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Estimation and Testing of Gene Expression
Heterosis

Tieming JI, Peng LIU, and Dan NETTLETON

Heterosis, also known as the hybrid vigor, occurs when the mean phenotype of hy-
brid offspring is superior to that of its two inbred parents. The heterosis phenomenon
is extensively utilized in agriculture though the molecular basis is still unknown. In an
effort to understand phenotypic heterosis at the molecular level, researchers have begun
to compare expression levels of thousands of genes between parental inbred lines and
their hybrid offspring to search for evidence of gene expression heterosis. Standard sta-
tistical approaches for separately analyzing expression data for each gene can produce
biased and highly variable estimates and unreliable tests of heterosis. To address these
shortcomings, we develop a hierarchical model to borrow information across genes.
Using our modeling framework, we derive empirical Bayes estimators and an inference
strategy to identify gene expression heterosis. Simulation results show that our pro-
posed method outperforms the more traditional strategy used to detect gene expression
heterosis. This article has supplementary material online.

Key Words: Empirical Bayes; Gene expression; Heterosis; Hierarchical model; Mi-
croarray; Mixture model.

1. INTRODUCTION

Heterosis, or hybrid vigor, refers to the enhanced phenotype of hybrid progeny rel-
ative to their inbred parents. Taking maize as an example, the offspring from cross-
ing the inbred lines B73 and Mo17 are taller, mature faster, and produce greater yields
than their parental lines (Hallauer and Miranda 1981). Since heterosis was scientifi-
cally documented by Darwin (1876), it has been successfully manipulated to improve
many species for food, feed, and fuel industries, such as rice (Yu et al. 1997), al-
falfa (Riday and Brummer 2002), tomatoes (Krieger, Lippman, and Zamir 2010), and
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fish (Wohlfarth 1993). Despite the intensive study and successful utilization of hetero-
sis, the basic genomic mechanisms remain unclear (Coors and Pandey 1999; Lippman
and Zamir 2007). Researchers speculate that gene expression heterosis could be among
the mechanisms responsible for the phenotypic heterosis (Swanson-Wagner et al. 2006;
Springer and Stupar 2007).

Due to advancements in high-throughput genomics technology (such as microarray and
next-generation sequencing of RNA), it is now possible to simultaneously measure and
compare expression levels of thousands of genes in parental lines and their hybrid offspring
to search for evidence of gene expression heterosis. It is of particular interest to test if a
gene exhibits any of the following three forms of gene expression heterosis: high-parent
heterosis (HPH), low-parent heterosis (LPH), or mid-parent heterosis (MPH). A gene is
said to exhibit HPH if the mean expression level of the offspring is greater than the max-
imum of the two parental means, LPH if the mean expression level of the offspring is
smaller than the minimum of the two parental means, and MPH if the mean expression
level of the offspring is not equal to the average of parental means. Let i index the geno-
types of the two parents (i = 1,2) and the offspring (i = 3). Let j (j = 1, . . . , J ) index
the genes, where J denotes the total number of genes under study. We use μij to de-
note the mean expression level of gene j of genotype i. Let hj = μ3j − max{μ1j ,μ2j },
lj = min{μ1j ,μ2j } − μ3j , and mj = μ3j − (μ1j + μ2j )/2. With these notations, gene j

exhibits HPH, LPH, or MPH if and only if hj > 0, lj > 0, or mj �= 0, respectively.
Past work on estimating gene expression heterosis using microarray data (Swanson-

Wagner et al. 2006; Wang et al. 2006; Bassene et al. 2010) has used separate estimates
for each gene obtained by replacing population means (μij , i = 1,2,3, j = 1, . . . , J ) with
corresponding sample averages. These sample average estimators of hj and lj are prob-
lematic because they are biased and tend to underestimate hj and lj (see Appendix A).
Though the sample average estimator of mj is unbiased, with only a few observations for
each gene in a typical microarray experiment, the sample average estimators of mj , hj ,
and lj may each be highly variable.

Because high-throughput technologies measure expression of hundreds of thousands
of genes simultaneously, we can utilize information across genes to improve estimation
and testing of gene expression heterosis for each individual gene. For gene j , we define
two latent variables αj = (μ1j − μ2j )/2 and δj = μ3j − (μ1j + μ2j )/2. Notice that all
three types of gene expression heterosis can be written as functions of |αj | and δj , that
is, hj = δj − |αj |, lj = −|αj | − δj , and mj = δj . Thus, modeling of |αj | and δj helps to
develop statistical inferences for all three types of gene expression heterosis. We model αj ,
the half parental difference, as a draw from a mixture of a point-mass-at-0 distribution and
a normal distribution. This implies that |αj | is equal to 0 with some probability πα and
equal to the absolute value of a draw from a normal distribution with probability 1 − πα .
The point-mass distribution in the mixture model represents the case where the parental
gene expression levels are equal, whereas the normal component corresponds to genes
whose expression levels differ between the two parental lines. Similarly, we model δj ,
the difference between the offspring mean and the average of the parental means, with
another mixture model that has normal and point-mass-at-0 component distributions. We
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estimate the parameters for these mixture distributions based on observed data from all
genes. Under an empirical Bayes framework, we derive posterior distributions of αj and
δj and draw inferences about gene expression heterosis from estimates of these posteriors.

