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Substitutes for the Non-existent Square Lattice
Designs for 36 Varieties

R. A. Bailey , Peter J. Cameron , L. H. Soicher, and E. R.Williams

Square lattice designs are often used in trials of new varieties of various agricultural
crops. However, there are no square lattice designs for 36 varieties in blocks of size six
for four or more replicates. Here, we use three different approaches to construct designs
for up to eight replicates. All the designs perform well in terms of giving a low average
variance of variety contrasts.
Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

In variety-testing programmes, later-stage trials can involve multiple replications of up
to 100 varieties: see Patterson et al. (1978). Even at a well-run testing centre, variation
across the experimental area makes it desirable to group the plots (experimental units) into
homogeneous blocks, usually too small to contain all the varieties. As R. A. Fisher wrote
in a letter in 1938, “… on any given field agricultural operations, at least for centuries,
have followed one of two directions”, so that variability among the plots is well captured
by blocking in one or both of these directions, with no need for more complicated spatial
correlations: see Fisher et al. (1990, p. 270). Thus, on land which has been farmed for
centuries, or where plots cannot be conveniently arranged to allow blocking in two directions
(rows and columns), it is reasonable to assume the followingmodel for the yieldYω on plotω:

Yω = τV (ω) + βB(ω) + εω. (1)
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Here, V (ω) denotes the variety planted on ω and B(ω) denotes the block containing ω.
The variety constants τi are the unknown parameters of interest, and the block constants β j

are unknown nuisance parameters. The quantities εω are independent identically distributed
random variables with zero mean and common (unknown) variance σ 2. Denote the number
of varieties by v.

For management reasons, it is often convenient if the blocks can themselves be grouped
into replicates, in such a way that each variety occurs exactly once in each replicate. Such
a block design is called resolvable. Let r be the number of replicates.

Yates (1936, 1937) introduced square lattice designs for this purpose. In these, v = n2

for some positive integer n, and each replicate consists of n blocks of n plots. The design
is constructed by first listing the varieties in an abstract n × n square array S. The rows of
S form the blocks of the first replicate, and the columns of S form the blocks of the second
replicate.

If r > 2, then r − 2 mutually orthogonal Latin squares L1, …, Lr−2 of order n are
needed. This is not possible unless r ≤ n + 1: see Street and Street (1987, Chapter 6). For
replicate i , where i > 2, superimpose Latin squareLi−2 on the array S: then the n positions
where any given letter of Li−2 occurs give the set of varieties in one block. Orthogonality
implies that each block has one variety in common with each block in each other replicate.
Thus, these designs belong to the class of affine resolvable designs defined by Bose (1942),
and this construction is a special case of that given by Bailey et al. (1995). Moreover, all
pairwise variety concurrences are in {0, 1}, where the concurrence of varieties i and j is
the number of blocks in which varieties i and j both occur. If r = n + 1, then all pairwise
concurrences are equal to 1 and so the design is balanced.

Equireplicate incomplete block designs are typically assessed using the A-criterion: see
Shah and Sinha (1989). Denote by� the v×v concurrence matrix: its (i, j)-entry is equal to
the concurrence of varieties i and j , which is r when i = j . The scaled information matrix
is I − (rk)−1�, where I is the identity matrix and k is the block size. The constant vectors
are in the null space of this matrix. The eigenvalues for the other eigenvectors, counting
multiplicities, are the canonical efficiency factors. Denote their harmonic mean as A. (John
and Williams (1995) call this E , but many authors, including several cited in Sect. 5, use E
to denote the smallest canonical efficiency factor.) Under model (1), the average variance
of the estimator of a difference τi − τ j between two distinct varieties is 2σ 2/(r A). If the
variance in an ideal design with the same number of plots but no need for blocking is σ 2

0 ,
then this average variance would be 2σ 2

0 /r . Hence, A ≤ 1, and a design maximizing A, for
given values of v, r and k, is called A-optimal.

