear function in x which can be negative. As an alternative, we can
transform the linear function to derive the Exponential Model

νi = exp(a0 + a1xi + a2xi 2)Si
k + Si

+ εi , for i = 1, 2, . . . , n. (4)

Again, when xi is fixed, we obtain the M–M equation, but, this time, fixing S gives a simple
nonlinear model in x .

This transformation also makes assumptions about the distribution of the errors ε, the
structure of which can be additive, multiplicative, or something else. We have to speculate
about the unknown error structure and thatmight indicate a differentmodel too. For instance,
Cornish–Bowden (2004, chap.140) conceived a M–M model of the form

νi = νmaxSi
k + Si

(1 + εi ),

where εi is a normal random variable as part of the multiplicative error function. When the
error term is not additive, the classical assumptions (e.g. constant variance) for NLS would
be invalid. In this case, a transform-both-sides (TBS) model (Carroll and Ruppert 1984;
Ruppert et al. 1989) can be used to stabilize the errors and better approximate the data.
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In (4), supposing ε
(1)
i indicates the additive error of the linear function in x , we assume

an error function exp(ε(2)
i ) and link it withM–M kinetics (this function is sensible given that

the error has a potential to increase with the substrate concentration). As we take account
of both error sources, the initial rate model can be written as

νi = exp(a0 + a1xi + a2xi 2 + ε
(1)
i )Si

k + Si
× exp(ε(2)

i ),

where ε
(1)
i and ε

(2)
i are independent, with ε

(1)
i ∼ N (0, σ 2

1 ) and ε
(2)
i ∼ N (0, σ 2

2 ). To derive
the Transformed Model that justifies the use of NLS, both sides of the above initial rate
model should be transformed such that

ν′
i = log(νi ) = log

(
Si

k + Si

)
+ a0 + a1xi + a2xi

2 + εi , (5)

where ε = ε(1) + ε(2) ∼ N (0, σ 2
1 + σ 2

2 ). In this case fixing Si gives a linear (in the
parameters) model in xi , while fixing xi produces the M–M model, but with multiplicative
errors. Given the assumed multiplicative error structure, the Transformed Model should fit
the data better than (4). When the true error structure is not known, as is usual in practice,
one has to examine each candidate model to find the most appropriate one.

2.2. ILLUSTRATIVE APPLICATION: A MICHAELIS–MENTEN MECHANISM

Martins et al. (1999) studied a biochemical reaction mechanism that can be linked to
pharmaceutical applications. In one of their kinetic studies, glyoxalase II was used as a
protein catalyst (i.e. the enzyme), and S-D-lactoylglutathione (i.e. substrate) concentration
levels S were set within the range [0.15, 3] mM (millimolars, the unit of concentration) in
a 2-ml (milliliters) mixture. The measured response was the initial rate ν of formation of
GSH, a form of the antioxidant glutathione (the desirable product), assumingM–Mkinetics.
Proteinweight E ∈ [0.02, 0.12]mg (milligram)was another controlled factor, in which case
M–M model (1) can be written as

νi = a1Ei Si
k + Si

+ εi , (6)

where k and a1 are unknown constants. As an alternative to (6), which is a pure mechanistic
model, we assume one ofmodels (3)–(5) that can be generalized to other case studies. Table 1
shows the 30-run reference design, which we approximated from the graphical illustration
in Martins et al. (1999), since the raw data are not available, a common problem recently
noted by Halling et al. (2018). We use this experiment as a proof of concept for two reasons.
First, model (6) is one of the simplest models one can assume for the kind of data in Table 1.
Second, Martins et al. (1999) presented two fitted models: fitted M–M model (1), based on
the 15 runs of the reference design with the protein weight fixed at 0.03, and a first-order
linear model in E , based on the other 15 runs with substrate concentration fixed at 1.5 mM.
The benefit of hybrid modeling is to combine the separate models, so that we can use all
the data to estimate fewer parameters and make optimal use of all available information.
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Table 1. Data of 30-run reference experimental design.