We compare the empirical Bayes method with the sample average method through sim-
ulation studies where datasets were generated based on real heterosis microarray experi-
ments or hypothetical probability models. Simulation studies show that the empirical Bayes
estimators of hj , lj , and mj have smaller mean square errors (MSEs) than the sample aver-
age estimators that have been used previously. Furthermore, the empirical Bayes estimators
of hj and lj are less biased than the sample average estimators, and the inferences we draw
using our empirical Bayes approach are superior to traditional approaches for detecting all
forms of heterosis.

The remainder of the paper proceeds as follows. Section 2 presents the proposed hierar-
chical model in full detail. Section 3 derives the empirical Bayes estimators and inference
strategy based on the framework constructed in Section 2. Section 4 summarizes analysis
results of two real experiments. Section 5 presents results of several simulation studies.
Section 6 summarizes our work. R code and C code for the analysis of real experiments in
Section 4, the simulation studies in Section 5, and the implementation of all our algorithms
is available upon request.

2. HIERARCHICAL GENE EXPRESSION HETEROSIS MODEL

Let yijk denote the normalized log-scale gene expression measurement for genotype i,
gene j , and biological replicate k, where k = 1, . . . , ni , and ni is the total number of
replicates for genotype i. As is common in microarray data analysis, we assume that
the dataset for gene j (yijk , i = 1,2,3, k = 1, . . . , ni ) consists of independent observa-
tions and that yijk ∼ N(μij , σ

2
j ). The sample average method estimates hj , lj , and mj by

̂hj = ȳ3j · − max{ȳ1j ·, ȳ2j ·}, ̂lj = min{ȳ1j ·, ȳ2j ·} − ȳ3j ·, and m̂j = ȳ3j · − (ȳ1j · + ȳ2j ·)/2,
where ȳij · = ∑ni

k=1 yijk/ni . Furthermore, σ 2
j is estimated by S2

j = ∑3
i=1

∑ni

k=1(yijk −
ȳij ·)2/(n1 + n2 + n3 − 3).

In the previous section, we defined αj = (μ1j −μ2j )/2 and δj = μ3j − (μ1j +μ2j )/2.
In order to share information across genes to improve estimation of gene expression het-
erosis, we propose the following models (2.1)–(2.3) for αj , δj , and the error variance σ 2

j .
Suppose that

αj ∼ πα1[αj =0] + (1 − πα)1[αj �=0]N
(

μα,σ 2
α

)

, (2.1)

δj ∼ πδ1[δj =0] + (1 − πδ)1[δj �=0]N
(

μδ,σ
2
δ

)

, (2.2)

σ 2
j ∼ d0σ

2
0 χ−2

d0
, (2.3)

and that all αj , δj , and σ 2
j are mutually independent.

The scaled inverse χ2 model for the error variances σ 2
1 , . . . , σ 2

J given in (2.3) follows
Smyth (2004). The mixture model for αj in (2.1) models the cases where parental means
are equal and where parental means differ, respectively. The hyperparameter πα specifies
the proportion of genes that are equally expressed between two parents. Similarly, the
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mixture model for δj in (2.2) describes the cases where the mean gene expression in the
offspring is equal or not to the average of two parental means. When necessary, the model
(2.1)–(2.3) may be modified as needed to better capture the features of a given dataset. For
example, the mixture model could include more than one normal distribution component
for αj or δj . Although all subsequent derivations are for the model specified in (2.1)–(2.3),
it is straightforward to modify our proposed approach to handle more complex models.

With no loss of information about expression heterosis, the data can be summarized
by the sufficient statistics α̂j ≡ (ȳ1j · − ȳ2j ·)/2, ̂δj ≡ ȳ3j · − (ȳ1j · + ȳ2j ·)/2, and S2

j

(j = 1, . . . , J ). Clearly, α̂j and ̂δj are the natural sample average estimators of αj and δj ,
respectively. Based on the normality assumption for yijk , the conditional distributions of
α̂j , ̂δj , and S2

j —given αj , δj , and σ 2
j —are

(

α̂j | αj , σ
2
j

) ∼ N

(

αj ,

(

1

n1
+ 1

n2

)

σ 2
j

4

)

, (2.4)

(

̂δj | δj , σ
2
j

) ∼ N

(

δj ,

(

1

4n1
+ 1

4n2
+ 1

n3

)

σ 2
j

)

, and (2.5)

(

S2
j | σ 2

j

) ∼ σ 2
j χ2

n1+n2+n3−3

n1 + n2 + n3 − 3
. (2.6)

By combining (2.1), (2.3), and (2.4) it follows that the marginal distribution of α̂j is
a two-component mixture distribution, where each component density is itself an infinite
mixture of normal distributions with common mean but varying variance. This marginal
distribution is determined by the hyperparameters πα , μα , σ 2

α , d0, and σ 2
0 . Similarly, the

marginal of the distribution of ̂δj has an analogous form and is determined by the hyper-
parameters πδ , μδ , σ 2

δ , d0, and σ 2
0 .