Cheng and Bailey (1991) showed that, if r ≤ n + 1, then square lattice designs are
A-optimal (even over non-resolvable designs).

The class of square lattice designs also has some practical advantages. Adding or remov-
ing a replicate gives another square lattice design, which permits last-minute changes in
the planning stage. It also means that, if a whole replicate is lost (for example, if heavy
rain during harvest flattens the plants in the last replicate), then the remaining design is
A-optimal for its size.

If n ∈ {2, 3, 4, 5, 7, 8, 9}, then there is a complete set of n −1 mutually orthogonal Latin
squares of order n: see Street and Street (1987, Chapter 6). These give square lattice designs
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for n2 varieties in rn blocks of size n for r ∈ {2, . . . , n+1}. However, there is not even a pair
of mutually orthogonal Latin squares of order 6, so square lattice designs for 36 varieties
are available for two or three replicates only. This gap in the catalogue of good resolvable
block designs is pointed out in many books: for example, Cochran and Cox (1957) and John
and Williams (1995).

Patterson and Williams (1976a) used computer search to find an efficient resolvable
design for 36 varieties in four replicates of blocks of size six. All pairwise variety concur-
rences are in {0, 1, 2}. It has A = 0.836, which compares well with the unachievable upper
bound of 0.840 for the non-existent square lattice design.

In this paper, we present three new methods of constructing efficient resolvable block
designs for 36 varieties in 6r blocks of size six, for r ∈ {4, . . . , 8}. These methods are in
Sects. 3–5. In each case, Supplementary Material gives the design as a plain text file, which
can easily be imported into a spreadsheet or statistical software.

The concurrence graph of an incomplete block design has a vertex for each variety. The
number of edges between vertices i and j is equal to the concurrence of varieties i and j .
Although the methods in Sects. 3–5 are very different, their designs for eight replicates all
have the same concurrence graph, which we describe in Sect. 2. The final sections compare
the new designs and discuss further work.

2. THE SYLVESTER GRAPH

The Sylvester graph� is a graph on 36 vertices with valency 5. See Brouwer et al. (1989)
and Bailey (2019). Here, we give enough information about it to show how the designs in
Sect. 3 are constructed, using the approach in Cameron and van Lint (1991, Chapter 6).

Consider the complete graph K6. It has a set A of six vertices, labelled 1–6. There is
an edge between every pair of distinct vertices. Let B be this set of edges. A 1-factor is a
partition of A into three edges (subsets of size two). For example, one 1-factor consists of
the pairs {1, 2}, {3, 6} and {4, 5}. For brevity, we write this in the slightly non-standard way
12|36|45 in Table 1. Let C be the set of 1-factors. A 1-factorization is a set of five elements
of C with the property that each edge is contained in just one of them. For example, d1 in
Table 1 is a 1-factorization; here, we use the symbol || to separate the five 1-factors in d1.
Let D be the set of 1-factorizations.

It was shown by Sylvester (1844) that

(a) |A| = |D| = 6 and |B| = |C| = 15;

(b) any two elements of D share exactly one element of C.
(Sylvester used the terms duads, synthemes and synthematic totals for edges, 1-factors and
1-factorizations respectively.)

Table 1 shows the six 1-factorizations, labelled as d1 to d6. Each of these can be considered
as a schedule for a tournament involving six teams which takes place over five weekends so
that each pair of teams meets exactly once.

