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Mechanistic modelling of animal movement is often formulated in discrete time
despite problems with scale invariance, such as handling irregularly timed observations.
A natural solution is to formulate in continuous time, yet uptake of this has been slow.
This lack of implementation is often excused by a difficulty in interpretation. Herewe aim
to bolster usage by developing a continuous-time model with interpretable parameters,
similar to those of popular discrete-time models that use turning angles and step lengths.
Movement is defined by a joint bearing and speed process, with parameters dependent
on a continuous-time behavioural switching process, creating a flexible class of move-
ment models. Methodology is presented for Markov chain Monte Carlo inference given
irregular observations, involving augmenting observed locations with a reconstruction
of the underlying movement process. This is applied to well-known GPS data from elk
(Cervus elaphus), which have previously been modelled in discrete time. We demon-
strate the interpretable nature of the continuous-time model, finding clear differences
in behaviour over time and insights into short-term behaviour that could not have been
obtained in discrete time.

Key Words: Movement modelling; Switching behaviour; Random walk; GPS data;
Markov chain Monte Carlo; Elk.

1. INTRODUCTION

The study of individual animal movement is an active area of ecological research, with
advances in tracking technologies allowing data collection at increasing precision and fre-
quency. This ability to capture short-term movement has motivated the study of different
movement behaviours presented by an animal over time. A number of statistical method-
ologies have been applied to attempt to tackle questions such as the number of behavioural
modes present, when/how often transitions between these occur, and the characteristics of
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movement they represent. Recent applications include, for example, Kuhn et al. (2009),
McEvoy et al. (2015) and McKellar et al. (2015).

Modelling approaches can be classified by their formulation of time: continuous mod-
els define movement at any positive, real time, whereas discrete models are defined only
on some predetermined ‘grid’ of times. Often, the time scale in a discrete analysis is that
given by the sampling scheme of the observations, leading to problems regarding irregular
or missing observations (Patterson et al. in press), along with concerns regarding suitabil-
ity and interpretability (Codling and Hill 2005; Rowcliffe et al. 2012; Nams 2013; Harris
and Blackwell 2013). This lack of scale invariance places unwarranted importance on the
chosen time frame, suggesting no way to combine multiple sources of data or compare anal-
yses. Further, if a discrete-time model is thought of as observations from a continuous-time
process, the existence of such a process and the effect of discretisation are not trivial to
address. For example, not all discrete-time Markov chains have a continuous-time coun-
terpart. Continuous-time models can therefore be seen as the ‘gold standard’ of movement
modelling, avoiding these challenges through being scale invariant and respecting the con-
tinuous nature of an animal’s movement.

The continuous-time model of Johnson et al. (2008a) adopts the popular movement
assumption of a correlated random walk, modelling velocity via a stochastic differential
equation and using a state space framework to incorporate observation error. The ability to
incorporate behavioural switching, however, is limited, either being highly restricted [setting
velocity to zero for a stationary state at known times based on additional tag information
(Johnson et al. 2008a)], or simplifying to a discrete-time behavioural process (Hanks et al.
2011; McClintock et al. 2014) or movement process (Breed et al. 2012). Similarly, the
correlated and biased movement models of Kranstauber et al. (2014) use discrete-time
methods for estimating the behavioural process. Blackwell et al. (2015) overcome these
limitations by modelling location and allowing for a rich class of behavioural processes
dependent on both environmental covariates and time via continuous-time Markov chains.
A set of models able to incorporate a range of movement assumptions including the home
range movement of Blackwell et al. (2015) are given in Fleming et al. (2014), basing
inference on the semivariance function of the underlying movement. This approach offers
a flexible range of models, but the user is unable to associate behaviours directly with
environmental information or identify the behavioural state of the animal at a specific point
in time. The functional model of Buderman et al. (2016) fits splines to infer movement
in continuous time, offering much versatility. However, as the estimable quantities of this
approach are parameters of splines, rather than mechanistic parameters such as a ‘mean
speed’, the interpretation of these quantities is unclear. A recent generalisation using basis
functions by Hooten and Johnson (in press) is a promising development, able to incorporate
a wide range of movement and observation error. An alternative approach to those above is
given byHanks et al. (2015) in whichmovement is defined in discrete space, using aMarkov
chain to model location switches. The inference method they propose, however, requires
imputing continuous-time movement paths via some other movement model [examples
include Johnson et al. (2008a) and Buderman et al. (2016)], therefore inheriting such a
model’s associated assumptions and limitations.
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The uptake of continuous-time approaches has been somewhat limited, owing in part
to the difficulty for the practitioner to interpret the estimated instantaneous movement and
behavioural parameters (McClintock et al. 2014). In contrast, a class of discrete-time move-
ment models based on ‘step lengths’ and ‘turning angles’ (Kareiva and Shigesada 1983;
Morales et al. 2004) attract widespread use (McClintock et al. 2012). The behaviour of
the animal is assumed to follow a Markov chain, with movement evolving according to
behaviour-specific parameters. Within a behaviour, movement is defined by the straight line
‘step length’ between two consecutive locations and the ‘turning angle’ between three con-
secutive locations, following parametric distributions such as the Weibull and the wrapped
Cauchy, respectively (Morales et al. 2004; McClintock et al. 2014). Popular variants on this
include state space models to incorporate observation error (Patterson et al. 2010; Jonsen
et al. 2013), hidden Markov models for efficiency (Langrock et al. 2012) and change point
analysis rather than Markov chains to identify behavioural switches (Gurarie et al. 2009;
Nams 2014).

