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AMultivariate Global Spatiotemporal
Stochastic Generator for Climate Ensembles
Matthew Edwards , Stefano Castruccio, and Dorit Hammerling

In order to understand and quantify the uncertainties in projections and physics of
a climate model, a collection of climate simulations (an ensemble) is typically used.
Given the high-dimensionality of the input space of a climate model, as well as the
complex, nonlinear relationships between the climate variables, a large ensemble is
often required to accurately assess these uncertainties. If only a small number of climate
variables are of interest at a specified spatial and temporal scale, the computational and
storage expenses can be substantially reduced by training a statistical model on a small
ensemble. The statistical model then acts as a stochastic generator (SG) able to simulate
a large ensemble, given a small training ensemble. Previous work on SGs has focused on
modeling and simulating individual climate variables (e.g., surface temperature, wind
speed) independently. Here, we introduce a SG that jointly simulates three key climate
variables. The model is based on a multistage spectral approach that allows for inference
of more than 80 million data points for a nonstationary global model, by conducting
inference in stages and leveraging large-scale parallelization across many processors.
We demonstrate the feasibility of jointly simulating climate variables by training the SG
on five ensemble members from a large ensemble project and assess the SG simulations
by comparing them to the ensemble members not used in training.

Supplementary materials accompanying this paper appear online.
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1. INTRODUCTION

Climatemodels are fundamental in providing physically constrained projections of future
climate in the geoscience community (e.g., Pachauri et al. (2014)). Despite their ever-
increasing complexity, climate models are nevertheless imperfect representations of the
climate system, both because of their approximate description of the physics and the intrinsic
uncertainty about future emission scenarios. A large collection, or ensemble, of simulations
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is typically used to understand and quantify these uncertainties, although the computational
and storage costs associated with such an endeavor are substantial. For instance, the sixth
CoupledModel Inter-comparison Project (CMIP6) (Meehl et al. 2014) is expected to require
approximately 1 billion core-hours of computation and 12 PB of storage (Paul et al. 2015).
At the National Center for Atmospheric Research (NCAR) Supercomputing Center, this
corresponds to approximately 290 compute days and one-fifth of the file storage system.

While the size of data produced by modern ensembles is significant, often only a small
number of climate variables are of interest to a climate scientist. For instance, between
June 2014 and March 2018, approximately 64% of the 1,168 climate variables from the
Community Earth SystemModel Large Ensemble (CESM-LE, (Kay et al. 2015)) had never
been downloaded and approximately 14% of the climate variables contribute to over 90%
of the 178,121 downloads (Strand and Baker 2018). Since only a small number of climate
variables are used by large parts of the research community, it is reasonable to focus efforts
on developing methods to effectively reduce the computational and storage expenses for
these high-interest variables while preserving their scientific integrity.

Compressing climate model output is a topic which has received increasing interest from
the climate community (Baker et al. 2014, 2016). Statistical methodologies have concur-
rently emerged in recent years to provide accurate stochastic approximations of ensemble
members, either conditionally (Guinness and Hammerling 2018) or unconditionally (Jeong
et al. 2018). Jeong et al. (2018, 2019) proposed a statistical model, i.e., a stochastic gen-
erator (SG), which provides an approximation of the climate simulations, trained on a
small ensemble to simulate more members. The parameters estimated from the SG are then
regarded as all the information necessary to simulate the model, thus significantly reducing
the information necessary to generate surrogate simulations.

SGs are models loosely inspired from stochastic weather generators (see Porcu et al.
(2019) for a complete discussion on their relationship). SGs have been so far mostly focused
on global climate ensembles, by proposing global spatiotemporal (GST) statistical models
to capture spatiotemporal dependencies across the globe. A wealth of literature has been
developed in recent years on modeling global data; see, e.g., Hitczenko and Stein (2012)
for a basis decomposition approach, Jun and Stein (2007, 2008) for a constructive approach
for univariate fields and Jun (2011) for the only (at present) approach for multivariate fields.
In the context of global climate ensembles, Castruccio and Stein (2013) proposed a model
for annually averaged surface temperature over a one-degree latitude–longitude grid that
was able to capture latitudinal nonstationarities and computationally scale to higher grid
resolutions. Castruccio and Genton (2014) then proposed a nonparametric generalization to
capture longitudinal nonstationarities and later Castruccio and Guinness (2017) proposed
a model to account for land/ocean dependence. Castruccio and Genton (2016) generalized
these models for vertical temperatures, and Castruccio (2016) to multiple climate models.
Recently, Castruccio and Genton (2018) provided a general theory for the aforementioned
class of models, and Castruccio et al. (2019) discussed implications on visualization. All
theseworks rely on a parametric approach, since nonparametric alternatives such as principal
component analysis would be burdensome in terms of storage, and the aim is to achieve the
highest possible compression rate.
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All the aforementioned GST models, with the exception of Jun (2011), have been used
as SGs for a single variable such as temperature or wind speed. While diagnostics have
demonstrated the suitability ofGSTmodels in representing the spatiotemporal dependencies
for a single variable, they have not been designed to capture multivariate dependencies. A
natural question is therefore if and to what extent a multivariate SG can be formulated
to jointly simulate variables of interest. A multivariate SG is of high scientific interest
since the dependencies between the climate variables are often the primary focus. Indeed,
the geoscience community is primarily concerned in integrated assessments by describing
interactions among key climate variables such as temperature and precipitation, as well as
their variability among ensemble members (e.g., Pachauri et al. (2014)).