Now we construct the Sylvester graph � as follows. The vertex set consists of the cells
of the 6×6 square array S with rows labelled by the elements ofA and columns labelled by
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Table 1. The set D of six 1-factorizations

d1 ||12|36|45||13|24|56||14|35|26||15|23|46||16|25|34||
d2 ||12|36|45||13|25|46||14|23|56||15|26|34||16|24|35||
d3 ||12|34|56||13|25|46||14|35|26||15|24|36||16|23|45||
d4 ||12|34|56||13|26|45||14|25|36||15|23|46||16|24|35||
d5 ||12|46|35||13|26|45||14|23|56||15|24|36||16|25|34||
d6 ||12|46|35||13|24|56||14|25|36||15|26|34||16|23|45||

d1 d2 d3 d4 d5 d6

1

2

3

4

5

6

a

(a) Edges between columns d3 and d4 (b) The starfish centred at vertex a

Figure 1. Some edges in the Sylvester graph.

the elements of D. Given distinct di and d j in D, the unique 1-factor they have in common
defines six edges in �, each joining a vertex in column di to a vertex in column d j . For
example, d3 and d4 have the one-factor 12|34|56 in common, so we put edges between the
vertices (1, 3) and (2, 4), (2, 3) and (1, 4), (3, 3) and (4, 4), …, and (6, 3) and (5, 4), as
shown in Fig. 1a.

Thus, each vertex in � is joined to five other vertices, one in each other row and one in
each other column. Figure 1b shows the five edges at the vertex a = (3, d3). We shall call
this set of six vertices the starfish centred at a.

It can be shown that the graph � has no triangles or quadrilaterals. One consequence of
this is that, given any vertex, the vertices at distances one and two from it in the graph are
precisely all the other vertices in different rows and different columns.

Denote by Adj(�) the adjacency matrix of the graph �. We call a block design for
36 varieties in 48 blocks of size six a Sylvester design if there is a permutation of the
varieties that takes the concurrence matrix for the design to 7I + J + Adj(�), where J is
the all-1 matrix. This means that the concurrences are 2 on each edge of � and 1 for every
other pair of varieties. In particular, a Sylvester design is a regular graph design, as defined
by John and Mitchell (1977), where the graph is the Sylvester graph �.

Two block designs (for the same set of varieties) are isomorphic if one can be converted
into the other by a permutation of varieties and a permutation of blocks. An isomorphism
from a block design to itself is called an automorphism.
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If two block designs are isomorphic, then their canonical efficiency factors are the same
and their automorphism groups have the same order, but neither converse need be true. In
particular, all Sylvester designs have the same canonical efficiency factors and hence the
same value of the A-criterion, but they are not all isomorphic. Of the three that we construct
in this paper, no two are isomorphic, as we discuss in Sect. 6.

3. NEW DESIGNS CONSTRUCTED FROM THE SYLVESTER
GRAPH

3.1. THE NEW DESIGNS

Figure 1a shows that, if we choose two different vertices in the same column, then their
starfishwill not overlap. Thus, each column gives what we call a galaxy of six starfish, which
together include every vertex just once. In other words, we can think of a galaxy as a Latin
square of order 6. Figure 2 shows the galaxy of starfish centred on vertices in column d3.
Just as with a square lattice design, we can identify the varieties with the 36 vertices and
use this Latin square to construct a single replicate of six blocks of size six.

However, unlike in a square lattice design, the Latin squares defined by different columns
are not orthogonal to each other. If two vertices are joined by an edge, then they both occur
in the two starfish which they define. Thus, if we use galaxies of starfish from two or more
columns, then some variety concurrences will be bigger than one. On the other hand, a
consequence of the lack of triangles and quadrilaterals is that, if two or more galaxies are
used as replicates, then there is no other way that two varieties can concur in more than one
block.

We therefore propose the following resolvable designs. The design �r consists of the
galaxies of starfish from r columns, where 0 ≤ r ≤ 6; �0 (a design with no blocks) and
�1 (a disconnected design) are used in the following constructions, but are not themselves
suitable designs. For 1 ≤ r ≤ 7, the design �R

r consists of �r−1 together with another
replicate whose blocks are the rows of S, while the design �C

r consists of �r−1 together
with another replicate whose blocks are the columns ofS. The design�C

7 was used by Bailey
et al. (2018). For 2 ≤ r ≤ 8, the design �RC

r consists of �R
r−1 together with another replicate

whose blocks are the columns of S. In particular, �RC
2 is the square lattice design whose

blocks are the rows and columns.
The automorphisms of � consist of the symmetric group S6 acting simultaneously on

rows and columns of the array, as well as a further involution transposing it. It follows that,

Figure 2. The galaxy of six
starfish defined by column d3:
the centre of each starfish is
marked ∗ and the Latin letters
show vertices in the same
starfish.