Parton et al. (2017) introduce a continuous-timemovement model based on similar quan-
tities to those of the popular discrete-time ‘step and turn’ models. This provides familiar
descriptive parameters for estimation, whilst respecting the inherent continuous-time char-
acteristic of movement, having the ability to handle missing and irregular observations with
ease. The inference method involves simulating realisations of the underlying movement
trajectory at a finer time scale than that observed, furthering our goal of providing easily
understood movement analysis through the ability to visualise and relate estimated param-
eters to the movement they describe. This method is demonstrated on noisy observations
of a reindeer (Rangifer tarandus), taken at mostly 2 min intervals. In Fig. 2 of Parton et al.
(2017), the examples of reconstructed movement paths highlight that the characteristics
of movement inferred from the observations are markedly different from a simple linear
interpolation of such observations. Without accounting for observation error, as in many
discrete-time methods, linearly interpolating between observations would lead to a small
number of large (±π ) turning angles. To account for these, inference would describe move-
ment that is tortuous (correlated randomwalk with low correlation). However, if observation
error is accounted for, Parton et al. (2017) show that the information provided by all the
observations suggests movement that is persistent (correlated random walk with high cor-
relation).

Describing only single-state movement limits Parton et al. (2017) to applications with
short-term sampling periods. Our aim here is to introduce a statistical, multistate move-
ment model in continuous time able to provide intuitive and easily interpretable estimated
parameters for the non-statistical user. Multistate switching movement is introduced by
extending Parton et al. (2017) to include a continuous-time Markov chain behavioural pro-
cess. Section 2 introduces our proposedmodel, and an approach for fully Bayesian inference
given observed telemetry data is outlined in Sect. 3. The interpretability of this method is
demonstrated in Sect. 4 on well-known GPS data from a single elk (Cervus elaphus).



376 Bayesian Inference for Multistate ‘Step and Turn’

2. MULTISTATE MOVEMENT BASED ON STEPS AND TURNS

2.1. SINGLE-STATE MOVEMENT MODEL

The basic component for movement follows that of Parton et al. (2017), in which the
animal has both a bearing θ(t) and a speedψ(t) at time t ≥ 0. The bearing process describes
the direction the animal is facing, assumed to evolve according to Brownian motion with
volatility σ 2

θ so that

dθ(t) = σθdW (t),

where W (t) is the Wiener process (Guttorp 1995). This reflects the common assumption of
persistence, where the animal will most likely travel in the same direction over a short period
of time. Over a finite period of time, the change in direction of facing will be a wrapped
Gaussian with mean zero and a variance which is a linear function of time.

The direction an animal is facing at any time is constrained to [−π, π ]; however, here
θ(t) is not constrained in this way and can take any real value. For example, given times
0 ≤ t < s, let θ(t) = 0 and θ(s) = 2π . Although the animal was facing the same direction
at both times, there is information about the behaviour of the process between these points,
as the animal has turned an entire ‘loop’ over this time frame (with the distribution of this
constrained process being a Brownian bridge)

A one-dimensional Ornstein–Uhlenbeck process (Iacus 2008) is assumed to govern the
speed with which the animal is travelling, with parameters {μ, β, σ 2

ψ } so that

dψ(t) = β(μ − ψ(t))dt + σψdW (t).

Hence, the animal’s speed is stochastic but correlated,with long-term averageμ and variance
σ 2

ψ/2β.
Alternate modelling assumptions to those presented may be desired dependent upon

application. A more direct comparison with discrete-time correlated random walk models
would be to model speed as Brownian motion so that distances travelled over disjoint
time periods are independent. Similarly, directed/biased movement could be achieved by
altering theBrownianmotion on the bearing process, or assuming someOrnstein–Uhlenbeck
process.

The joint process given by the bearing and speed of the animal completely defines the
location process Z = {X,Y }, given by

dX (t) = ψ(t) cos(θ(t)), dY (t) = ψ(t) sin(θ(t)).

2.2. MULTISTATE SWITCHING MODEL

To reflect the changing behaviours of an animal over time, a switchingmodel is employed,
with different movement characteristics for each state (Blackwell 1997; Morales et al. 2004;
McClintock et al. 2012; Blackwell et al. 2015). The behavioural process is taken to be a
continuous-time Markov chain with switching rates λ and probabilities q (Guttorp 1995).
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The animal will follow behavioural state i for a length of time exponentially distributed
with rate λi , before switching to state j with probability qi, j . Within a behaviour there is a
corresponding set of parameters describing themovement, as in Sect. 2.1.With this extension
in place the marginal joint process of bearing and speed is not Markovian; however, the
joint process of behaviour, bearing and speed is. The movement of the animal is therefore
parametrised by the set� = {�B,�M }, with�B = {λi , qi, j } and�M = {σ 2

θ,i , μi , βi , σ
2
ψ,i }

for i �= j ∈ {1, . . . , n}, where n is the number of behavioural states.