For this purpose, we develop a multivariate extension of the GST model described in
Castruccio and Stein (2013). This generalization relies on a novel multivariate spectral
model for data on the sphere and in time, whose implied marginal models correspond to the
GSTmodel previously available in the literature. The model has a marginally parameterized
(MP) structure (Edwards et al. 2018), which allows for multistage estimation for millions
of data points. Inference is performed in four steps: temporal, longitudinal, latitudinal and
multivariate. Our proposed model naturally generalizes the existing literature by adding
dependence across variables to the model formulation.

We develop univariate and multivariate SGs for three commonly downloaded annually
averaged variables from the CESM-LE (Kay et al. 2015): total precipitable water, surface
temperature and 10 m wind speed. Total precipitable water was selected over precipitation
since it avoids the need for zero-inflated models to account for the high proportion of zero
values and a Gaussian assumption is more appropriate. The CESM ensemble is divided into
a training ensemble and a test ensemble; the former is used to train both SGs. For validation,
we compare simulations from the univariate and multivariate SGs to the test ensemble.

The remainder of this paper is organized as follows: In Sect. 2, we introduce the CESM-
LE and the three climate variables. The notation for the test ensemble and the multivariate
GST model for the SG are provided in Sect. 3, and the definition of the MP model and
the multistage estimation method are given in Sect. 4. In Sect. 5, we present the results of
simulating the three variables independently and jointly and conclude in Sect. 6.

2. CESM LARGE ENSEMBLE

2.1. DATASET EXPLORATORY ANALYSIS

The CESM-LE (Kay et al. 2015) is a publicly available (https://www.earthsystemgrid.
org/) collection of climate system simulations intended to understand uncertainties related
to climate variability and climate change. The CESM-LE consists of 33 members simulated
from 1920 to 2100 on an approximately one-degree latitude–longitude grid using the Com-
munity Atmosphere Model version 5 (CAM5) (Hurrell et al. 2013). The ensemble members
are produced through round-off-level perturbations of the initial atmospheric temperature
field. Due to the chaotic nature of the climate system—a nonlinear dynamical system—and
its sensitivity to initial conditions, the simulations are approximately independent and iden-
tically distributed (i.i.d.) (Collins and Allen 2002; Collins 2002; Branstator and Teng 2010).

https://www.earthsystemgrid.org/
https://www.earthsystemgrid.org/
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The historical greenhouse gas concentration pathway was used from 1920 to 2005 and the
Representative Concentration Pathway (RCP) 8.5 (Moss et al. 2008) from 2006 to 2100.
Further details of the model setup can be found in Kay et al. (2015).

Based on consultations with climate scientists, we select three commonly downloaded
climate variables with important multivariate dependencies for the SG: total precipitable
water (TMQ), surface temperature (TS) and 10 m wind speed (U10). TMQ is the mass
of water in a column of the atmosphere per unit area (kg/m2), TS is the radiative sur-
face temperature (K) and U10 is the wind speed 10 m above the surface (m/s). These
climate variables are annually averaged to approximate, through the central limit theo-
rem, the Gaussian assumption specified in Sect. 3. Higher temporal resolutions would
require non-Gaussian models for our data. To reduce the substantial computational and
memory expenses required to train the SG, we only consider the 2006 to 2100 time
period. This setup corresponds to 33 members, T = 95 years, L = 288 longitudes,
M = 192 latitudes and V = 3 variables; a total of approximately half a billion data points.
In Jeong et al. (2018), it was concluded, with a lack of fit metric, that five randomly selected
members were sufficient for training a model with similar temporal, longitudinal and lat-
itudinal specifications. Since the number of training ensemble members is the number of
ensemble members simulated in practice, no more members than necessary are selected for
the training ensemble. Consequently, the 33 ensemble members are divided into a train-
ing ensemble containing R = 5 randomly selected members (as suggested in Jeong et al.
(2018)) and a test ensemble contains the 28 remaining members. The training ensemble
corresponds to approximately 80 million data points. The training ensemble is used to
train the SG, and the test ensemble is used to diagnose the quality of the SG simula-
tions.