Figures 1(a) and 1(b) present histograms of empirical marginal distributions and scatter-
plots for α̂j and ̂δj from an alfalfa experiment and a maize experiment, respectively. Each
of these datasets is discussed in more detail in Section 4, but we introduce the plots here
to provide some empirical support for the model described in this section. Using methods
discussed in Appendix C, we obtain estimates of our model hyperparameters, and the hy-
perparameter estimates determine fitted marginal densities that are plotted on top of the
histograms as red lines. The fitted marginal distributions adequately capture the shape of
the empirical distributions. Furthermore, the lack of correlation between α̂j and ̂δj in the
scatterplots supports our model assumption of independence between αj and δj . Thus, for
both datasets, the model presented in Section 2 appears to be consistent with the main
features of the data illustrated in these plots.

3. EMPIRICAL BAYES ESTIMATION AND TESTING OF GENE
EXPRESSION HETEROSIS

Obtaining estimates of our model hyperparameters is the first step in our empirical
Bayes approach. We use the method of Smyth (2004) to estimate d0 and σ 2

0 . We estimate
other hyperparameters by a combined approach of the moment method and the marginal
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Figure 1. Scatterplots of α̂j vs. ̂δj and histograms of empirical marginal distributions of α̂j and ̂δj
(j = 1, . . . , J ) based on two real heterosis experiments. The relative sizes of αj and δj partition the two-di-
mensional space virtually into subsets based on the mean expression levels of two inbred parents and their hybrid
offspring as shown by dashed lines. Fitted curves represent estimated marginal densities based on the assumed
model described in Section 2. (a) Alfalfa dataset. B2, B5, and F1 denote the genotypes of the two parental inbred
lines and the hybrid offspring, respectively. (b) Maize dataset. B73, Mo17, and F1 denote the genotypes of the
two parental inbred lines and the hybrid offspring, respectively.
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maximum likelihood method using data from all genes. The details of our proposed ap-
proach are provided in Appendix C. Because thousands of genes in one experiment are
used to obtain the estimates of the hyperparameters, we claim that adopting the usual em-
pirical Bayes strategy (i.e., treating these unknown hyperparameters as known and equal
to their estimates) does not seriously affect the performance of the inferential procedures
we describe in this section. This claim is supported by simulation studies presented in
Sections 4 and 5.

Once estimates of the hyperparameters have been obtained, our goal is to draw infer-
ences regarding expression heterosis for individual genes. Based on (2.1)–(2.6), an ex-
pression for the joint posterior distribution of (αj , δj ) given α̂j , ̂δj , and S2

j is derived and
illustrated in Appendix B. Sampling from the joint posterior distribution of (αj , δj ) al-
lows us to approximate the posterior distributions of hj , lj , and mj via the relationships
hj = δj − |αj |, lj = −|αj | − δj , and mj = δj . Based on the form of the posterior of
(αj , δj ), one common method for sampling αj and δj is through a Markov chain Monte
Carlo (MCMC) method, such as using the Metropolis–Hastings algorithm. We have devel-
oped and implemented such a Metropolis–Hastings algorithm as illustrated in the online
supplement. A good approximation of the posterior distributions of hj , lj , and mj requires
a large number of draws from the joint posterior distribution of (αj , δj ) for each gene j .
By using the Metropolis–Hastings algorithm, an analysis of simulated data for only 1,000
genes took around 5 hours to complete (see more details in the online supplement). Al-
though parallelism and/or more sophisticated sampling algorithms could help to reduce
the computing time, the large number of genes in a typical transcript profiling experiment
motivates us to find a faster alternative.

To substantially reduce the computing requirement and maintain good approximations
of the posterior distributions of hj , lj , and mj , we derive in Appendix B the approximation
to the joint posterior distribution of (αj , δj ) given by

p
(

αj , δj | α̂j ,̂δj , S
2
j

) ≈ P1j 1[αj =0,δj =0] (3.1a)

+ P2j 1[αj �=0,δj =0]φ
(

αj | μ̃αj
, σ̃ 2

αj

)

(3.1b)

+ P3j 1[αj =0,δj �=0]φ
(

δj | μ̃δj
, σ̃ 2

δj

)

(3.1c)

+ P4j 1[αj �=0,δj �=0]φ
(

αj | μ̃αj
, σ̃ 2

αj

)

φ
(

δj | μ̃δj
, σ̃ 2

δj

)

, (3.1d)

where φ(x | μ,σ 2) denotes the normal density with mean μ and variance σ 2 evaluated
at x,

σ̃ 2
j = E−1(1/σ 2

j | S2
j

) = (n1 + n2 + n3 − 3)S2
j + d0σ

2
0

(n1 + n2 + n3 − 3) + d0
, (3.2a)

μ̃αj
= σ 2

α α̂j + (1/(4n1) + 1/(4n2))̃σ
2
j μα

σ 2
α + (1/(4n1) + 1/(4n2))̃σ

2
j

, (3.2b)

σ̃ 2
αj

= σ 2
α (1/(4n1) + 1/(4n2))̃σ

2
j

σ 2
α + (1/(4n1) + 1/(4n2))̃σ

2
j

, (3.2c)
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μ̃δj
= σ 2

δ
̂δj + (1/(4n1) + 1/(4n2) + 1/n3)̃σ

2
j μδ

σ 2
δ + (1/(4n1) + 1/(4n2) + 1/n3)̃σ

2
j

, (3.2d)