2.3. SIMULATING MULTISTATE MOVEMENT

Realisations ofmovement given parameters� can be easily simulated,with an example of
such in Fig. 1. The behavioural process is simulated according to a continuous-timeMarkov
chain with generator matrix defined by �B . Given a current behaviour B(t) = s, this
involves drawing the time until the next behavioural switch from an exponential distribution
with rate λs and then choosing the new behaviour j �= s with probability qs, j .

Given a realisation of the behavioural process, movement is simulated at an approximate
time scale δt , which can be arbitrarily fine. If the behaviour at time t is B(t) = s, then the
bearing and speed are given as

θ(t + δt) | θ(t), s ∼ N
(
θ(t), σ 2

θ,sδt
)
, (1)

ψ(t + δt) | ψ(t), s ∼ N

(

μs + exp{−βsδt}(ψ(t) − μs),
σ 2

ψ,s

2βs
(1 − exp{−2βsδt})

)

.

(2)

Given this approximation, the familiar notion of a ‘step’ is recovered by ν(t) = ψ(t)δt .
Given the joint processes {θ, ν}, the Euler–Maruyama approximation of location in two-

dimensional space is given by the cumulative sums

X (ti ) = X (t0) +
i−1∑

j=1

ν(t j ) cos(θ(t j )), Y (ti ) = Y (t0) +
i−1∑

j=1

ν(t j ) sin(θ(t j )). (3)

3. THE MARKOV CHAIN MONTE CARLO ALGORITHM

Observations Z of an animal’s two-dimensional location are taken at a finite, but irregular,
series of times t . The likelihood of these observations given parameters � is intractable due
to the complicated relationship between the locations and parameters when the bearing and
speed processes are unobserved. This is further complicated by the unobserved behavioural
process, where there is the possibility of multiple switches between observations. The fol-
lowing describes theMarkov chainMonte Carlo algorithm used to carry out inference given
observations.

Following Blackwell (2003) a data augmentation approach is taken, simplifying the
relationship between observations and parameters by augmenting the data with the times
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Figure 1. An example of a simulatedmovement pathwith two behavioural states. The simulated bearing and speed
processes are shown, coloured by the simulated behavioural process, along with the resulting two-dimensional
locations.

of all behavioural switches. Here, augmentation also includes an approximation to the
underlying bearing and speed processes on some (arbitrarily fine) time scale. The hybrid
Markov chain Monte Carlo algorithm used splits the quantities of interest into three
groups to update separately, in each case conditional on all other quantities. In cases
where the full conditional distribution can be directly sampled from, Gibbs sampling is
employed, and in all other scenarios the Metropolis–Hastings sampler is used (see, for
example, Gelman et al. (2013) for general sampling methods). The groups to be sepa-
rately sampled from are the behavioural parameters (�B), the movement parameters (�M ),
and the unobserved refined path consisting of behavioural switches, bearings and speeds
(B, θ , ν).

Sections 3.1 and 3.2 describe the sampling schemes used for the behavioural and move-
ment parameters, respectively. In both cases the sampling is standard, employing Gibbs
sampling and a random walk Metropolis–Hastings algorithm. Section 3.3 describes the
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Metropolis–Hastings algorithm used for the reconstruction of the unobserved refined path,
in which a novel method of simulation is used to create the independent proposals within
this sampling scheme.

3.1. SAMPLING THE BEHAVIOURAL PROCESS PARAMETERS

The behavioural process parameters are sampled conditional on the complete observa-
tion of the behavioural process. Conjugate distributions for the switching rates (λ) and
probabilities (q) of a continuous-time Markov chain are gamma and Dirichlet, respectively.
Assuming such conjugate priors allows direct sampling from the posterior conditional as a
Gibbs steps (Blackwell 2003). Further details are given in Section A.1.

3.2. SAMPLING THE MOVEMENT PROCESS PARAMETERS

The movement process parameters are sampled conditional on the complete observa-
tion of the refined path (both behaviour and movement) and the behavioural parameters.
The movement parameters are updated simultaneously using a random walk Metropolis–
Hastings step, with independent proposals for each parameter. Since all movement param-
eters are constrained to be positive, independent univariate Gaussians truncated below at
zero are used as proposal distributions to generate the step in the random walk.

In a simultaneous update of the movement parameters, the likelihood of the refined
movement path is calculated for the current and proposed parameters and combined with
the appropriate prior probability. The standardMetropolis–Hastings acceptance ratio is used
to decide on the acceptance of the proposal. Further details are given in Section A.2.