To obtain an understanding of the differences between the selected climate variables,
we fit a simple linear regression model, with year as the regressor, at each spatial location
for each variable (Fig. 1). The intercepts (residual standard deviations) are larger (larger)
around the tropics for TMQ, larger (smaller) toward low latitudes for TS and larger (larger)
over the ocean for U10. Without going into details, it is interesting to note that the primary
sources for these variations are quite different: For TMQ, it is the Hadley cell; for TS,
the solar zenith angle; and for U10, the surface type (Washington and Parkinson 2005,
Chapter 2).

3. STATISTICAL MODEL

3.1. NOTATION

Let Y denote the R × T × L × M × V training ensemble array where each element
Y[r, t, l, m, v] corresponds to a member r = 1, . . . , R, a year t = 1, . . . , T , a longitude
l = 0, . . . , L − 1, a latitude m = 1, . . . , M and a variable v = 1, . . . , V . Zero-based
indexing for longitude is adopted for the spectral methods introduced in Sects. 3.6 and 3.7.
Indices from the notation Y[r, t, l, m, v] are omitted to denote subarrays of Y. For example,
Y[r, t, v] denotes the L × M matrix indexed over longitude (rows) and latitude (columns)
for member r , year t and variable v. Therefore, Yr :=Y[r ] is the T × L × M × V subarray
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Figure 1. These plots highlight the structural differences between theTMQ(kg/m2), TS (K) andU10 (m/s) climate
variables. Intercepts (left panels) and residual standard deviations (right panels) from simple linear regression
models, with year as the regressor, fit at each spatial location for TMQ (upper panels), TS (middle panels) and U10
(lower panels) from the CESM-LE..

for member r . For modeling, define the training ensemble vector as y:=vec(Y)where vec(·)
is the vec-operator

vec(Y):=
∑

v∈ZV

· · ·
∑

r∈ZR

(ev,V ⊗ · · · ⊗ er,R) · Y[r, t, l, m, v],

where ek,K is a unit vector of order K (see Hardy and Steeb 2010). Additionally, let the
subarray notation applied to the vector y be defined as the subarray notation applied to Y
followed by the vec-operator. For example, the time series vector corresponding to member
r , longitude l, latitudem and variable v is denoted yr [l, m, v]where yr :=vec(Yr ). In general,
uppercase letters denote arrays, bold lowercase letters denote vectors and bold uppercase
letters denote random vectors.

3.2. ENSEMBLE MODEL

It is assumed that the ensemble members Yr for r ∈ ZR are i.i.d. as

Yr ∼ N (μ,�)
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where isμ is themean vector and� is the covariancematrix. Since the variables are annually
averaged, the Gaussian assumption is approximated as a result of the central limit theorem.
Due to the small training ensemble (R = 5), in contrast to Castruccio and Stein (2013),
Castruccio and Genton (2016) and Castruccio and Guinness (2017), we do not estimate μ

nonparametrically using a restricted likelihood (Patterson and Thompson 1971). Instead, μ
is incorporated parametrically into the temporal model specified in Sect. 3.3.

3.3. TEMPORAL MODEL

The training ensemble membersYr for r ∈ ZR are modeled with a vector auto-regressive
moving average model (Lütkepohl 2005, Chapter 11) with diagonal auto-regressive and
moving average matrices (DVARMA). The auto-regressive (AR) and moving average (MA)
orders are p and q, respectively. The DVARMA model is specified as

Yr [t] =
∑d

i=0
β i xi,t +

p∑

i=1

�iYr [t − i] +
q∑

i=0

�iSHr [t − i], (1)

where β i are vectors of mean parameters, xi are the normalized orthogonal columns of the
Q matrix from the QR decomposition of the T ×d Vandermonde matrix Vt, j :=t j−1 (Golub
and Van Loan 2012, Sect. 4.6), �i :=diag(φi,l,m,v) are diagonal matrices of AR param-
eters, �i :=diag(πi,l,m,v) are diagonal matrices of MA parameters where π0,l,m,v = 0,
S:=diag(sl,m,v) are diagonal matrices of standard deviation parameters and Hr [t] ∼
N (0,R) are i.i.d. zero-mean and unit-variance multivariate spatial innovations with correla-
tion matrix R. Autocorrelation function plots suggest that the multivariate spatial residuals
are uncorrelated, supporting the model specification; see Fig. S1 in supplemental material.
This DVARMA model can represent variation in mean, trend, variance and temporal corre-
lation over space and climate variables. The DVARMA model cannot, however, represent
variation in phase over space and climate variables.