D A B∗ C E F

F E C∗ B D A

E B A∗ D F C

B F D∗ A C E

A C E∗ F B D

C D F ∗ E A B
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Table 2. Canonical efficiency factors and values of the A-criterion for the partially balanced designs

Canonical efficiency factors

Multiplicity

r design 5 5 9 16 A

6 �6 1 1 8/9 3/4 0.8442

7 �C
7 1 6/7 19/21 11/14 0.8507

8 �RC
8 7/8 7/8 11/12 13/16 0.8549

for a design consisting of m galaxies (possibly with rows, and possibly with columns), it
does not matter which m galaxies we choose.

When r = 2, then �RC
2 , �R

2 and �C
2 are square lattice designs and hence A-optimal, but

�2 is not. When r = 3, then �RC
3 is a square lattice design and hence A-optimal, but none

of the others is. When r ≥ 4, then none of the designs is a square lattice design, so we need
to calculate the canonical efficiency factors, and hence A.

As discussed in Sect. 6.1, for each value of r the designs �R
r and �C

r have the same
canonical efficiency factors, so we do not include �R

r in further comparisons.
Another useful consequence of the lack of triangles and quadrilaterals in � is that the

relations ‘same row’, ‘same column’, ‘joined in the graph’ and ‘other’ form a 4-class asso-
ciation scheme on the set of vertices. It follows that �6, �C

7 and �RC
8 are partially balanced

with respect to this association scheme, and so their canonical efficiency factors can be
calculated using the methods in Bailey (2004). Table 2 shows the results. In fact, �6 and
�RC
8 are also partially balanced with respect to the 3-class association scheme obtained by

merging the classes ‘same row’ and ‘same column’. Moreover, �RC
8 is a Sylvester design.

For all the other designs, we calculated A as an exact rational number by using the
DESIGN package (Soicher 2019) in GAP (The GAP Group 2019). The method used for
such exact calculation of block design efficiency measures is described in Appendix B of
Soicher (2013a). These results were verified by usingGAP to find the exact Moore–Penrose
inverse of the scaled information matrix, calculate its trace, divide this by 35 and then invert
this as an exact rational number.

Table 3 shows the results to four decimal places. This shows that, apart from the square
lattice designs �RC

2 and �C
2 , the design �RC

r always beats �C
r and �r . Moreover, �RC

4 does
very slightly better than the design found by Patterson and Williams (1976a).

The final column of Table 3 shows the value of A for a square lattice design. This exists
only for r = 2 and r = 3, when �RC

r is an example. For 4 ≤ r ≤ 7, there is no square
lattice design, so the value shown gives an unachievable upper bound; in every case, A for
�RC

r comes very close to this.

3.2. USING THESE NEW DESIGNS

Figure 3 shows the design �RC
8 , starting with the replicates defined by columns and rows.

The varieties are numbered 1 to 6 in row 1 of Fig. 1a, then 7 to 12 in row 2 and so on. For
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Table 3. Values of the A-criterion for the designs in Sects. 3–5

r Section 3 Section 4 Section 5 Square lattice

�RC
r �C

r �r 	r 
RC
r 
C

r 
r

2 0.7778 0.7778 0.7527 0.7778 0.7778 0.7778 0.7692 0.7778
3 0.8235 0.8186 0.8091 0.8235 0.8235 0.8219 0.8101 0.8235
4 0.8380 0.8341 0.8285 0.8393 0.8393 0.8346 0.8292 0.8400
5 0.8453 0.8422 0.8383 0.8464 0.8456 0.8427 0.8383 0.8485
6 0.8498 0.8473 0.8442 0.8510 0.8501 0.8473 0.8442 0.8537
7 0.8528 0.8507 0.8542 0.8528 0.8507 0.8571
8 0.8549 0.8549 0.8549