E S 100ν E S 100ν E S 100ν

0.023 1.5 0.0425 0.03 0.9 0.051 0.045 1.5 0.075
0.023 1.5 0.0475 0.03 0.9 0.0535 0.0675 1.5 0.13
0.023 1.5 0.0475 0.03 1.5 0.057 0.0675 1.5 0.135
0.03 0.15 0.023 0.03 1.5 0.06 0.0675 1.5 0.1375
0.03 0.15 0.024 0.03 1.5 0.063 0.089 1.5 0.17
0.03 0.15 0.025 0.03 3 0.07 0.089 1.5 0.18
0.03 0.3 0.0355 0.03 3 0.07 0.089 1.5 0.19
0.03 0.3 0.0365 0.03 3 0.07 0.112 1.5 0.225
0.03 0.3 0.037 0.045 1.5 0.07 0.112 1.5 0.225
0.03 0.9 0.0485 0.045 1.5 0.075 0.112 1.5 0.225

If we fit mechanistic model (6) to the data in Table 1, the NLS estimates are ã1 =
2.422 (±0.098) × 10−2 and k̃ = 0.3290 (±0.0696). To minimize the variances of the
two estimators, we should use an OED, a design X of n runs that, for instance, maximizes
the D-criterion function φ0 = log|FTF|, the logarithm of the determinant of the Fisher
information matrix FTF. The criterion function involves the unknown parameter values,
which we should replace with prior values (e.g. the NLS estimates based on reference data).
For M–M model (6),

F =

⎡
⎢⎢⎣

E1S1
k+S1

− a1E1S1
(k+S1)2

...
...

E1Sn
k+Sn

− a1En Sn
(k+Sn)2

⎤
⎥⎥⎦

and theD-optimal design (at ã1 and k̃) canbederived from theGeneralEquivalenceTheorem,
as shown in Dette and Biedermann (2003) and Matthews and Allcock (2004). In this case,
this gives the 30-run D-optimal design

X =
(

(0.12, 0.2698) (0.12, 3)
15 15

)
, (7)

where the two optimal factor level combinations (E, S) are shown in the first row and the
corresponding numbers of replicates are shown in the second row. Overall, it seems much
easier to use the OED than the reference design and it also suggests that we can consider
reducing the total number of runs to, for instance, 10 with five replicate runs for each factor
level combination, although this depends on the required precision of the estimators. Dette
and Biedermann (2003) showed that the optimal design does not depend on a1, but does
depend on k. While the protein weight is fixed at its maximum (0.12 mg), we should use
the estimated value k̃ to determine the first substrate concentration at 0.2698. If design (7)
is used, although we cannot fit a model with more than two unknown parameters, it is the
most efficient for estimating (6).
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When we define a linear transformation x = (E − 0.07)/0.05 ∈ [−1, 1], as done
throughout this paper, and assume one of multifactor models (3)–(5), the OEDs cannot be
derived from theorems and it is necessary to optimize the experimental designs numerically.
We use a MATLAB implementation of the multiphase OED algorithm developed by Huang
et al. (2019), where the levels of the two controlled factors and the number of factor level
combinations are optimized iteratively according to theD-criterion for eachnonlinearmodel.
The multiphase OED algorithm involves a combination of the traditional Fedorov exchange
procedure (Fedorov 1972), a constrained Nelder–Mead method for continuous optimization
and a modified iterative procedure for factor level correction. For the designs we report in
the current paper, we executed the multiphase OED algorithm 30 times. All designs are
based on one prior value of the model parameters. Hence, we use the locally optimal design
approach to deal with the fact that OEDs depend on the unknown parameters.

In addition to the D-criterion, we also define and use a weighted-A-criterion to minimize
a weighted sum of the variances of the parameter estimators,

φ1 = Trace(W(FTF)−1),

where the weight matrix W is diagonal. We set the diagonal elements of W to be the
reciprocals of the variances calculated based on the D-optimal design. This approach gives
a reasonable default weighting, assuming equal interest in all parameters–see Gilmour and
Trinca (2012) for more details. In general, it is more difficult to optimize the weighted-
A-criterion with the Fedorov exchange procedure, but this criterion gives a more natural
summary of the parameter estimation properties of the design. To find weighted-A-optimal
designs, we adapted the multiphase OED algorithm of Huang et al. (2019).