3.4. SPECTRAL METHODS

Sections 3.6 and 3.7 require an understanding of spectral methods. Consider a zero-mean
and unit-variance stationary discreteGaussian processes Z [s] for s = 1, . . . , S. In the spatial
(or temporal) domain, the dependence between these random variables is described with
a correlation function C(h):=corr(Z(s + h), Z(s)). In the spectral domain, the stationary
discrete Gaussian process is considered as a sum of complex exponential functions

Z [s] =
S−1∑

c=0

Z [c] exp (2π isc/S) ,

where are Z [c] are independent zero-mean complex-valued random variables. The value c
corresponds to awave number since the complex exponential function corresponding to c is a
sumof sinusoidal functionswith frequency c/K . Since the complex-valued randomvariables
are independent, they are described not by correlation but variance f (c):=var(Z [c]). The
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variances are called the spectral mass function (SMF). The SMF describes how a stationary
Gaussian process is decomposed into different frequency sinusoidal functions. The extension
to multiple zero-mean and unit-variance stationary discrete Gaussian processes is similar.

3.5. INNOVATION MODEL

Let Hr,t :=Hr [t] denote the i.i.d. zero-mean and unit-variance multivariate spatial inno-
vations for member r and year t . It is assumed that

corr(Hr,t [l + h, m1, v1],Hr,t [l, m2, v2]) = C(h, m1, m2, v1, v2),

where h is the longitudinal lag and C(·) is a positive definite multivariate spatial cross-
correlation function. This assumption is a multivariate extension of axial symmetry (Jones
1963) and is the multivariate analogue to the altitudinal extension introduced in Castruccio
and Genton (2016). Given the multivariate axial symmetry assumption, all the longitudinal
bands are jointly stationary. Let Rm1,m2,v1,v2 denote the cross-correlation matrix between
the longitudinal bands Hr,t [m1, v1] and Hr,t [m2, v2]. Since the longitudinal bands are cir-
cular, the cross-correlation matrices are circulant (Davis 2012). Hence, Rm1,m2,v1,v2 can be
decomposed as

Rm1,m2,v1,v2 = W−1diag(Wrm1,m2,v1,v2)W, (2)

where W is the L × L discrete Fourier transform matrix, with element exp(2π i jk/L) in
row j and column k where i :=√−1, and rm1,m2,v1,v2 is the first column of Rm1,m2,v1,v2

(Davis 2012, Sect. 3.2). The vector Wrm1,m2,v1,v2 defines the cross-spectral mass function
fm1,m2,v1,v2 , which can be decomposed as

fm1,m2,v1,v2 = f 1/2m1,v1 · f 1/2m2,v2 · ρm1,m2,v1,v2 · exp(iφm1,m2,v1,v2), (3)

where fm,v is the SMF,ρm1,m2,v1,v2 is the coherencemass function (CMF) andφm1,m2,v1,v2 is
the phasemass function (PMF). These functions,whichwill be specified inSects. 3.6 and3.7,
fully characterize a model for the multivariate spatial innovations given the multivariate
axially symmetric assumption.

3.6. LONGITUDINAL MODEL

The longitudinalmodel controls the correlationwithin longitudinal bands. SinceRm,m,v,v

is a correlation matrix, where ρm,m,v,v ≡ 1 and φm,m,v,v ≡ 0, the longitudinal model
only requires the specification of the SMFs. Furthermore, since the multivariate spatial
innovations are unit variance
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∑

c∈ZL

fm,v(c) = L , (4)

see “Appendix A” for a proof, the SMFs do not require scale parameters and only require
specification up to a constant of proportionality. Since scale parameters are included in
Castruccio and Stein (2013), Castruccio and Genton (2016) and Castruccio and Guinness
(2017), relationship (4) resulted in a reduction in parameters. The Modified Matérn SMF
introduced in Castruccio and Stein (2013) is a Matérn SMF modified for circular processes.
It assumes that there is a smooth spectrum transition at high frequencies. This assumption
is appropriate for TS; however, it is not appropriate for TMQ and U10. We propose a
γ -Modified Matérn SMF, with a parameter that controls the spectrum transition at high
frequencies. The γ -Modified Matérn SMF is defined as

fm,v(c) ∝ 1
(
α2

m,v + γm,v A2(c) + (1 − γm,v)B2(c)
)κm,v+1/2 , (5)

where

A(c):=2 sin(πc/L), B(c):=2(1 − |2c/L − 1|).

αm,v is the inverse range parameter, γm,v is the transition parameter and κm,v controls the
increased decay rate in spectral mass for larger wave numbers. These parameters are allowed
to vary over variables and latitudes.When γm,v = 1, theModifiedMatérn SMF is recovered.
Note that this is a Whittle model (Whittle 1954).