σ̃ 2
δj

= σ 2
δ (1/(4n1) + 1/(4n2) + 1/n3)̃σ

2
j

σ 2
δ + (1/(4n1) + 1/(4n2) + 1/n3)̃σ

2
j

, (3.2e)

and the probabilities P1j , P2j , P3j , and P4j sum to 1 and are defined in Appendix B. The

approximation to the joint posterior distribution of αj and δj in (3.1) is a mixture of four

joint distributions, where both αj and δj are from point-mass-at-0 as in (3.1a), δj is from

point-mass-at-0 and αj is from a normal distribution as in (3.1b), αj is from point-mass-

at-0 and δj is from a normal distribution as in (3.1c), and both αj and δj are from normal

distributions as in (3.1d). The approximate posterior mixture distribution combines infor-

mation from prior models and empirical observations. For example, μ̃αj
can be expressed

as a weighted average of μα (the prior mean of αj given αj �= 0) and α̂j (an estimate of

αj based on sample means), where the weight on μα is proportional to the prior precision

of αj given αj �= 0 (1/σ 2
α ), and the weight on α̂j is proportional to an estimate of the

conditional precision of α̂j given αj (1/v̂ar(̂αj | αj )). Similarly, σ̃ 2
αj

is the inverse of the

average of the precisions 1/σ 2
α and 1/v̂ar(̂αj | αj ).

The approximation of the joint posterior distribution in (3.1) allows us to substantially

reduce the computing requirement because we no longer need to go through a large num-

ber of MCMC iterations, but can instead directly sample from either a point-mass-at-0

distribution or a normal distribution. In addition, this leads to accurate approximations of

the posterior distributions of hj , lj , and mj , as demonstrated by simulation studies in Sec-

tion 5 and in the online supplement.

Given the fully specified approximate posteriors of αj and δj and plugging in esti-

mated hyperparameters, it is straightforward to approximate posterior distributions of hj ,

lj , and mj by simulation. We propose to use the estimated posterior expectations ˜hj =
̂E(hj | α̂j ,̂δj , S

2
j ), ˜lj = ̂E(lj | α̂j ,̂δj , S

2
j ), and m̃j = ̂E(mj | α̂j ,̂δj , S

2
j ) as point estima-

tors for hj , lj , and mj , respectively. Tests of HPH, LPH, and MPH, respectively, for each

gene j are based on the estimated posterior probabilities p̃hj
= ̂P (hj > 0 | α̂j ,̂δj , S

2
j ) =

̂P(δj > |αj | | α̂j ,̂δj , S
2
j ), p̃lj = ̂P(lj > 0 | α̂j ,̂δj , S

2
j ) = ̂P(δj < −|αj | | α̂j ,̂δj , S

2
j ), and

p̃mj
= ̂P (mj �= 0 | α̂j ,̂δj , S

2
j ) = ̂P(δj �= 0 | α̂j ,̂δj , S

2
j ). For any cutoff c ∈ (0,1), we de-

clare that gene j exhibits HPH, LPH, or MPH if and only if p̃hj
≥ c, p̃lj ≥ c, or p̃mj

≥ c,

respectively.

We also use the estimated posterior probabilities to estimate false discovery rates

(FDRs) for any family of tests that involves one test per gene. The number of positives,

R(c), is the number of genes declared to exhibit a type of gene expression heterosis given

the cutoff c. Taking HPH as an example, R(c) = ∑J
j=1 1[p̃hj

≥c]. The number of false pos-

itives, V (c), is estimated as ̂V (c) = ∑J
j=1 1[p̃hj

≥c](1 − p̃hj
), and the estimated FDR for

HPH based on estimated posterior probabilities is ̂FDR(c) = ̂V (c)/R(c) given cutoff c.

Calculations of estimated FDRs for testing LPH and MPH are similar.
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Table 1. Estimated hyperparameters (obtained by using the methods described in Appendix C) and empirical
estimates of bias and MSE of our hyperparameter estimators based on analysis of 1,000 datasets sim-
ulated with hyperparameters estimated from the alfalfa and maize datasets as the true hyperparameter
values.

Parameters πα μα σ 2
α πδ μδ σ 2

δ d0 σ 2
0

Alfalfa Exp 0.870 0.011 0.087 0.405 −0.020 0.232 2.52 0.035
Bias −5.33e−2 −2.92e−3 −1.12e−2 −2.72e−2 6.77e−4 −3.53e−3 1.60e−3 9.36e−6
MSE 2.85e−3 2.54e−5 1.31e−4 7.64e−4 1.34e−5 2.38e−5 6.11e−4 6.34e−8

Maize Exp 0.331 0.002 0.022 0.647 -0.008 0.046 2.34 0.030
Bias 2.85e−3 −1.31e−5 1.19e−4 1.48e−3 6.10e−5 4.50e−4 −1.20e−3 4.14e−7
MSE 6.45e−5 2.90e−6 1.99e−7 5.73e−5 1.31e−5 2.12e−6 9.20e−4 7.67e−8

4. EXAMPLE DATA ANALYSIS

4.1. ANALYSIS OF AN ALFALFA DATASET

We used our method to analyze an alfalfa dataset on gene expression in parental lines
B2 and B5 and the hybrid genotype (B2×B5). The data are available in the Gene Expres-
sion Omnibus (GEO) database (Barrett et al. 2011) with series number GSE25034. Each
genotype had three biological replicates measured with Affymetrix Medicago Genome Ar-
ray (Platform GPL4652). The robust multiarray average (RMA) method (Irizarray et al.
2003) was used to obtain normalized expression measures for each probeset on the array.
Nonalfalfa probesets associated with the bacterial genome Sinorhizobium meliloti, along
with all other probesets called absent by Affymetrix microarray suite version 5 software
in all samples were filtered from the dataset (McClintick and Edenberg 2006) to leave
31,865 probesets for analysis. The hyperparameters estimated from our proposed method
are summarized in row 1 of Table 1.