For D-, weighted-A- and other optimality criteria, it is natural to define the efficiency of
a design with respect to the optimal design. The D-efficiency of a design is given by

( |FTF|
|F∗TF∗|

) 1
p

=
exp

(
φ0
p

)

exp
(

φ∗
0
p

) ,

and the weighted-A-efficiency of a design is given by φ∗
1/φ1, where F∗, φ∗

0 and φ∗
1 are

obtained from the corresponding optimal design.

3. OPTIMAL DESIGN OF EXPERIMENTS

3.1. MODEL (3): THE ADDITIVE MODEL

From the data in Table 1, the reference estimates of θ = {k, a0, a1, a2} of (3) are θ̃ =
{0.3191, 0.0016, 0.0012, 0.0001}, which we take as the prior values for evaluating the D-
and weighted-A-criterion functions. As a benchmark, the D-criterion function value of the
reference DoE in Table 1 is φ0 = − 9.0594 and the weighted-A-criterion function value
is φ1 = 40.3671. A natural alternative benchmark design would be five replicates of the
3 × 2 factorial design, with levels 0.02, 0.07 and 0.12 for x and 0.2698 and 3 for S, which
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has φ0 = − 4.9392 and φ1 = 5.8285. For an OED of 30 runs, we find four factor level
combinations that give the D-optimal design for (3):

XD =
(

(0.02, 3) (0.07, 3) (0.12, 0.26) (0.12, 3)
8 8 7 7

)
. (8)

The D-criterion function value of the D-optimal design XD is −3.6864, so that the
reference design is exp(−9.0594/4)/exp(−3.6864/4) ≈ 26.10% D-efficient with respect
to (8) and the 3 × 2 factorial design is exp(−4.9392/4)/exp(−3.6864/4) ≈ 73.11% D-
efficient with respect to (8). The number of factor level combinations is equal to the number
of unknown parameters, in which case the four numbers of replicate runs should be close
to each other under the D-criterion (due to the factorization of the information matrix).
The factor level combinations in the D-optimal design were obtained by optimizing the
D-criterion function over the continuous factor space X = [0.02, 0.12] × [0.15, 3].

The optimal protein weight levels are 0.02, 0.07 and 0.12 in (8): the first and third of
these correspond to the minimum and maximum levels for this factor, whereas 0.07 is the
central level. These three levels are often seen in conventional OEDs for second-order linear
models. That these levels are optimal here too is not surprising, given the partially linear
form of the model and the inclusion of a quadratic effect of the protein weight. The two
optimal substrate concentration levels are 0.26 and 3. These levels are close to those in
(7). Consequently, design (8) is somewhat similar to a one-factor-at-a-time OED. On the
one hand, the 1st, 2nd and 4th factor level combinations contribute most to the estimation
of a0, a1 and a2, with 23 observations in total. On the other hand, the 3rd and 4th factor
level combinations are included in the design to estimate the parameter k of the mechanistic
function, with 14 observations in total.

With the Fisher information matrix and the parameter prior θ = {k, a0, a1, a2} obtained
from the reference experimental design, we calculate the 4 × 4 covariance matrix, for
illustrative purpose, for the 3 × 2 factorial design as

VF = σ 2M−1
0 = σ 2

⎛
⎜⎜⎜⎝

91800 79.432 60.267 5.0372
79.432 0.2513 0.0521 −0.1782
60.267 0.0521 0.1309 0.0033
5.0372 −0.1782 0.0033 0.2741

⎞
⎟⎟⎟⎠ ,

where σ 2 is an unknown constant that should be estimated from the experimental data. For
the D-optimal design XD, the covariance matrix is

VD = σ 2M−1
1 = σ 2

⎛
⎜⎜⎜⎝

48606 24.037 38.744 22.031
24.037 0.1649 0.0192 −0.1421
38.744 0.0192 0.1042 0.0144
22.031 −0.1421 0.0144 0.2363

⎞
⎟⎟⎟⎠ .