Replicate 1 Replicate 2 Replicate 3 Replicate 4
1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

1 7 13 19 25 31
2 8 14 20 26 32
3 9 15 21 27 33
4 10 16 22 28 34
5 11 17 23 29 35
6 12 18 24 30 36

1 2 6 3 4 5
8 7 10 12 11 9
18 16 13 17 15 14
21 24 23 19 20 22
28 29 27 26 25 30
35 33 32 34 36 31

2 1 3 5 6 4
7 8 11 10 9 12
15 17 14 18 16 13
23 22 24 20 19 21
30 27 28 25 26 29
34 36 31 33 35 32

Replicate 5 Replicate 6 Replicate 7 Replicate 8
3 4 2 1 5 6
10 9 12 11 8 7
14 18 15 16 13 17
19 23 22 21 24 20
29 26 25 30 27 28
36 31 35 32 34 33

4 3 5 6 1 2
9 10 7 8 12 11
17 13 16 15 14 18
24 20 21 22 23 19
25 30 26 29 28 27
32 35 36 31 33 34

5 6 4 2 3 1
12 11 8 9 7 10
16 14 17 13 18 15
20 21 19 23 22 24
27 25 30 28 29 26
31 34 33 36 32 35

6 5 1 4 2 3
11 12 9 7 10 8
13 15 18 14 17 16
22 19 20 24 21 23
26 28 29 27 30 25
33 32 34 35 31 36

Figure 3. The design �RC
8 : columns are blocks.

a design with r replicates, use the first two replicates here and any r − 2 of the others. A
plain text version of �RC

8 is available in Supplementary Material.

4. NEW DESIGNS FOUND BY COMPUTER SEARCH

The computer search algorithm used by Patterson and Williams (1976a) to obtain the
efficient design for 36 varieties has been extensively developed, both in the range of design
types that can be constructed and in the algorithmic approach. Significant improvements
in computer speed have also facilitated search procedures. CycDesigN Version 6.0 (VSNI
2016) is a computer package for the generation of optimal or near-optimal experimental
designs, as measured by the A-criterion. The package has been written in Visual C++ and
uses simulated annealing in the design search process. CycDesigN can be used to construct
efficient resolvable block designs for 36 varieties in blocks of size six with a range of values
for r . Hence, running CycDesigN separately for r = 3 through 8 gives designs 	r with
the results in Table 3. For r = 3, …, 7, the design 	r has pairwise variety concurrences
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Replicate 1 Replicate 2 Replicate 3 Replicate 4
2 24 13 20 19 22
29 9 34 15 36 31
18 25 1 16 30 32
33 7 14 28 23 5
6 27 12 3 26 21
17 11 8 4 10 35

32 33 4 5 6 12
24 11 29 16 20 2
30 35 8 36 21 31
17 18 27 1 23 19
22 26 10 25 13 34
28 14 3 7 9 15

11 31 5 25 35 13
15 10 22 20 8 27
4 9 34 24 1 2
12 26 3 14 29 36
21 33 7 19 23 6
30 16 18 17 28 32

30 11 25 31 19 16
15 2 10 24 32 34
35 20 6 14 18 21
13 5 22 4 8 26
33 23 1 29 28 27
7 3 12 36 9 17

Replicate 5 Replicate 6 Replicate 7 Replicate 8
2 8 12 6 35 21
4 23 28 30 34 36
26 31 5 14 10 15
1 7 27 32 13 29
9 17 19 16 20 25
22 11 33 3 24 18