A simulation study was conducted to assess the estimation of hyperparameters. We used
the estimated hyperparameter values in Table 1 as the true parameter values to simulate
data for 31,865 genes based on the hierarchical model described in Sections 2 and 3. Then,
we reestimated the hyperparameters using the simulated data. We repeated this procedure
1,000 times. The estimated bias and MSE in Table 1 for each hyperparameter estimator
based on these 1,000 replications show that our hyperparameter estimators are reasonably
accurate and precise.

For any gene j , we sample hj , lj , and mj by simulating αj and δj from the approxi-
mate joint posterior distribution (3.1). As an example, the contour plot of 10,000 random
draws of α20 and δ20 from the approximate joint posterior distribution of gene “AFFX-Msa-
ubq11-3_at” (gene number 20) is plotted in Figure 2. This gene has been reported to be
one of the polyubiquitin genes involved in directing protein recycling and related functions
(Geer et al. 2010). Based on these draws, p̃h20 = ̂P(δ20 > |α20| | α̂20,̂δ20, S

2
20) ≈ 0.998,

which gives strong evidence of HPH for this gene. As described in Section 3, we can also
use the estimated posterior distributions of αj and δj to test for any given type of heterosis
while controlling FDR at a specified level. For example, we color-coded points in Fig-
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Figure 2. Example estimated posterior distribution for a gene exhibiting significant evidence of HPH (gene
“AFFX-Msa-ubq11-3_at” in the alfalfa dataset).

Table 2. Number of genes declared to exhibit gene expression heterosis by the sample average method and the
empirical Bayes method.

Datasets Heterosis Sample average Empirical Bayes

Alfalfa dataset HPH 2475 3529
LPH 2121 4077
MPH 4813 8046

Maize dataset HPH 55 390
LPH 197 595
MPH 1181 1447

ure 2(a) of the online supplement to highlight genes significant at approximate FDR level

0.05 when testing for HPH (red), LPH (blue), or MPH (red, blue, or green), respectively.

We also used a traditional approach based on a separate analysis for each gene to analyze

the alfalfa dataset. Sample average estimates and ordinary t-tests were used to identify

significant evidence of heterosis. Taking HPH as an example, if ȳ1j · ≥ ȳ2j ·, then ̂hj =
ȳ3j · − ȳ1j ·, and the t statistic for the one-sided ordinary t-test is ̂hj/

√

(1/n3 + 1/n1)S
2
j .

Similarly, we tested for LPH using a one-sided ordinary t-test, and we tested for MPH

using a two-sided ordinary t-test of mj = 0. Given the p-values from the ordinary t-tests,

we controlled FDR for the sample average method using the q-value method described by

Storey and Tibshirani (2003).

The numbers of genes exhibiting significant evidence of the three types of gene expres-

sion heterosis when controlling FDR at approximately 0.05 by the sample average method

and the empirical Bayes method, respectively, are in Table 2. Our empirical Bayes method

identifies far more significant genes than the sample average approach.
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4.2. ANALYSIS OF A MAIZE DATASET

Swanson-Wagner et al. (2009) compared gene expression of maize inbred lines B73 and
Mo17 and their hybrid offspring. They studied a total of 13,999 genes in their microarray
experiment with 10 biological replicates for each of the three genotypes. The dataset is
downloadable in GEO with series number GSE16136.

Log-scale expression measurements were Lowess normalized within each slide and me-
dian centered. The normalized data were analyzed with our empirical Bayes method, and
the estimated hyperparameters are summarized in Table 1, row 4. The simulation described
in Section 4.1 was repeated for the maize results to estimate the bias and MSE of the hy-
perparameter estimators. The results are summarized in the last two rows of Table 1.

Based on the posterior distributions of αj and δj , we color-coded points in Figure 2(b)
of the online supplement to highlight genes significant at approximate FDR level 0.05 when
testing for HPH (red), LPH (blue), or MPH (red, blue, or green), respectively. The reported
numbers of genes exhibiting each of the three types of gene expression heterosis identified
by the sample average method and the empirical Bayes method, respectively, are listed
in Table 2 where FDR was controlled at the 0.05 level. Once again, the empirical Bayes
method reported more significant genes for all three types of gene expression heterosis
than the sample average method.

5. ADDITIONAL SIMULATION STUDIES

5.1. SIMULATION STUDY BASED ON THE ALFALFA EXPERIMENT

We simulated 100 datasets based on the hierarchical model defined by (2.1)–(2.6) using
hyperparameters equal to the estimated values from the alfalfa experiment in Table 1. For
each dataset, we simulated 31,865 genes (the same number of genes in the alfalfa experi-
ment) and three biological replicates for each genotype.