3.3. RECONSTRUCTING THE UNOBSERVED REFINED PATH

The key step for inference is to sample the unobserved ‘refined path’—given by the
behavioural process, and the bearing and speedprocesses at a refined time scale—conditional
on the parameters. As the dimension of the full movement path will be large (the example
of Sect. 4 leads to a path with around 2300 locations at the chosen refined time scale),
reconstruction is carried out on random short sections. The aim is to simulate the refined path
between two observation times a and b, conditional on the fixed path outside of these times
and a set of parameters. This can easily be extended to span multiple observed locations.
A diagram of this scenario is given in Fig. 2, with two circular points showing the fixed
observations that the path will be simulated between.

The quantities to simulate are those in black in Fig. 2 consisting of the behavioural
process B between times a and b, the bearings {θ1, . . . , θn−1} and the steps {ν1, . . . , νn−1}.
The fixed values that are to be conditioned upon are displayed in grey in Fig. 2 consisting of
the locations {Z(a), Z(b)}, the behaviours {B(a), B(b)}, the bearings {θ0, θn} and the steps
{ν0, νn}. As the bearing and step processes are given by a discrete-time approximation, the
fixed points are the values of the respective process at the refined point immediately before
and after the path section of interest, as shown in Fig. 2.
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Figure 2. Diagram of a section of the refined path, with fixed endpoint locations at the times a and b. The
behavioural process, B (represented as two states with solid and dashed lines here), is simulated with fixed
endpoints {B(a), B(b)}. The bearing and step processes, {θ1, . . . , θn−1, ν1, . . . , νn−1}, are simulated, given fixed
endpoints {θ0, θn , ν0, νn}.

Simulating the quantities of interest conditional on all fixed values is not possible due
to the nonlinearity of the location process (see Eq. 3), and so a proposal path section is
simulated from a simpler distribution that is then accepted or rejected using a Metropolis–
Hastings ratio. An independence sampler is employed using a novel simulation method to
propose a new path section, described below. Further details on the acceptance condition is
given in Section A.3.

3.3.1. Simulating a Refined Path Proposal

A behavioural proposal B∗ is simulated between the times a and b, given fixed val-
ues {B(a), B(b)} and parameters �B , by a rejection method. A continuous-time Markov
chain with parameters �B starting at B(a) at time a and ending at time b is simulated (see
Sect. 2.3). If the final state is not equal to B(b), then the proposal is instantly rejected. Oth-
erwise, the path proposal continues (still with the possibility of rejection in the Metropolis–
Hastings step). Less naive approaches to this simulation could be implemented [see, for
example, Hobolth and Stone (2009), Rao and Teh (2013) and Whitaker et al. (2016)]; how-
ever, this naive method performed well in our examples.

Given the behavioural simulation, the set of refined times {t1 = a, . . . , tn−1} is created.
This must be a sequence of times between a and b that includes behavioural switch times,
and is chosen to approximately be on some time scale δt , the choice of which is discussed
in Sect. 5. This forms the times to simulate the bearings and speed over, as in Fig. 2.

The bearing proposal θ∗ over the times {t1, . . . , tn−1} is simulated conditional on the
fixed bearings {θ0, θn} at the times {t0, tn = b}, the behaviours B∗ and the parameters �.
The distribution of this process is a Brownian bridge with time-varying volatility parameter,
dependent on behaviour. The times {t1, . . . , tn−1, tn} are transformed, weighted by the turn
volatility at each respective time, to give a process with constant volatility. The Brownian
bridge is then simulated on the transformed times {t ′1, . . . , t

′
n−1}, given the values {θ0, θn}

at the end times {t0, t ′n} (see Iacus (2008) for Brownian bridge simulation).
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Simulating the step proposal To propose the steps ν∗ over the times {t1, . . . , tn−1}, the joint
distribution of ν and Z(b), given by

(
ν

Z(b)

)

| �, B∗, θ∗,F ∼ N

((
m1

m2

)

,

(

1 
1,2


T
1,2 
2

))

, (4)

whereF = {Z(a), B(a), B(b), θ0, θn, ν0, νn}, is first constructed. Themarginal distribution
of ν (dimension n−1) given a known behavioural process and fixed end steps is N (m1, 
1)

(discussed further below). The location Z(b) is given by Z(a) + Aν, where

A =
(
cos(θ∗

1 ) · · · cos(θ∗
n−1)

sin(θ∗
1 ) · · · sin(θ∗

n−1)

)

.

The marginal distribution of Z(b) (dimension 2) is N (m2, 
2), and 
1,2 is the (n − 1) × 2
covariance between the steps ν and the location Z(b). Given m1, 
1, A, values for
m2, 
2, 
1,2 can be easily calculated due to Z(b) being a linear combination of the normally
distributed ν.