14 20 35 31 15 12
5 21 7 26 1 16
30 8 6 28 32 2
29 36 27 25 10 23
9 22 19 13 11 24
34 33 4 3 17 18

21 27 35 15 23 13
28 30 3 24 25 11
2 1 36 8 4 16
10 20 17 5 32 22
14 18 9 6 33 29
7 31 12 26 34 19

29 13 19 2 22 36
32 17 33 35 23 11
12 5 24 8 27 34
20 4 21 25 9 31
26 18 3 30 14 28
7 10 1 16 15 6

Figure 4. The design 	8: columns are blocks.

in {0, 1, 2}, while 	8 has concurrences in {1, 2}. In fact, 	8 is a Sylvester design. For
r = 4, the improvement from Patterson and Williams (1976a), namely A = 0.836 to that
in Table 3 (A = 0.839), is representative of overall developments in computer speed and
search methods throughout the years.

Because	r is not constructed by simply omitting a replicate from	r+1, we do not show
all these designs here. Figure 4 shows 	8. Plain text versions for r = 4, …, 8 are available
in Supplementary Material.

5. NEW DESIGNS CONSTRUCTED FROM SEMI-LATIN
SQUARES

Let 
 be a resolvable block design for 36 varieties in 6r blocks of size 6. Its dual
design
′ is obtained by interchanging the roles of blocks and varieties, so it has 6r varieties
in 36 blocks of size r . If the varieties of
 are identified with cells of the 6×6 square arrayS,
then the blocks of
′ also form a 6×6 square array. When each variety in
′ occurs exactly
once in each row and once in each column, then 
′ is called a (6× 6)/r semi-Latin square:
see Yates (1935) and Preece and Freeman (1983). The term orthogonal multi-array is also
used: see Brickell (1984). One way of constructing such a semi-Latin square is to superpose
r Latin squares with disjoint alphabets. Not all semi-Latin squares arise in this way, but the
resolvability of 
 forces the r replicates to be a collection of r Latin squares when 
′ is a
semi-Latin square.

Let A′ be the A-criterion for 
′. Roy (1958) proved that

35

A
= 6(6 − r) + (6r − 1)

A′ . (2)
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Hence, 
 is A-optimal if and only if 
′ is A-optimal, as Patterson and Williams (1976b)
showed.

Highly efficient (6×6)/r semi-Latin squares have been found by Brickell (1984), Bailey
(1990, 1997), Bailey and Royle (1997) and Soicher (2012a,b, 2013a,b). In most cases, their
duals are not resolvable. However, Soicher (2013a, Section 6) gives an efficient (6 × 6)/6
semi-Latin square made by superposing six Latin squares labelled L1,…, L6. These Latin
squares can be used to construct our designs, just as the galaxies in Sect. 3.

For 0 ≤ r ≤ 6, denote by 
r the design for 36 varieties in 6r blocks of size six given
by the Latin squares L1, . . . , Lr ; 
0 is a design with no blocks, but, for 0 < r ≤ 6, 
r is
the dual of the design called Xr by Soicher (2013a). Table 2 of Soicher (2013a) gives A′ for
X2, …, X6: from this, A can be calculated from Eq. (2).

As in Sect. 3, we can add to 
r−1 another replicate whose blocks are the rows of S, to
obtain
R

r , or we can add another replicate whose blocks are the columns of S, to obtain
C
r .

Adding both of these extra replicates to 
r−2 gives 
RC
r .

Unlike the situation in Sect. 3, choosing a different r -subset of {L1, . . . , L6} may give
a design with a value of A different from that for 
r , but computation shows that, in
every case, the highest value of the A-criterion arises from taking {L1, . . . , Lr } as our
r -subset.