In the latter covariance matrix, all the variances of the four parameter estimators are
substantially smaller than in the former. Therefore, the D-optimal design is substantially
more efficient than the 3 × 2 factorial design.
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Table 2. Relative efficiencies (%) of experimental designs with respect to the optimal design.

Design Model (equation number) and criterion
(3) (4) (5) (4) and (16)

D WA D WA D WA Compound

(8) 100 95.69 93.20 81.40 70.42 53.94 –
(9) 97.65 100 91.87 76.97 73.36 60.87 –
(12) 88.38 78.73 100 92.52 63.96 50.89 44.24
(13) 85.57 75.83 94.14 100 68.26 52.91 47.71
(14) 72.77 71.92 68.59 59.57 100 96.17 –
(15) 76.03 79.63 71.64 63.52 97.98 100 –
(17) 89.11 85.73 91.24 82.66 64.11 52.09 100

The efficiencies in bold are for the criterion under which the corresponding design was obtained

Instead of calculating a D-optimal design, we can also compute a weighted-A-optimal
design and minimize φ1 instead of maximize φ0. The weighted-A-optimal design is

XWA =
(

(0.02, 3) (0.071, 3) (0.12, 0.21) (0.12, 3)
6 10 7 7

)
, (9)

the weighted-A-criterion value of which is 3.8276. This value is smaller than that of the
D-optimal design given in (8): the D-optimal design is 3.8276/4 = 95.69% weighted-A-
efficient (with the weighted-A-criterion value being exactly 4 because of the way in which
the weight matrix W is based on (8)). The reference design is only 3.8276/40.3671 ≈
9.48%weighted-A-efficient, whereas the 3×2 factorial design is 3.8276/5.8285 ≈ 65.67%
weighted-A-efficient. The latter two designs are thus clearly inferior to the optimal designs.
The factor levels obtained in (9) are similar to those in (8), but the numbers of replicate
runs are more unequal under the weighted-A-criterion. On the other hand, the D-criterion
value of this weighted-A-optimal design (9) is −3.7815, so that it is 97.65% D-efficient
with respect to (8). Table 2 summarizes the efficiencies for most of the designs we show in
this paper.

The true D- and weighted-A-efficiencies of OEDs for nonlinear models are dependent
on the deviation of the prior values θ̃ from the true parameter values of the assumed model.
As an illustration, we examine the sensitivities of design (8) to this unknown deviation
(i.e., to variation in the true parameter values) and quantify to what extent an inappropriate
parameter prior would affect the D- or weighted-A-criterion for the OED. We consider 16
different scenarios S1,S2, . . . ,S16 as indicated in Table 3. The 16 scenarios correspond
to the 24 combinations of two possible values for each of the four model parameters, labeled
− and +. The parameter values used are 0.1058 and 0.5324 for k, 0.0014 and 0.0019 for
a0, 0.0011 and 0.0014 for a1 and −0.0001 and 0.0003 for a2. Under each of scenarios
S1,S2, . . . ,S8, for which the parameter k acts at its low level, the design

XD− =
(

(0.02, 3) (0.07, 3) (0.12, 0.15) (0.12, 3)
8 8 7 7

)
(10)
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Table 3. Assumed true parameter values under each of the 16 postulated scenarios.

k a0 a1 a2 k a0 a1 a2

S1 – – – – S9 + – – –
S2 – + – – S10 + + – –
S3 – – + – S11 + – + –
S4 – + + – S12 + + + –
S5 – – – + S13 + – – +
S6 – + – + S14 + + – +
S7 – – + + S15 + – + +
S8 – + + + S16 + + + +

is optimal under the D-criterion. In this design, the substrate concentration level in the third
factor level combination is its minimum value, 0.15. Under scenarios S9,S10, . . . ,S16,
for which the parameter k acts at its high level, the D-optimal design is

XD+ =
(

(0.02, 3) (0.07, 3) (0.12, 0.39) (0.12, 3)
8 8 7 7

)
. (11)

Both designs are similar in structure to (8). This demonstrates the robustness of design (8)
across different scenarios. The three designs in (8), (10) and (11) differ only in substrate
concentration level in the third factor level combination. The three other factor level com-
binations, the numbers of replicates and the first entry of the third support point are the
same for all three designs. The third factor level combination of design (8) lies between the
corresponding factor level combinations of the two other designs (10) and (11). So, design
(8) can be viewed as a compromise. The differing results for scenarios S1,S2, . . . ,S8,
on the one hand, and scenarios S9,S10, . . . ,S16, on the other hand, suggest that only the
value of k has an influence on the optimal design. This rather high robustness might be
due to the partially linear nature of the assumed model, since, in the case of linear (in the
parameters) models, the parameter prior has no impact on the OED.