We used the empirical Bayes method to estimate hj , lj , and mj for all j . For each
dataset and each type of heterosis, we ranked the estimation errors from most negative
to most positive, then we averaged the estimation errors of the same rank across the 100
datasets. We used the same approach for the sample average method. The box plots of
averages of ranked estimation errors are plotted in Figure 3(a) for hj , Figure 3(b) for lj , and
Figure 3(c) for mj . These box plots suggest that the empirical Bayes method on average
has smaller ranked estimation errors than the sample average method. The box plots also
show that the averages of ranked estimation errors by the empirical Bayes method have
narrower interquartile ranges than the sample average method for estimating each type of
heterosis. Table 3 summarizes the averaged estimation biases and MSEs across all genes in
all datasets. The empirical Bayes estimators have smaller biases and MSEs than the sample
average estimators for all types of heterosis. Both the plots and statistics show substantial
improvement of the empirical Bayes method over the sample average method.

For each dataset, we computed the true positive rate (TPR) given a set of fixed levels of
false positive rate (FPR) for testing each type of gene expression heterosis by the sample
average method and the empirical Bayes method, respectively. Then, we averaged the TPRs
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Figure 3. Plots for the simulation study 5.1 based on the alfalfa data. Top row: box plots of ranked estimation
errors averaged over 100 simulated datasets. Middle row: ROC curves averaged over 100 simulated datasets.
Bottom row: estimated FDRs based on posterior probabilities versus true FDRs. Left column: HPH. Middle
column: LPH. Right column: MPH.

across 100 datasets for each given level of FPR for each of the two methods. The resulting
average receiver operating characteristic (ROC) curves are plotted in Figures 3(d)–3(f)
for testing HPH, LPH, and MPH, respectively. We only plotted over the range of FPR
between 0 and 0.05 because FPR > 0.05 is rarely of interest in practice. The ROC curves
demonstrate that our proposed tests identify more true positives than the sample average
method given any fixed level of FPR for testing each type of gene expression heterosis.

By the empirical Bayes method, we estimated the FDRs for testing each type of gene
expression heterosis as described in Section 3. Then, for each level of estimated FDR,
the true FDRs were calculated by averaging the proportions of false positives among the
declared heterosis genes across 100 datasets for each type of gene expression heterosis.
We plotted the estimated FDRs against the true FDRs in Figures 3(g)–3(i) for testing HPH,



330 T. JI, P. LIU, AND D. NETTLETON

Table 3. Comparison of the average bias and MSE of the sample average estimators and the empirical Bayes
estimators.

Simulations Variables

Bias ×104 MSE ×103

Sample average Empirical Bayes Sample average Empirical Bayes

Alfalfa dataset hj −830 −2.76 111 31.6
lj −827 1.18 109 31.7
mj −2.02 −1.97 83.1 28.1

Maize dataset hj −252 1.44 39.5 7.10
lj −254 0.212 38.8 7.10
mj 0.697 0.616 30.9 4.89

Probability models hj −596 47.2 55.0 20.8
lj −598 44.5 55.6 20.8
mj 0.945 1.36 41.5 15.8

LPH, and MPH, respectively. The plots show results for the range of estimated FDR from
0 to 0.25 because only the region of small FDRs is relevant in practice. All three curves
show that the estimated FDRs based on posterior probabilities are very close to the true
levels, which demonstrates that the proposed method controls FDR as desired.

All results presented above and throughout the paper are based on the approximate joint
posterior density in (3.1). We compared this proposed fast and approximate method with
sampling from posterior distribution via the Metropolis–Hastings algorithm. Comparison
results are discussed in the online supplement. In summary, we found that whereas the es-
timated posterior probabilities of exhibiting HPH, LPH, and MPH are very similar for both
methods, our approximate method is more than 1,000 times faster than the Metropolis–
Hastings approach.

5.2. SIMULATION STUDY BASED ON THE MAIZE EXPERIMENT

The estimated hyperparameters of the maize experiment were used as the true parameter
values to simulate 100 microarray datasets, each with 13,999 genes (the number of genes
in the maize experiment) and 10 biological replicates for each gene of each genotype.

We analyzed these 100 datasets by the empirical Bayes method and the sample average
method. The estimated bias and MSE of hj , lj , and mj estimators averaged across all genes
in all datasets are summarized in Table 3. Table 3 shows that the empirical Bayes estimators
are more accurate and more precise than the sample average method in estimating all types
of heterosis. Figure 3 of the online supplement provides box plots, ROC curves, and FDR
plots for the maize simulation results that are very similar to those displayed in Figure 3
for the alfalfa simulation in Section 5.1.

5.3. SIMULATION STUDY BASED ON PROBABILITY MODELS

To further assess the performance of the proposed empirical Bayes method, we simu-
lated data using distributions different from those proposed in (2.1) and (2.2). Specifically,
we simulated αj from a mixture distribution with a point-mass-at-0 and a t distribution
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with a small number of degrees of freedom (2) and a noncentrality parameter (ncp) 0.01.
Independently from αj , we simulated δj from a mixture model with a point-mass-at-0
and two normal distributions N(−0.05,0.2) and N(0,0.2). We simulated data for 100 mi-
croarray datasets, where each dataset contains 5,000 genes with three biological replicates
for each of three genotypes. Based on the estimated hyperparameters for the alfalfa experi-
ment and the maize experiment, we set πα = 0.8, πδ = 0.6, and simulated σ 2

j from a scaled

inverse χ2 distribution with parameters d0 = 2.8 and σ 2
0 = 0.025.