Table 3 shows the values of the A-criterion for 
r , 
C
r and 
RC

r , calculated exactly
using the DESIGN package and rounded to four decimal places. We found that, for each
r = 2, . . . , 7, the canonical efficiency factors of 
R

r are the same as those of 
C
r , and so

their A-values are the same. Note that, just as in Sect. 3, 
RC
r always beats 
R

r , 

C
r and 
r ,

apart from the fact that
RC
2 ,
R

2 and
C
2 are all square lattice designs. Note also that, to four

decimal places of the A-criterion, 
RC
r is always at least as good as �RC

r , and sometimes
better.

Figure 5 shows the design 
RC
8 , with the replicates defined in the order columns, rows,

L1, …, L6. The varieties are numbered 1 to 6 in row 1, then 7 to 12 in row 2 and so on. A
plain text version of this design is available in Supplementary Material. For a design with
r replicates, use the first r of the given replicates.

Although the design X6 of Soicher (2013a)was not constructed using the Sylvester graph,
it turns out that 
RC

8 is a Sylvester design and so has the same canonical efficiency factors
as �RC

8 and 	8.

6. COMPARISON OF DESIGNS

6.1. ISOMORPHISM

We can determine the automorphism group of a block design and check block design
isomorphism using the DESIGN package (Soicher 2019). We can also use this package
to check whether two block designs have the same canonical efficiency factors. Extended
examples of the use of theDESIGN package for the construction, classification and analysis
of block designs are given in Soicher (2013b).

For r = 8, we have checked that the designs given in Sects. 3–5 are all Sylvester designs,
so they all have the same canonical efficiency factors. However, �RC

8 , 	8 and 
RC
8 have
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Replicate 1 Replicate 2 Replicate 3 Replicate 4
1 2 3 4 5 6
7 8 9 10 11 12
13 14 15 16 17 18
19 20 21 22 23 24
25 26 27 28 29 30
31 32 33 34 35 36

1 7 13 19 25 31
2 8 14 20 26 32
3 9 15 21 27 33
4 10 16 22 28 34
5 11 17 23 29 35
6 12 18 24 30 36

1 2 3 4 5 6
8 7 12 11 10 9
15 16 13 14 18 17
22 24 23 19 21 20
29 27 26 30 25 28
36 35 34 33 32 31

1 2 3 4 5 6
9 11 7 8 12 10
14 13 17 18 16 15
24 21 22 23 20 19
29 28 30 27 25 26
34 36 32 31 33 35

Replicate 5 Replicate 6 Replicate 7 Replicate 8
1 2 3 4 5 6
9 10 8 7 12 11
16 13 18 17 14 15
23 24 19 21 22 20
30 29 28 26 27 25
32 33 35 36 31 34

1 2 3 4 5 6
10 9 11 12 8 7
17 18 16 15 13 14
20 22 24 19 21 23
27 25 26 29 30 28
36 35 31 32 34 33

1 2 3 4 5 6
11 12 10 9 7 8
18 17 14 13 15 16
22 19 23 20 24 21
26 27 25 30 28 29
33 34 36 35 32 31

1 2 3 4 5 6
12 10 7 8 9 11
14 15 18 17 16 13
21 23 20 24 19 22
28 30 29 25 26 27
35 31 34 33 36 32

Figure 5. The design 
RC
8 : columns are blocks .

automorphism groups of order 1440, 1 and 144, respectively, so no two of these designs are
isomorphic.

Now, the square lattice design�R
2 is isomorphic to�C

2 , and we found, using theDESIGN
package, that �R

7 is isomorphic to �C
7 . For 3 ≤ r ≤ 6, it turns out that the designs �R

r and
�C

r are not isomorphic, but they have the same canonical efficiency factors.
We found that, for r = 2, 3, 5, 7, 
R

r is isomorphic to 
C
r . For r = 4, 6, the designs 
R

r

and 
C
r are not isomorphic, but they have the same canonical efficiency factors. We do not

yet know a theoretical reason for this.
Further, although they are the same up to four decimal places, we found that, to seven

decimal places, the value of the A-criterion for �5 is 0.8382815, but for 
5 this value is
0.8382679. Similarly, up to seven decimal places, the A-value for �C

6 is 0.8472622, but for

C

6 this value is 0.8472563. For �RC
7 , the A-value to seven decimal places is 0.8527641,

but for 
RC
7 this value is 0.8527611. Designs �6 and 
6 are not isomorphic, but have the

same canonical efficiency factors. The same holds for �C
7 and 
C

7 , and, as we have already
noted, for �RC

8 and 
RC
8 .