To demonstrate that, in the present model, the optimal designs really do depend on
parameters other than k, we also report the D-optimal design obtained when changing the
prior value of a2 by a factor of 100 to 100ã2 = 0.01:

XD,a2 =
(

(0.02, 0.37) (0.02, 3) (0.07, 3) (0.12, 0.27) (0.12, 3)
1 7 8 7 7

)
.

Unlike initial D-optimal design (8), the new one consists of five instead of four factor level
combinations.

3.2. MODEL (4): THE EXPONENTIAL MODEL

Model (4) exhibits stronger nonlinear behavior than (3). The NLS estimate for that
model is θ̃ = {k̃, ã0, ã1, ã2} = {0.3122,−6.4086, 0.8383,−0.2861}. We use this vector as
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the prior parameter vector for (4), where k̃ is close to the estimates for k in models (3) and
(6). With the D-criterion, the optimal design is found to be

XD =
(

(0.025, 3) (0.086, 3) (0.097, 0.33) (0.12, 0.26) (0.12, 3)
8 7 1 7 7

)
. (12)

The D-criterion value of this design is φ0 = − 43.0242. Compared with design (8) for
model (3), the new design involves an extra treatment which is used just once. The factor
level combination (0.12, 0.26) is used in both the D-optimal design for model (3) and in
the new D-optimal design for model (4). With respect to design (12), the reference design
(which has φ0 = − 48.2255 and φ1 = 34.8335 for model (4)) is 27.24% D-efficient and
the 3 × 2 factorial design (which has φ0 = − 44.5141 and φ1 = 6.4432 for model (4)) is
68.90% D-efficient.

For model (4), the weighted-A-optimal design is

XWA =
(

(0.023, 3) (0.085, 3) (0.098, 0.25) (0.12, 0.21) (0.12, 3)
10 8 2 6 4

)
, (13)

the weighted-A-criterion value of which is φ1 = 3.7008. This implies that the reference
design is 10.62% weighted-A-efficient and the 3 × 2 factorial design is 57.44% weighted-
A-efficient. The D-criterion value of design (13) is φ0 = − 43.2658 for model (4), so that it
is 94.14% D-efficient with respect to design (12) (other comparisons of D- and weighted-
A-efficiencies can be found in Table 2). While weighted-A-optimal design (13) involves
factor level combinations that are similar to those of D-optimal design (12), its numbers of
replicates are quite different.

3.3. MODEL (5): THE TRANSFORMED MODEL

Transform-both-sides model (5) involves a polynomial linear regression model in x
and is only nonlinear in the parameter k. For that model, the information matrix and,
hence, the optimal designs do not depend on the parameters a0, a1 and a2. In other
words, both the D-criterion and the weighted-A-criterion are independent of the values
of a0, a1 and a2. Fitting model (5) to the reference data results in the NLS estimate
θ̃ = {k̃, ã0, ã1, ã2} = {0.2838,−6.4406, 0.8420,−0.2561}, which does not deviate much
from that for untransformed model (4). When the prior value for k is k̃ = 0.2838, the
D-optimal design for model (5) is the equireplicated 3 × 2 design

XD =
(

(0.02, 0.15) (0.02, 3) (0.07, 0.15) (0.07, 3) (0.12, 0.15) (0.12, 3)
5 5 5 5 5 5

)
, (14)

with a D-criterion value equal to φ0 = 11.6960. Hence, the reference design (which has
φ0 = 8.5739 and φ1 = 10.6548 for model (5)) is 45.82%D-efficient. In this case, where we
have a close-to-linear model, the D-optimal design thus is a 3× 2 factorial design, which is
essentially a standard design. A similar behavior has been observed for continuous optimal
designs for linear models with noninteracting factors (Schwabe and Wierich 1995). The



612 Y. Huang et al.

benchmark 3×2 factorial design we defined in Sect. 3.1 and have been using throughout this
paper involves an x value of 0.2698 instead of 0.15 for half of its runs, and has φ0 = 11.3852
and φ1 = 4.2698 for model (5). It is therefore 92.52% D-efficient.