The form of m1, 
1 arises from the speed process (from which ν is derived) being an
Ornstein–Uhlenbeck bridge with inhomogeneous parameters, calculated by the following
method. The fixed values ν0, νn are transformed to give speeds ψ0 = ν0/δt0 and ψn =
νn/δtn . The joint distribution ψ1, . . . , ψn | ψ0, B∗ is created by iteratively applying

ψi | ψi−1, B(ti ) ∼ N
(
μ, σ 2

)
, (5)

whereμ, σ 2 are given by Eq. 2. This joint distribution is then partitioned intoψ1, . . . , ψn−1

and ψn in order to condition upon the known value for ψn using standard conditioning of a
multivariate normal (Eaton 2007) to give the joint distribution ψ1, . . . , ψn−1 | ψ0, ψn, B∗.
This distribution can be transformed back to steps ν1, . . . , νn−1 to give m1, 
1 through a
transformation by multiplying the speeds ψ1 . . . , ψn−1 by the times δt1, . . . , δtn−1.

The step proposal ν∗ is simulated by further conditioning ν in Eq. 4 on the known Z(b)
by standard conditioning of a normal distribution (Eaton 2007), given by

ν | �, B∗, θ∗,F , Z(b) ∼ N
(
m1 + 
1,2


−1
2 (Z(b) − m2) ,
1 − 
1,2


−1
2 
T

1,2

)
.

The steps are being conditioned upon a linear constraint (the fixed Z(b)), leading to a
singular distribution. Simulation of such follows the ‘conditioning by Kriging’ procedure
in Rue and Held (2005), by first simulating from the unconditioned x ∼ N(m1, 
1) and
adjusting for the constraint by

ν∗ = x − 
1,2

−1
2 (Ax − Z(b)).

This path proposal method does not take into account the fixed location at the end of
the section when simulating the behaviours and bearings. Therefore, a Metropolis–Hastings
step (ratio details in Section A.3) assesses whether this proposal is accepted.



382 Bayesian Inference for Multistate ‘Step and Turn’

4989000

4992000

4995000

4998000

760000 765000 770000 775000

X

Y

Figure 3. Observed daily observations of elk-115 (points linked chronologically with lines). Note that observed
points are displayed here with transparency to highlight the times where multiple observations were captured in
the same/similar location.

4. TWO-STATE SWITCHING MOVEMENT IN ELK

A set of 194 daily GPS observations from the elk (C. elaphus) tagged as ‘elk-115’ are
used in this example (see https://bitbucket.org/a_parton/elk_example). These observations
were introduced andmodelled as part of a larger set consisting of four elk in the discrete-time
‘step and turn’ model of Morales et al. (2004), and more recently modelled in the vignette
of the R package moveHMM (Michelot et al. 2016) applying the hidden Markov model of
Langrock et al. (2012). Observations are shown in Fig. 3, appearing to display two distinct
movement modes: slow, volatile movement where observations are over-plotted, and fast,
directed movement.

Morales et al. (2004) fit a number of models to the larger dataset containing the observa-
tions from elk-115, with the model most similar to ours being the ‘double switch’ model.
Fixed switching probabilities between the two states were modelled, governing a mixture of
correlated random walks. In the vignette of moveHMM the larger dataset is used to demon-
strate a two-state hidden Markov model with switching dependent on environment. For
comparison with the methods here, the reproduction of analysis shown in Fig. 6 does not
include this environmental information and so is the same underlying movement model as
the ‘double switch’ in Morales et al. (2004). In both these discrete-time applications, ‘trav-
elling’ and ‘foraging’ states were identified as having mean daily turning angles of close
to zero and π , respectively. The implications of turn distributions not centred at zero are
discussed in Sect. 5.

https://bitbucket.org/a_parton/elk_example
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In this example, the model of Sect. 2 with two behaviours is applied to the elk-115
observations. The original analysis in Morales et al. (2004) described observations as being
mostly daily, but with some taken at 22- and 26-h intervals. In order to handle this irreg-
ularity, they divided the observed straight line step lengths by the sampling time frame to
approximate daily steps. A method transforming the observed turning angles to some daily
approximation is unclear, and so these remained as the observed values in their analysis.
The open-access version of the elk data does not include the times of the observations, and
rounding of theMorales et al. (2004) ‘daily step lengths’ meant that the original observation
times could not be ascertained. The analysis performed here therefore followed that in the
vignette of moveHMM, using the observed locations, but assuming that these were all at 24-h
intervals. The continuous-time formulation of our model, however, would easily allow for
these irregularly timed observations (and missing observations, if applicable) to be handled
if exact observation times were known.

Applying our presented methodology to multiple animals in the same way as moveHMM,
by pooling information across individuals and estimating a set of population parameters,
could be implemented by a simple extension to the current R code, but is not attempted
here for simplicity. Following Morales et al. (2004) and the vignette of moveHMM, obser-
vation error is assumed to be negligible here (though see Sect. 5). Interest thus involves
inference on the eight movement parameters, consisting of a bearing volatility and three
speed parameters for each state. Using daily observations leaves large portions of the elk’s
movement unobserved, and so it is expected that the reconstructed movement paths, and
thus parameters, for this example will be very uncertain. Rather than a full ecological anal-
ysis, this example is therefore included as a proof of concept for the presented methods
and to highlight some of the possible dangers when analysing daily observations in discrete
time. Readers are directed to Parton et al. (2017) for an example of single-state movement
on a dataset with a sampling scheme of 2 min to compare the uncertainty of movement
reconstructions.