3.7. LATITUDINAL AND MULTIVARIATE MODEL

The latitudinal and multivariate model controls the correlation between longitudinal
bands. Since Rm1,m2,v1,v2 is a cross-correlation matrix, which depends on ρm1,m2,v1,v2 and
φm1,m2,v1,v2 , the latitudinal and multivariate model requires the specification of the CMFs
and the PMFs. The CMFs and PMFs are specified implicitly through a dynamical model.
The dynamical model allows for efficient simulation; see Sect. 5 of Castruccio and Guinness
(2017) for details. Let H̃r,t [m, v] denote the discrete Fourier transform of Hr,t [m, v]. The
Fourier coefficients are modeled with a diagonal vector AR (DVAR) model of order one
(Jeong et al. 2018). The DVAR model is specified as

H̃r,t [c, m] = 
c,mH̃r,t [c, m − 1] + εr,t [c, m],

where H̃r,t [c, m] are vectors of Fourier coefficients, 
c,m := diag(ψc,m,1, . . . , ψc,m,V ) are
diagonal matrices of AR parameters and εr,t [c, m] ∼ N (0,�c,m) are zero-mean and unit-
variance multivariate innovations with correlation matrices �c,m independent in r and t .
Under the constraint that

�c,m[v1, v2]:=�c[v1, v2]
(
1 − ψc,m,v1 ψc,m,v2

)
,
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Figure 2. Moduli and arguments of cross-periodograms (blue) and the natural cubic splines (red) between the
TMQ and TS climate variables, the TMQ and U10 climate variables and the TS and U10 climate variables over
frequency (Color figure online)..

where �c:=�c,0 (this constraint implies that the multivariate spatial innovations have unit
variance), the cross-spectral mass functions are

fm1,m2,v1,v2(c) = �c[v1, v2]
⎛

⎝
m2∏

j=m1+1

ψc, j,v2

⎞

⎠ , (6)

for m1 < m2, m1 and m2 are exchanged for m2 < m1, see “Appendix B” for a proof. For
m1 = m2 the purely multivariate dependence is controlled by �c only and for v1 = v2

the purely latitudinal dependence is controlled by the AR parameters only. Furthermore,
the purely latitudinal dependence is the same as that in Castruccio and Guinness (2017).
Following Castruccio and Guinness (2017), the AR parameters are parameterized as

ψc,m,v = δm,v

(
1 + 4 sin2

πc

L

)−τm,v

, (7)

where δv,m controls the rate of decay in coherence, over all wave numbers, as the distance
between latitudes increases and τv,m controls the increased decay rate in coherence for
larger wave numbers. These parameters are allowed to vary over variables and latitudes.
The multivariate model is fully specified by �c. Since the cross-periodograms between the
climate variables are not easily captured with a parametric model (see Fig. 2), for each
climate variable the moduli and arguments of �c[v1, v2] are modeled with a natural cubic
spline (Friedman et al. 2001, Sect. 5.2.1) over the wave numbers. Note that �c[v1, v2] =
�c[v2, v1] = 0 implies that the climate variables v1 and v2 are independent.
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One might consider increasing the flexibility of this model by allowing the innovations
to have different correlations over latitudes. However, to constrain the multivariate spatial
innovations to have unit variance with this additional flexibility is a non-trivial problem to
be addressed in future work.

4. ESTIMATION

In this section, we prove that the parameters of themodel introduced in Sect. 3 can be esti-
mated with a sequence of marginal likelihood functions. This property of estimation defines
a marginally parameterized (MP) model (Edwards et al. 2018) and allows the parameters to
be estimated efficiently in multiple stages.

4.1. MARGINALLY PARAMETERIZED MODEL

Heuristically, a model for y is MP if there exists a finite sequence of data subsets such
that the corresponding sequence of marginal likelihood functions can be used to estimate
all of the model parameters.

Definition 1. (Marginally parameterized model) A model for y is marginally parame-
terized if there exists a finite sequence of K > 1 data subsets (yk) such that the marginal
model of yk depends on a parameter subset with a partition θk, ηk where θk �= ∅ and
ηk ⊆ θ1 ∪ · · · ∪ θk−1 (η1 = ∅) for k = 1, . . . , K and θ1, . . . , θ K is a partition of θ .

Consider the finite sequence of V + 1 data subsets yv:=y[v] for v = 1, . . . , V and
yV +1:=y. Since the multivariate GST model is Gaussian and fm1,m2,v,v(c) is the cross-
spectral mass function for the univariate GST model (see Sect. 3.7), the marginal model of
yv is the univariate GST model. As a consequence, the univariate GST likelihood function
can be used to estimate the univariate (temporal, longitudinal and latitudinal) parameters for
each variable θ1,…,θV and the multivariate GST likelihood function can be used to estimate
the multivariate parameters θV +1 conditional on the estimates for the univariate parameters
ηV +1 = θ1 ∪ · · · ∪ θV . Hence, the multivariate GST model is MP. Theorem 3.1 in Edwards
et al. (2018) provides the conditions under which these estimates are consistent.

4.2. MULTISTAGE ESTIMATION

The parameters of the multivariate GST model introduced in Sect. 3 can be estimated
in four stages. In these four stages, the temporal, longitudinal, latitudinal and multivariate
parameters are estimated, respectively,with each stage conditioning on parameters estimated
in previous stages.