Likewise, we can use the weighted-A-criterion for model (5) and find that the unequally
replicated 3 × 2 factorial design

XWA =
(

(0.02, 0.15) (0.02, 3) (0.07, 0.15) (0.07, 3) (0.12, 0.15) (0.12, 3)
4 5 4 8 4 5

)
(15)

is weighted-A-optimal. That design’s weighted-A-criterion value is φ1 = 3.8466. The
reference design is 36.10% weighted-A-efficient for model (5), while the benchmark 3 ×
2 factorial design is 89.52% weighted-A-optimal. The D-criterion value of weighted-A-
optimal design (15) is φ0 = 11.6143, so it is 97.98% D-efficient with respect to D-optimal
design (14). Note that the factor level combinations are identical in the D-optimal and
weighted-A-optimal designs, so that the designs only differ in the factor level combinations’
replications.

4. A COMPOUND CRITERION

To construct an OED, we must focus on an assumed model that suits the reaction mech-
anism in question. We can start from one of the candidate models given in Sect. 2 or look
for an even better model that reduces to the M–M model when all factors other than the
substrate concentration are held constant. In some studies, however, there could be more
than one kinetic model to be discriminated between as one of the aims of the experiment
and the modeling (Cornish-Bowden 2014). The candidate models are often nonlinear and
may involve more than one factor. Therefore, an efficient design should be robust to the
unknown parameter values, as well as to several candidate models.

To discriminate between non-nested rivalmodels, one can use a T-criterion (Atkinson and
Fedorov 1975; Atkinson 2008) for selecting a design. In our kinetics application, however,
the challenge is to determine a suitable polynomial model in x in for the empirical part of the
model. As low-order polynomial models are nested within high-order polynomial models,
we can make use of a compound criterion for our examples.

To illustrate this approach, we focus on the D-criterion and on an alternative for model
(4). More specifically, as an alternative model, we consider

νi = exp(a0 + a1xi + a2xi 2 + a3xi 3)Si
k + Si

+ εi , for i = 1, 2, . . . , n. (16)

Since, in polynomial models, third-order terms are often unimportant, it is reasonable to
assume that the value of the parameter a3 will be near zero.

To discriminate between two nested models (4) and (16), for instance using a two-tailed
t test, we should certainly ensure that the parameter a3 is estimated with a small variance.
This would result in a high power for the t test. Therefore, in total, there are three criterion
functions we should combine to obtain a suitable compound criterion: (i) a Ds-criterion



Optimal Design of Experiments for Hybrid Nonlinear Models 613

function φs to maximize the power of the t test for a3, (ii) the D-criterion function for model
(4) (φ02, of whichM2 is the information matrix) and (iii) the D-criterion function for model
(16) (φ01, of which M1 is the information matrix).

The criterion φs can be formulated in terms of the ratio of the determinants of the infor-
mation matrices M1 and M2. If we denote by w1, w2 and w3 the weights for the three
criterion functions φ01, φs and φ02, the compound criterion function to be maximized is

φc = w1φ01 + w2φs + w3φ02 = w1log|M1| + w2log
|M1|
|M2| + w3log|M2|

= (w1 + w2)log|M1| + (w3 − w2)log|M2|.

Whenw1 = w3 = 0, the compound criterion concentrates on the t test and the discrimination
between nested models (4) and (16). When w2 = w3 = 0 or w1 = w2 = 0, the compound
criterion concentrates on one candidate model and the function is reduced to φ01 or φ02. For
the sake of illustration, we choose equal weights w1 = w2 = w3. Since, for this choice,
w2 = w3, the compound criterion reduces to the D-criterion for extended model (16).