4.1. PRIOR AND INITIAL INFORMATION

A prior distribution specifying an upper bound on the ratio of the speed parameters
to avoid the presence of negative speeds in both states was applied. To define state 2 as
‘travelling’, a Gaussian prior with mean 0.05 and standard deviation of 0.1 was placed
on the turn volatility. All remaining movement parameters had flat priors. The same prior
was on both switching rates, being a gamma distribution with rate 4 and shape 0.1. This
was chosen to limit the rate of behavioural switching, strongly discouraging switching
occurring at a shorter time frame than 4 h, with 90% prior credible interval for residency
time of (6.7×1013)h. This prior is fairly vague when comparing with the posterior credible
intervals (see below).

An initial movement path was created at a time scale of 2 h by taking an interpolating
cubic spline between observations. The choice of a 2-h time scale gives around 11 unknown
locations for reconstruction between each pair of observations, thought to provide an accept-
able trade-off between computational cost and approximation to continuous time (see Sect. 5
for further discussion of δt). The corresponding initial behavioural configuration was set by
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Figure 4. Three examples of reconstructed refined movement paths for elk-115. For each example, the observed
locations are shown as red points and the reconstructed refined path is displayed as linearly interpolated lines. The
left and right panels both show the full reconstructed refined path (in grey and black), but differ by the behavioural
state highlighted: the left panel highlights in black the parts of the path labelled as behavioural state 1 and the
right panel highlights in black the parts of the path labelled as state 2. This separation of behavioural segments
clearly highlights the difference in movement characteristics resulting from the parameters associated with the two
behavioural states (Color figure online).

identifying any points on this path with speed above 100 m/h. Initial parameters were set as
estimates from this initial path configuration.

The algorithm in Sect. 3 was applied for 48×105 iterations, with each iteration consisting
of a single parameter update and 100 refined path updates on random sections of path with
lengths ranging 4–24 points (i.e., 8–48 h). Samples were thinned by a factor of 1000 and the
first quarter were treated as a ‘burn-in’ period, leaving 3600 stored samples of parameters
and reconstructed refined paths. Long subpath lengths are desirable as the proportion of
path being updated is high. However, this incurs computational cost and has low acceptance
due to high dimensionality. A mixture of short subpath lengths (easily accepted) helps with
mixing, following on from such a discussion in Blackwell et al. (2015). The choice here
was based on acceptance rates in pilot runs: lengths higher than 24 had too low acceptance
to be feasible, and lengths of 4 allowed these short section updates that helped with mixing.
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4.2. RESULTS

Figure 4 shows three examples (separated vertically) of the reconstructed refined move-
ment path. Red points show the observations, and the combination of grey and black lines
shows the three example path reconstructions. Each reconstruction is shown in two panels:
the left panel highlights in black the segments of the refined path categorised as behavioural
state 1, and the right panel highlights in black the segments of the path labelled as state 2.
This highlights the difference in movement types between the two identified states, appear-
ing in many ways similar in interpretation to those of Morales et al. (2004) and the vignette
of moveHMM, having a slow ‘foraging’ state and fast ‘travelling’ state. These reconstruc-
tions aid in the interpretation of the movement parameters and give insight into the space
use of the animal between observation times.

Samples from the posterior distributions for the movement parameters, split by state, are
shown in Fig. 5, showing the clear differences between the two states. Posterior summary
statistics of the parameters are given in Table 1. Behavioural state 1 has high σ 2

θ and low μ,
defining volatile, slow movement categorised here as ‘foraging’. The level of σ 2

θ for state 1
(median given by 5.61 rad/h) is high enough to produce turns that are uniform over the
sampling scheme of the observations. The median for long-term travelling speed for state 1
is given by 77.3 m/h. State 1 has a higher β and lower σ 2

ψ than state 2, describing speeds
that are less correlated in the short term (the mean expression of the speed process in Eq. 2
is dominated by the first term involving the ‘mean speed’ parameter rather than the second
term involving the ‘current speed’) and have lower variation in the long term. Themovement
parameters for state 1 have a low effective sample size and do not pass standard convergence
diagnostics. This is due to the turn volatility being so high as to produce uniform turns, and
so this parameter is ‘drifting’.

Behavioural state 2, the ‘travelling’ state, has low σ 2
θ and high μ, reflecting fast, straight

movement. The median long-term travelling speed for state 2 is 638 m/h, with speeds that
are highly correlated in the short term (through a low β) but with high variation in the long
term (through a high σ 2

ψ ). The movement parameters for state 2 pass standard convergence
diagnostics (Heidelberger and Welch) with effective sample size of over 75.