• Stage one The dataset is partitioned into L ·M ·V data subsets y[l, m, v]. Themarginal
model for data subsets is a product of R ARMA models. The ARMA model primary
(temporal) parameters for y[l, m, v] areβ0,l,m,v, · · · , φ1,l,m,v, . . . , π1,l,m,v, . . . , sl,m,v

(1). The computational and memory cost of evaluating each ARMA model is O(T )
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andO(T ), respectively. Selection of d, p and q is performed with AIC. Conditioning
on the temporal parameters results in multivariate spatial residuals h.

• Stage two The multivariate spatial residuals are partitioned into M · V data subsets
h[m, v]. The marginal model for h[m, v] is a product of R · T Whittle models. The
Whittle model primary (longitudinal) parameters for h[m, v] are αm,v, γm,v, κm,v (5).
The computational and memory cost of evaluating each Whittle model is O(L ln(L))

andO(L), respectively. Selection of the modified or γ -modified Matérn is performed
with AIC.

• Stage three The multivariate spatial residuals are partitioned into V data subsets h[v].
The marginal model for h[v], conditional on the longitudinal parameters, is a product
of R · T · L Gaussian models. The Gaussian model primary (latitudinal) parameters
for h[v] are δ1,v, . . . , δM,v, τ1,v, . . . , τM,v (6). The computational and memory cost
of evaluating each Gaussian model is O(M3) and O(M2), respectively. Selection of
the stationary or nonstationary model is performed with AIC.

• Stage four The (marginal) model for h, conditional on the longitudinal and latitudinal
parameters, is a product of R · T · L · M Gaussian models. The Gaussian model
primary parameters for h are those of the natural cubic spline. The computational and
memory cost of each Gaussian model isO(V 3) andO(V 2), respectively. Selection of
the degrees of freedom is performed with AIC.

The collection of data subsets for each stage can be used to estimate the corresponding
parameters in parallel. Hence, the parameters can be estimated very efficiently with parallel
computation.

5. RESULTS

The applicability of a SG depends on how accurately its simulations can represent climate
variables from an ensemble. Hence, in this section, we compare the test ensemble, consisting
of three variables, to simulations from our univariate andmultivariate GSTmodels. The only
difference between the univariate and multivariate GST models is that we set �[v1, v2] ≡ 0
for v1 �= v2 for the univariate SG. This condition implies that the three climate variables are
simulated independently rather than jointly. Diagnostics are provided in two stages. First,
we provide univariate diagnostics to assess the similarity of the SG simulations to climate
model simulations using the test ensemble (members not in the training ensemble). We then
provide multivariate diagnostics to assess the difference of simulating climate variables
jointly rather than independently. Differences between the diagnostics are primarily gauged
visually at this stage in the SG development (Castruccio et al. 2019).

5.1. UNIVARIATE DIAGNOSTICS

We consider area-weighted statistics (to account for the non-regular latitude–longitude
grid with more grid points per unit area toward the poles) to compare the ensembles from the
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Table 1. Mean (over years, longitudes and latitudes) and standard deviation (in parenthesis) of the weighted min-
imum, weighted first quantile, weighted median, weighted mean, weighted third quantile and weighted
max over the test ensemble (left columns) and the joint SG (right columns) ensembles.

Ensemble TMQ (kg/m2) TS (K) U10 (K)

Test Joint SG Test Joint SG Test Joint SG

Min. 0.23 (0.01) 0.18 (0.03) 214.60 (0.25) 214.50 (0.32) 0.65 (0.00) -0.34 (0.13)
First Qu. 15.04 (0.03) 15.03 (0.02) 282.56 (0.03) 282.56 (0.02) 3.40 (0.00) 3.40 (0.00)
Median 25.31 (0.04) 25.31 (0.04) 294.90 (0.02) 294.90 (0.02) 6.53 (0.01) 6.53 (0.01)
Mean 28.05 (0.03) 28.05 (0.05) 289.64 (0.02) 289.64 (0.02) 6.12 (0.00) 6.12 (0.00)
Third Qu. 40.66 (0.05) 40.68 (0.09) 300.46 (0.02) 300.46 (0.02) 8.00 (0.01) 8.01 (0.01)
Max. 72.66 (0.70) 75.83 (2.33) 312.16 (0.23) 312.87 (0.49) 13.73 (0.09) 13.82 (0.16)

climate model and our SG (Table 1). The medians and means from the test ensemble and the
joint SG ensemble are equal to two decimal places, and the first and third quartiles are equal
to one decimal place. This indicates that the joint SG accurately captured the body of the test
ensemble distribution. The minimums and maximums are also well represented for TS and
TMQ. In the case ofU10, themaximum iswellmodeled, but theminimum is negative, which
is not physically possible.While the difference is small, it nevertheless indicates the need for
an improvedmodel which can enforce nonnegativity. A log or Box-Cox transformation (Box
andCox 1964) can remove the negative values. A transformation performed beforemodeling
can result in biased simulations. Hence, it is important to incorporate any transformation into
themodel to account for biases. This is a potential improvementwe postpone for futurework.