We also found that 	4 and 
RC
4 have the same canonical efficiency factors, but there is

no permutation of varieties taking one concurrence matrix into the other.

6.2. ROBUSTNESS

If a replicate is lost from one of the designs in Sect. 3, then the remaining design is also
in Table 3. For example, if the original design is �RC

5 then the loss of a replicate leaves
�RC
4 , with A = 0.8380, in three cases out of five; the other two cases leave �R

4 or �C
4 , both

with A = 0.8341. The average efficiency of the remaining design is 0.8364, while the worst
case is 0.8341.

If a replicate is lost from �RC
8 , then A = 0.8528 in six cases and A = 0.8507 in two

cases: the average is 0.8522390 and the worst case is 0.8507. Losing a replicate from 	8
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Table 4. Worst-case and average values of the A-criterion if a replicate is lost from the design shown

r 4 5 6 7 8

Worst
�RC

r 0.8186 0.8341 0.8422 0.847262 0.8506638
	r 0.8219 0.8362 0.8442 0.849411 0.8506638

RC

r 0.8219 0.8346 0.8427 0.847256 0.8506638
Average
�RC

r 0.8211 0.8364 0.8443 0.849047 0.8522390
	r 0.8227 0.8377 0.8456 0.850595 0.8522389

RC

r 0.8227 0.8368 0.8446 0.849040 0.8522368

gives eight different values for A, with exactly the same maximum and minimum as those
just given; now the average is 0.8522389.

If a replicate is lost from one of the designs in Sects. 4 and 5, the remaining design need
not be in Table 3. However, for 4 ≤ r ≤ 8 we have calculated the worst-case value and
the average value of the A-criterion when a single replicate is lost from �RC

r , 	r or 
RC
r .

Table 4 shows the results, using sufficient decimal places in each column to show when
two values are different. For r = 4, the worst case for 	4 is obtained by deleting the first
or fourth replicate, and the worst case for 
RC

4 is obtained by deleting the first or second
replicate: all four resulting designs are pairwise isomorphic.

7. DISCUSSION

The authors were very surprised to find that, for r = 8, the three very different approaches
all produced Sylvester designs. This leads us to conjecture that Sylvester designs are A-
optimal. Further evidence for this is that, while the first method started from the Sylvester
graph, neither of the others did; indeed, the second method used numerical optimization.

CycDesigN also calculates upper bounds for the A-criterion. For r ≤ 7, these are same as
those shown in the final column of Table 3. For r = 8, it gives an upper bound of 0.854931,
compared to the A-criterion for all the Sylvester designs, which is equal to 0.854929 to six
decimal places. The proximity of these values gives further support to the conjecture that
the Sylvester designs are A-optimal.

For a given value of r , which design should be used in practice? Table 3 shows that the
A-values for �RC

r , 	r and 
RC
r are extremely close, but 	r is always at least as good as

the other two. If the user is concerned about the possible loss of one replicate, then Table 4
shows that 	r is still at least as good as the other two when r ≤ 7, but �RC

8 might be
preferred to 	8.

If the 36 varieties are replaced by 36 treatments consisting of all combinations of two
factors with six levels each, and r ≤ 6, then levels of these two factors can be identified
with the blocks of any two replicates which together form a square lattice design. For the
designs in Sects. 3 and 5, these are either rows and columns, or one of rows and columns
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combined with any other replicate. Table 3 shows that the second possibility gives higher
values for the A-criterion.
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