Though the data were not simulated from the proposed model, our empirical Bayes
estimators, compared to the sample average estimators, have substantially smaller average
bias and MSE for hj and lj as shown in Table 3. Although the averaged estimated bias for
mj is slightly greater than that of the sample average method, the averaged estimated MSE
is reduced by the empirical Bayes method. Figure 4 of the online supplement provides box
plots, ROC curves, and FDR plots (analogous to those in Figure 3 of Section 5.1) showing
that the empirical Bayes method improves upon the sample average method even though
the data-generating model differs from the assumptions in (2.1) and (2.2).

6. DISCUSSION

Gene expression heterosis is speculated to be one possible explanation for phenotypic
heterosis of traits like plant height or grain yield. One natural strategy for estimation (called
the sample average method in this paper) is to simply use the sample means to replace the
population means when estimating the three types of gene expression heterosis. Because
there are often few observations for each gene in a microarray experiment, such estimates
have high standard errors. In addition, the sample average estimators for high-parent het-
erosis and low-parent heterosis are also biased estimators. Furthermore, the natural t-based
testing strategies that accompany the sample average method yield low detection power for
all forms of gene expression heterosis.

A shrinkage method based on the sample average estimators can improve inferences
on gene expression heterosis by sharing information across genes. We developed hierar-
chical models by placing a mixture prior model on each of two latent variables. Using an
empirical Bayes method, the sample average estimates of gene expression heterosis were
adjusted and shrunk toward prior means estimated from the data. The extent of shrinkage
was also estimated empirically based on data. Through simulation studies based on real
datasets and different probability models, we demonstrated that our empirical Bayes esti-
mators have substantially smaller bias and MSE than the sample average estimators, and
the inferences for all three types of gene expression heterosis based on the posterior prob-
abilities also yield higher TPRs given any level of FPR than the ordinary t-tests based on
the sample average estimates. We also showed that using posterior probabilities of exhibit-
ing any type of gene expression heterosis to estimate FDR yields accurate estimates of the
actual FDR. Thus, the methods we have developed provide researchers with substantially
improved statistical tools for studying gene expression heterosis.

The results presented in Section 4 focus on identifying individual genes that show sig-
nificant evidence of expression heterosis of various types. Rather than attempting to iden-
tify individual genes, our approach can also be used to estimate global values like the
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proportion of all genes that exhibit a given type of heterosis. For example, the propor-

tion of maize genes exhibiting HPH is estimated by the average posterior probability of

HPH,
∑J

j=1 p̃hj
/J = 0.122. This estimated proportion includes genes where expression

in the hybrid is only slightly higher than the maximum parental expression. In some cases,

scientists prefer to concentrate on large changes in expression. With our empirical Bayes

approach, it is straightforward to estimate the posterior probability of hj > k for any con-

stant k. For example, with k = log(1.5), the average posterior probability of hj > k in

the maize data is 0.0006. This indicates that genes with hybrid expression (on the original

scale) more than 1.5 times that of the high parent are relatively rare.

Our work has focused on the use of gene expression measurements that can be mod-

eled, at least approximately, by linear models with normally distributed errors. This is a

standard modeling approach for microarray data. Whereas there are thousands of exist-

ing microarray datasets and more generated nearly every day, next-generation sequencing

of RNA (RNA-Seq) is an increasingly popular technology for obtaining gene expression

measurements. At the present state of the technology, RNA-Seq data are perhaps best

treated as counts and modeled with generalized linear models involving overdispersed

Poisson or negative binomial distributions (see, for example, Anders and Huber 2010;

Robinson, McCarthy, and Smyth 2010; Lund et al. 2012; McCarthy, Chen, and Smyth

2012). We believe that the hierarchical modeling ideas we have proposed in the linear

model framework are also likely to be very useful in a generalized linear model framework

for the study of gene expression heterosis using RNA-Seq data. Developing the details of

such an extension is the subject of some of our ongoing and future research.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are
credited.

APPENDIX A: BIAS OF THE SAMPLE AVERAGE ESTIMATORS
OF HIGH AND LOW PARENT HETEROSIS

Based on the definitions in Section 2, we can rewrite the sample average estimator of

hj = δj −|αj | aŝδj − |̂αj |. Although α̂j and̂δj are both unbiased estimators of αj and δj ,

respectively,

E
(|̂αj |

) = E(−α̂j 1[̂αj <0]) + E(̂αj 1[̂αj ≥0])

= ∣

∣E(−α̂j 1[̂αj <0]) + E(̂αj 1[̂αj ≥0])
∣

∣

>
∣

∣E(̂αj 1[̂αj <0]) + E(̂αj 1[̂αj ≥0])
∣

∣ = ∣

∣E(̂αj )
∣

∣ = |αj |.