For succinctness, the remaining univariate diagnostics focus on the TS climate variable,
since they are very similar for the TMQ and U10 climate variables. We consider global and
longitudinal TS means to assess how accurately the multivariate SG captures variations in
TS mean over years and latitudes, respectively (Fig. 3). The TS means overall have similar
structures and variability. Upon careful inspection, the global TSmeans for the SG ensemble

Figure 3. Global TS (K) means over time (left panel), the longitudinal TS (K) means over latitude (right panel)
over the test ensemble (red) and the joint SG ensemble (blue). The maximum and minimum member global TS
means, for each year, and longitudinal means, for each latitude, are included as red and blue shaded regions,
respectively. Note that the longitudinal means (right panel) overlap almost entirely (Color figure online)..
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Figure 4. Intercepts (first row), the slopes (second row), the residual standard deviations (third row) and the
residual lag-one auto-covariances (fourth row) from simple linear regression models trained at each spatial location
for TS (K) over the test ensemble (left column) and the joint SG ensemble (right column)..

have slightly larger variability betweenmembers and their trend is also slightly larger toward
2100.

The remaining univariate andmultivariate diagnostics are based on a simple linear regres-
sion model, with year as the regressor, trained at each spatial location for each variable over
the test ensemble and joint SG ensemble. The intercepts, slopes, residual standard deviations
and residual lag-one auto-covariances from these models are used to assess how accurately
the means, trends, standard deviations and temporal auto-covariances over space are cap-
tured by the multivariate SG (Fig. 4). Figure 4 displays intercepts, slopes, residual standard
deviations and residual lag-one auto-covariances corresponding to the TS climate variable.
The differences between intercepts, slopes, residual standard deviations and residual lag-one
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auto-covariances from the test ensemble and the joint ensemble for all the climate variables
are displayed in Figs. S2, S3 and S4 in supplemental material.

The intercepts and slopes demonstrate how the multivariate GST model can capture
the variation in mean and trend over space quite accurately, even though they were esti-
mated independently over space. There are, however, some differences between the residual
standard deviations. First, the standard deviations for the joint SG ensemble are slightly
smaller over parts of the Arctic Ocean and the Antarctic coast than for the test ensemble.
Second, in the central Pacific Ocean, the variations in standard deviations for the joint SG
ensemble are less smooth than for the test ensemble. The latter suggests that the multi-
variate GST model could benefit from model specifications imposing smoothness in this
region rather than estimating each grid cell independently over space. This region is asso-
ciated with the non-periodic El-Niño-Southern Oscillation, which is notoriously difficult to
model. Third, there are some differences between the residual lag-one auto-covariances. The
residual lag-one auto-covariances for the joint SG ensemble over the Arctic Ocean above
Russia and across the Antarctic coast below the Pacific Ocean are substantially smaller than
for the test ensemble. Both the smaller residual standard deviations and residual lag-one
auto-covariances occur toward the poles. This suggests the multivariate GST model is not
capturing the poles as accurately as the low and middle latitudes.

5.2. MULTIVARIATE DIAGNOSTICS

To assess how accurately the univariate and multivariate SGs capture the dependencies
between the three climate variables, the cross-correlation between the residuals at each

Figure 5. Cross-correlation between the TMQ and TS residuals (left panels), the TMQ and U10 residuals (middle
panels) and the TS and U10 residuals (right panels) from simple linear regression model fits at each spatial location
over the test ensemble (upper panels), the joint SG ensemble (middle panels) and the independent SG ensemble
(lower panels)..



478 M. Edwards et al.

spatial location is displayed for each pair of variables for the test ensemble, the joint SG
ensemble and the independent SG ensemble (Fig. 5). TMQ and TS (upper left panel) dis-
play strong positive and negative spatially varying cross-correlation. The lower left panel
(Fig. 5) displays approximately zero cross-correlation between the TMQ and TS residu-
als over space. This is expected, since the TMQ and TS climate variables were simulated
independently. There appears to be some structure to the slightly positive and negative
cross-correlations between the TMQ and TS residuals; however, these do not correspond
to the structures displayed in the upper left panel (Fig. 5). The middle left panel (Fig. 5)
displays positive cross-correlation between the TMQ and U10 residuals over space. The
left panels (Fig. 5) suggest that the multivariate GST model cannot capture variation in
cross-correlation over space, but if there is an average positive or negative cross-correlation
over space, the model will capture it. The upper middle panel (Fig. 5) suggests that the
average cross-correlation between the TMQ and U10 residuals over space is approximately

Figure 6. Cross-correlation between the TMQ and TS residuals at nine different longitudes and all latitudes for
eachmember of the test ensemble (gray), the independent SG ensemble (green) and the joint SG ensemble (orange)
(Color figure online)..
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zero. As suggested from the left column of panels (Fig. 5), the model can only capture
the average positive or negative cross-correlation over space and not the spatial variation.
However, since the average is approximately zero in the upper middle panel (Fig. 5), there
is no substantial improvement to the joint SG ensemble over the independent SG ensemble.
In contrast to the middle column of panels (Fig. 5), the average cross-correlation between
the TS and U10 residuals is negative for the middle right panel (Fig. 5). Hence, the model
has captured the average negative cross-correlation between the TS and U10 residuals over
space, but not the structure displayed in the upper right panel (Fig. 5).