When using the NLS estimate θ̃ = {k̃, ã0, ã1, ã2, ã3} = {0.3148,−6.4151, 0.8959,
−0.2696,−0.0928} as the prior parameter vector, we find that the design

Xc =
(

(0.02, 3) (0.062, 3) (0.1, 3) (0.104, 0.3) (0.12, 0.27) (0.12, 3)
6 6 6 2 4 6

)
, (17)

maximizes the compound criterion value, with φc = − 56.3837. Compared with design
(12) for model (4), design (17) involves more levels for x , as a result of which it is suitable
for a model involving a third-order polynomial in x . The new design also involves relatively
few replicates of the factor level combination (0.12, 0.27), implying that this design pays
less attention to the estimation of the parameter k than does design (12).

For alternative model (4), this design is exp(−43.3911/4)/exp(−43.0242/4) = 91.24%
D-efficient with respect to design (12) which is D-optimal for model (4). More efficiencies
for the design that maximizes the compound criterion are reported in Table 2. Note that
several of the designs constructed in this do not allow model (16) to be fitted, so there are
some blank entries (indicating a zero efficiency) in the table. This is due to the fact that these
designs only involve three levels for x and at least four levels are required to fit a third-order
polynomial model.

5. DISCUSSION

In this paper, our focuswas on optimal designs for hybridmodels, combiningmechanistic
models and empirical models for multi-factor experiments. For the sake of illustration, we
focused on extensions of Michaelis–Menten kinetic models. Nevertheless, the ideas and
methods we introduce here can also be applied to a variety of other mechanistic models in
the applied biological sciences.

It is vital that experimental data contain sufficient information formechanistic studies and
allow for powerful statistical inference and correct conclusions.As noted inCornish-Bowden
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(2014), an efficient experimental design facilitates the collection of highly informative data.
When compared to standard designs (e.g., 3q factorials), all the OEDs we find in this paper
are quite simple, in spite of the complex nonlinear structure of the assumed models. As a
matter of fact, the OEDs are no more complex than standard DoEs for second-order linear
models and are therefore applicable in practice. In our demonstrations, the OEDs were
obtained using the multiphase optimization algorithm of Huang et al. (2019).

A kinetic reaction can be modeled in detail if we are able to derive the correct chemical
equations, based on reaction steps or phases and the corresponding simultaneous differential
rate laws. The kinetic model may eventually result from the closed-form solution of a set of
differential equations. In less simple cases, as inAtkinson andBogacka (2002), it is necessary
to use a direct method to obtain an alternative numerical solution to the differential equations
as well as to approximate the Fisher information of the resulting model.

Todescribe anon-Michaelis–Mentenmechanism, the initial reaction rate is oftenmodeled
using a rational function in terms of the initial substrate concentration; e.g. seeWong (1975).
The mechanistic model is then written in a form such as

νi = a1 + a2Si + a3Si 2 + a4Si 3

a5 + a6Si + a7Si 2 + Si 3
+ εi .

These models should then be modified as well to incorporate the impact of experimental
factors other than the substrate concentration. Because the most suitable rational function is
generally unknown and the ideal way inwhich to incorporate the effect of extra experimental
factors is usually not clear before data collection, compound optimality criteria for selecting
suitable experimental designs are key for non-Michaelis–Menten models.

Kineticmodel discrimination is quite difficult at timeswhen data do not “place themodels
in jeopardy” (Box and Hunter 1965). In these cases, we cannot accept or reject candidate
models because multiple models fit the observed data well. However, competing models
may have complex structures, with some involving more kinetic constants than needed. To
tackle difficulties in model selection, we recommend experimenters to start with kinetic
models with fewer parameters (e.g., the three candidate models in Sect. 2, which assume
M–M kinetics and a second-order linear function) in sequential mechanism studies. An
advanced model can be examined on those occasions where there is solid prior evidence
for such a postulated model. Otherwise, experimenters should be asked to simplify both
the mechanistic and empirical components of the hybrid model under consideration, so as
to reduce the total number of parameters. Although we can use a compound criterion, the
number of candidate models should be minimized in advance if at all possible. This is to
allow experimenters to better utilize their resources and to focus on themost realisticmodels.
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