Thus, E(̂hj ) = E(̂δj − |̂αj |) < δj − |αj | = hj . Likewise, E(̂lj ) = E(−|̂αj | − ̂δj ) <

−|αj | − δj = lj . Thus, the sample average estimators of hj and lj are both biased esti-

mators that, on average, underestimate high-parent and low-parent heterosis, respectively.
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APPENDIX B: DERIVATION AND APPROXIMATION OF THE
JOINT POSTERIOR DISTRIBUTION OF αj AND δj

Let p(·) denote a generic probability density function. We have

p
(

αj , δj | α̂j ,̂δj , S
2
j

) ∝ p
(

α̂j ,̂δj , S
2
j | αj , δj

)

p(αj , δj )

=
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0
p
(

α̂j ,̂δj , S
2
j , σ 2

j | αj , δj

)

dσ 2
j p(αj , δj )
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0
p
(

α̂j ,̂δj , S
2
j | σ 2
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)

p
(

σ 2
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)

dσ 2
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0
p
(

α̂j | αj , σ
2
j

)

p(αj )p
(

̂δj | δj , σ
2
j

)

p(δj )p
(

S2
j | σ 2

j

)

p
(

σ 2
j

)

dσ 2
j

(B.1)

by the conditional independence of α̂j , ̂δj , and S2
j given αj , δj , σ 2

j ; the independence of

αj , δj , and σ 2
j ; the independence of α̂j and δj ; the independence of ̂δj and αj ; and the

independence of S2
j from αj and δj .

It can be shown that
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Substituting (B.2) and (B.3) into (B.1) and noting that p(S2
j | σ 2

j )p(σ 2
j ) ∝ p(σ 2

j | S2
j )

yield
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To obtain reliable statistical inferences of αj and δj and inferences of hj , lj , and mj , we

need to draw a sufficiently large sample from the posterior distribution proportional to (B.4)

for each gene j . One approach is to use the Metropolis–Hastings algorithm (see the online

supplement). However, due to the inefficiency of the Metropolis–Hastings algorithm and

the complex structure in (B.4), obtaining a sufficiently large sample for each of the tens

of thousands of genes in a typical microarray experiment requires extensive computing

power. Methods, such as parallel computing, could reduce the computing time, but the

total amount of required computing power remains substantial.

Here, we propose a novel method to approximate the joint posterior density, which

dramatically decreases the required computing power and, at the same time, maintains

accurate estimation of the posterior distribution. Specifically, we define σ̃ 2
j as the inverse

of the posterior mean of 1/σ 2
j given S2

j as in (3.2a). We use σ̃ 2
j in place of σ 2

j in the

conditional distributions of αj and δj , that is, we replace σ 2
j with σ̃ 2

j in μ̃∗
αj

, σ̃ ∗2
αj

, μ̃∗
δj

, and

σ̃ ∗2
δj

to obtain μ̃αj
, σ̃ 2

αj
, μ̃δj

, and σ̃ 2
δj

given in (3.2b)–(3.2e). This simple replacement of σ 2
j

by σ̃ 2
j in the above four terms leads to the form of (3.1). We then approximate the posterior
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of αj and δj by (3.1) where Pkj = Ckj/(C1j + C2j + C3j + C4j ) (k = 1, . . . ,4) with

C1j = παπδ
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After this simplification, we no longer need to draw samples from the joint posterior
distribution using an iterative algorithm, such as the Metropolis–Hastings method. Instead,
we can sample directly from a point-mass-at-0 distribution or a normal distribution as

shown in (3.1). Although we still need to estimate constants C1j , C2j , C3j , and C4j by
simulation, the required computations are straightforward and efficient. Thus, the required

computing power is dramatically reduced. The online supplement contains a comparison
of results for sampling via Metropolis–Hastings and the approximation (3.1).

APPENDIX C: ESTIMATION OF HYPERPARAMETERS

The hyperparameters to be estimated are πα , μα , σ 2
α , πδ , μδ , σ 2

δ , d0, and σ 2
0 . As noted

in Section 3, we use the method of Smyth (2004) to estimate d0 and σ 2
0 . In all subsequent

calculations, we replace the unknown values of d0 and σ 2
0 with their estimates. To estimate

the remaining hyperparameters, we initially suppose that σ 2
1 , . . . , σ 2

J are fixed, known con-

stants. Then, based on the proposed model in Section 2, we have
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By equating the first and the second distribution moments with the corresponding sample
moments of (̂αj | πα,μα,σ 2

α ) we have
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Based on (C.2), μα and σ 2
α can be written as functions of πα as follows:
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Plugging (C.3) into (C.1) and replacing σ 2
j with σ̃ 2

j = E−1(1/σ 2
j | S2

j ), we can approximate
the distribution of (̂αj | πα,μα,σ 2

α ) as a function with only one unknown parameter πα .
We then estimate πα by maximizing the resulting approximate joint likelihood of the α̂j

for all genes with constraint πα ∈ (0,1). The estimates of μα and σ 2
α are computed by

replacing πα with its estimate and replacing σ 2
j with σ̃ 2

j in (C.3). A completely analogous

procedure is used to estimate μδ , σ 2
δ , and πδ .

SUPPLEMENTARY MATERIALS

Evaluation of the approximation of the joint posterior distribution and additional figures.
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