To assess the variation in cross-correlation over space between ensemblemembers, cross-
correlations for each member are displayed at nine different longitudes and all latitudes
(Fig. 6). These plots demonstrate how the cross-correlation of the joint SG tends toward the
average cross-correlation of the test ensemble, while the cross-correlation of the univariate
SG hovers around zero as expected. These figures also suggest that the variation in cross-
correlation between ensemble members is smaller for the test ensemble than for the joint or
independent SG ensembles.

6. CONCLUSION

For a small number of variables, a multivariate SG can be trained on a climate model
ensemble consisting of only a fewmembers to simulate a large ensemble. As a consequence,
if only a small number of climate variables are of interest, then a large ensemble of these
variables can be obtained with a SG with reduced computational and storage expenses. The
computational expense is reduced since only a small ensemble is required to train the SG,
and the storage expense is reduced since only the SG requires storage; both are important
considerations for climate modeling centers.

However, the applicability of a SG depends on how accurately its simulations can rep-
resent ensemble features of interest. For example, the univariate diagnostics suggest that
extreme value analysis and polar region analysis would not be appropriate for the proposed
SG since extremes and polar regions are less accurately captured, while analyses that require
the accurate representation of means, trends, variances and temporal autocorrelations over
space would be suitable. A SG for extreme value analysis would require a non-Gaussian
model. In general, the study of non-Gaussian MP models would be very important in this
regard. However, since the Gaussian MP models studied so far extensively exploit closure
under marginalization, the class of models that are amenable to this approach could be lim-
ited by this property. The multivariate diagnostics demonstrate that the multivariate SG can
capture cross-correlations, but it is limited to an average over space. While this is a substan-
tial improvement over univariate SGs, it still limits the application of multivariate SGs to
variables that have spatially homogeneous cross-covariance, which is rare in practice.

The application of SGs to large ensembles is relatively new. A SG requires a complex
multivariate GSTmodel for its simulations to accurately represent the ensemble distribution
ofmultiple variables.Althoughdeveloping such amodel is a difficult task, the advantages of a
SG are such that attempts are valuable. ThemultivariateGSTmodel underlying the proposed
SG can capture complex structures in mean, trend, variance and temporal correlation over
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space and spatial correlation over latitudes. However, there are limitations that require
model improvements, namely: increased flexibility in modeling tails (e.g., non-Gaussian
assumptions), increased flexibility in modeling polar regions and a model specification that
can capture spatially heterogeneous cross-correlation structures between variables.
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APPENDIX A. SPECTRAL MASS FUNCTION SUM

Proof. From (5), the trace of Rm,m,v,v is

trace(Rm,m,v,v) = trace(W−1diag(Wrm,m,v,v)W)

= trace(diag(Wrm,m,v,v)WW−1)

= trace(diag(Wrm,m,v,v))

=
∑

c∈ZL

fm,v(c).

Since Rm,m,v,v is a correlation matrix, the trace is also L . ��

APPENDIX B. CROSS-SPECTRAL MASS FUNCTION

Proof. The diagonal vector AR model of order one in Sect. 3.7 has the following vector
MA model of order m representation

H̃r,t [c, m] =
m∑

i=0

⎛

⎝
m∏

j=i+1


c, j

⎞

⎠ εr,t [c, i], (8)

where the product from m + 1 to m is defined to be one. Therefore, the element in the row
v1 and column v2 of

E(H̃r,t [c, m1]H̃H
r,t [c, m2]) =

m1∧m2∑

i=1

⎛

⎝
m1∏

j=i+1


c, j

⎞

⎠ �c,i

⎛

⎝
m2∏

j=i+1


c, j

⎞

⎠

+
⎛

⎝
m1∏

j=1


c, j

⎞

⎠ �c

⎛

⎝
m2∏

j=1


c, j

⎞

⎠
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is

fm1,m2,v1,v2(c) =
m1∧m2∑

i=1

⎛

⎝
m1∏

j=i+1

ψc, j,v1

⎞

⎠ �c,i [v1, v2]
⎛

⎝
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ψc, j,v2

⎞

⎠

+
⎛

⎝
m1∏

j=1

ψc, j,v1

⎞

⎠�c[v1, v2]
⎛

⎝
m2∏
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ψc, j,v2

⎞

⎠

= �c[v1, v2]
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