Samples from the posterior distributions for the two rates of switching defining the
behavioural process are shown in the left panel of Fig. 6. Posterior summary statistics for
the switching rates are given in Table 1, with the 90% credible intervals leading to a mean
residence time in state 1 being between 4 and 11 days and in state 2 between 10 and 36 h.
The behavioural parameters pass standard convergence diagnostics, with effective sample
size of over 125. The right panel of Fig. 6 displays the probability of being in behavioural
state 2 throughout the course of the sampling period. Additionally, the corresponding state
probabilities estimated by fitting a hidden Markov model as in the vignette of moveHMM
(but using the larger dataset of tracks from four elk) are shown below. The two models
can be seen to identify the same areas of the movement path as being in the ‘travelling’
state; however, the residence times in this state differ between the two models, with the
hidden Markov model classifying three long stays in state 2 in the middle of the observation
period.
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Figure 5. Sampled state-dependent movement parameters (on log scale) for the example using observations of
elk-115. Left plot the joint sample space between the turn volatility (σ 2

θ ) and the mean speed (μ). Right plot the

joint sample space between the mean speed and the long-term speed variance (σ 2
ψ/2β).

Table 1. Posterior summary statistics (5, 50, 95% quantiles) for the sampled movement and behavioural param-
eters, split by state, in the elk-115 example.

Parameter 5% 50% 95%

Behaviour 1 (‘foraging’) λ1 (switching rate) 0.00391 0.00651 0.0105
σ 2
θ (turn volatility) 2.87 5.61 16.4

μ (long-term speed mean) 68.8 77.3 90.2
β 0.627 1.45 1.94
σ 2
ψ 2900 7920 11,300

σ 2
ψ/2β (long-term speed variance) 2160 2820 3390

Behaviour 2 (‘travelling’) λ2 (switching rate) 0.0275 0.0520 0.0959
σ 2
θ (turn volatility) 0.274 0.389 0.521

μ (long-term speed mean) 519 638 855
β 0.170 0.245 0.340
σ 2
ψ 16,000 23,600 29,700

σ 2
ψ/2β (long-term speed variance) 34,300 47,600 66,400

5. DISCUSSION

We have provided a methodology for Bayesian inference for continuous-time, multistate
movement. The behavioural process leads to a flexible range of movement patterns, whilst
the continuous-time formulation allows missing and irregular observations to be handled
with ease. Movement within a behaviour has some similarities with the velocity-based
continuous-time model of Johnson et al. (2008a) but is more intuitive, enabling a separation
of speed and direction that matches empirical observations well. Parameter interpretation is
simplerwhen separated in thisway, describing aspects ofmovement such as amean travelling
speed and a volatility to the direction ofmovement. Although continuous-timemodels based
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on (x, y) locations (Johnson et al. 2008a; Blackwell et al. 2015) could be applied, with post-
processing to determine the distribution of speed and bearing, the covariance structure of
such distributions, and hence the implicit shapes of the paths, will not be the same as that
presented here. Ecological justification for such a covariance structure may be difficult or
lacking, whereas our model is directly defined by these quantities and therefore initially
motivated by ecological ideas.

For a given state and time interval, the distribution of the change in direction given by
our model will always be a wrapped Gaussian centred at zero. A von Mises distribution
(often used in discrete models; McClintock et al. 2012) centred at zero is very similar to
this, but a von Mises (or other circular) distribution centred at ±π is not. In fact, no natural
continuous-time process for change in direction would lead to such a distribution when
observed at regular intervals. Such a distribution would require the expected rate of change
of bearing to be nonzero, leading to paths that consistently form loops. Whilst this may be
appropriate occasionally (Boakes et al. 2011) we do not feel it is realistic in our example
or in most published applications. It seems more likely that such a distribution emerges
only as an artefact of some other process, e.g. ignored measurement error (Hurford 2009) or
attraction to a particular location. The classification of a foraging state with a mean turning
angle of ±π in many discrete-time applications is therefore questionable. The ecological
interpretation of a ‘foraging’ state would be better modelled as having a uniform turning
angle, such as σ 2

θ → ∞ in our model.
Modelling in continuous time allows us to consider movement/behaviour between obser-

vation times, something not possible in discrete time. The estimated residency rate of the
travelling state in the elk example suggests that there are parts of the movement path where
short sojourns of fast movement occur. In fact, 72% of the sampled values from the posterior
distribution of λ2 lead to a mean residence time of less than the 24-h sampling scheme. In
Fig. 4, it can be seen in a number of places that the reconstruction involves a switch into and
back out of state 1 between two consecutive observations. The exact time when these short
(between observation) switches in behaviour occur varies over the sampled reconstructions,
but their presence has high probability. There is therefore information in the observed loca-
tions indicating a behavioural sojourn has occurred, but the precise time of its occurrence is
very uncertain. Being able to extract such qualitative information on short-term behavioural
switches from observations, albeit with uncertainty, gives extra insight into the movement
that is not possible when switches can only occur at the observation time scale.

Although the approach for inference here is an approximation to the underlying
continuous-time model, advantages remain over discrete time: behavioural switching can
occur continuously in contrast to strictly at observation times and the parameters of the
model are scalable (representing parameters of a continuous-time model) rather than ‘per
observation time’. Reducing the refined time scale will provide a ‘better’ approximation to
the underlying model, but does come with a computational cost. Simulation experiments
on the effect of varying δt (details omitted here for brevity) show that great improvements
to parameter estimation can be made against using only observations by augmenting as
little as four locations between observation pairs. Improving the approximation with further
refinement was found to increase accuracy of parameter estimation further, but incurred
additional computation time.
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The methods described here assume that observation error is negligible. Extending this
to observation error is easily implemented, included in the single behavioural method of
Parton et al. (2017). This simple model assumed normally distributed errors, independent in
space and time. There is therefore a single additional parameter describing the observation
error (a mean error of zero is assumed). An extension to the inference method described
here allows for such a parameter to be sampled as a Gibbs step, and the path reconstruction
method can be extended to include error around observed locations. Extending further to
allow for errors to be correlated in time could also be implemented without difficulty.

The augmentation approach furthers our aim for comprehensible inference. The abil-
ity to view examples of path reconstructions, such as in Fig. 4, aids in understanding
the movement type associated with a given combination of parameters. Sampling a large
number of reconstructions displays the uncertainty in the times at which behavioural
switches occur and can easily be used to estimate the space/resource use of the animal
at the local scale. With the resolution of environmental covariates increasing, this infor-
mation can be correctly combined with local scale movement rather than assuming that
only the covariate values corresponding to directly observed locations are important. For
discussion of the wider issues of linking movement and resource use, see, for example,
Johnson et al. (2008b).

We have assumed here that transition rates between behaviours are constant. It would be
desirable to allow these to depend on spatial covariates (Morales et al. 2004) or on location
itself. Depending on the duration of study, it may also be useful to allow varying rates with
time, perhaps periodically to reflect daily or annual cycles. Both these extensions could be
addressed, without any additional approximation, using the framework in Blackwell et al.
(2015), applied there to movement models directly based on location (rather than velocity or
steps and turns) with heterogeneity in both space and time.More generally, we could capture
some more of the complexity of behaviour by including an additional ‘resting’ state, likely
to occur at particular times of the day, with low or zero speed and perhaps a high volatility to
represent the ‘forgetting’ of bearing whilst resting. We do not explore that approach further
here, preferring to illustrate the key ideas as simply as possible.
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A TECHNICAL DETAILS OF THE INFERENCE ALGORITHM

A.1 CONDITIONAL DISTRIBUTION FOR BEHAVIOURAL
PARAMETERS

The full conditional distribution, L(�B ; B, θ , ν, z,�M ), simplified as L(�B ; B),
is the posterior for a fully observed continuous-time Markov chain. Sufficient statistics
for such a process are given by ai , the total time spent in state i , and bi, j , the number of
transitions from state i to state j . Given independent, exchangeable prior distributions of
λi ∼ Gamma(ci , di ) and qi,1, . . . , qi,n ∼ Dirichlet( f i ), the posterior distribution is

λi | B ∼ Gamma

⎛

⎝ci +
n∑

j=1

bi, j , di + ai

⎞

⎠ ,

qi,1, . . . , qi,n | B ∼ Dirichlet( f i + bi ), where bi = {bi,1, . . . , bi,n}.

A.2 CONDITIONAL DISTRIBUTION FOR MOVEMENT PARAMETERS

The full conditional distribution, L (�M ; �B, B, θ , ν, Z), simplified to
L (�M ; �B, B, θ , ν) when there is no observation error present, is given as

L (�M ; �B, B, θ , ν) ∝ L (�M ; �B, B)L (θ, ν ; �, B) ,

up to a constant. Above, L (�M ; �B, B) = L (�M ) is the density of the prior of the
movement parameters and

L (θ , ν ; �, B) = πθ (θ1) πν (ν1 | �)

M∏

i=2

πθ (θi | θi−1,�, B) πν (νi | νi−1,�, B) ,

where θ1 ∼ U(−π, π),

πν (ν1 | �M ,�B) =
n∑

i=1

πν (ν1 | �M , s0 = i)L (s0 = i ; �B) ,

using the equilibrium distribution of the Ornstein–Uhlenbeck process for the initial speed
likelihood. The conditional likelihoods in the product above are given by Eqs. 1.

A.3 CONDITIONAL DISTRIBUTION FOR THE UNOBSERVED REFINED
PATH

The full conditional distribution of a section of the refined path, up to a constant, needed
for the Metropolis–Hastings step can be written as

L {
B∗, θ∗, ν∗ ; �,F , Z(b)

}

= L {
B∗, θ∗ ; �,F , Z(b)

}L {
ν∗ ; B∗, θ∗,�,F , Z(b)

}

∝ L {
B∗, θ∗ ; �,F}L {

Z(b) ; B∗, θ∗,�,F}L {
ν∗ ; B∗, θ∗,�,F , Z(b)

}
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where F = {B(a), B(b), θ0, θn, ν0, νn, Z(a)}. The simulation method employed to cre-
ate a proposal for a refined path section, described in Sect. 3.3.1, results in a pro-
posal distribution proportional to L {

B∗, θ∗ ; �,F}L {
ν∗ ; B∗, θ∗,�,F , Z(b)

}
, and

so the Metropolis–Hastings acceptance ratio is based only on the marginal distribution
L {

Z(b) ; B∗, θ∗,�,F}
given in Eq. 4.
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