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Multivariate Spatial Analysis of Climate
Change Projections

Tamara A. GREASBY and Stephan R. SAIN

The goal of this work is to characterize the annual temperature for regional climate
models. Of interest for impacts studies, these profiles and the potential change in these
profiles are a new way to describe climate change and the inherent uncertainty. To that
end, we propose a Bayesian hierarchical spatial model to simultaneously model the
temperature profile for the four seasons of the year, current and future. These profiles
are then analyzed focusing on understanding how they change over time, how they vary
spatially, and how they vary between five different regional climate models. The results
show that for temperature, the regional models have different profile shapes depending
on a number of factors including spatial location, driving climate model, and regional
climate model. This article has supplementary material online.
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1. INTRODUCTION

Numerical models of the Earth’s climate system are important tools for producing pro-
jections of climate change. Modern atmosphere–ocean general circulation models (GCMs)
couple an atmospheric model with an ocean model and are effective at studying processes
and forcings on larger spatial scales. Many climate change impacts studies, however, re-
quire projections on regional and even local spatial scales. This has driven recent interest in
downscaling and approaches based on high-resolution climate models, including programs
such as the North American Regional Climate Change Assessment Program (NARCCAP;
Mearns et al. 2009, 2011). The recent assessment report produced by the Intergovern-
mental Panel on Climate Change (IPCC) contains excellent background information and a
wealth of references on climate, climate change, and climate models (Solomon et al. 2007,
http://www.ipcc.ch).
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Often, statistical analysis of climate model output has focused on annual or seasonal
summaries aggregated over global, hemispheric, or continental spatial scales and possibly
analyzed as time series or with spatial statistical models (e.g., Tebaldi et al. 2005; Furrer
et al. 2007; Berliner and Kim 2008; Smith et al. 2009; Tebaldi and Sansó 2009; Buser,
Kunsch, and Weber 2010; Kaufman and Sain 2010; Sain, Nychka, and Mearns 2011 etc.).
The goal of this research is somewhat different in that we seek to establish an annual
profile of temperature that is allowed to vary across a spatial domain and then examine
how this profile changes with the assumed anthropogenic forcings incorporated into the
climate models. While changes in the seasonal summaries by themselves are important
indicators of climate change, many impacts researchers, for example, those interested in
hydrology, agriculture, or public health, are interested in changes that may span several
seasons, and further understanding of potential changes to seasonality is also important
(e.g., is what we think of as “summer” not only getting warmer but also getting longer?).
Further, by allowing these profiles and the changes to these profiles vary across space, we
seek to identify regions across the domain that might be at an increased risk for climate
change.

Additionally we seek to understand how these profiles vary across the different mod-
els and modeling choices used in the NARCCAP experiment. Quantifying this model-to-
model uncertainty can be crucial to the development of methods for combining the output
across a multimodel ensemble (e.g., to be used for further analysis and in conjunction with
impacts studies), to the development of future regional climate modeling experiments, and
to the further understanding of how the different models capture the physics that determine
the Earth’s climate.

With these goals in mind, this paper represents an initial approach to establishing this
profile through a multivariate spatial statistical model that links the four (winter, spring,
summer, fall) seasonal summaries. While this approach does not allow us to address more
complex questions such as of the length of summer, it is a first step toward understand-
ing the interactions between climate model and seasonality as well as understanding the
uncertainty related to climate model choice. Further, it can be expanded to include more
complex statistical formulations that have the flexibility to better understand characteristics
such as changing seasonality.

1.1. GLOBAL CLIMATE MODELS, REGIONAL CLIMATE MODELS, AND

UNCERTAINTY

GCMs are large-scale, computationally demanding numerical models based on scien-
tists’ current understanding of the Earth’s climate system and the flows of water, energy,
gas, etc. between and within the various components (e.g., atmosphere, oceans, cryosphere,
biosphere, etc.) of the climate system. When modeling future climate, GCMs also attempt
to incorporate changes in the forcings that influence the climate system. Of particular im-
portance are changes in greenhouse gasses and other anthropogenic or human-related fac-
tors that influence the Earth’s climate.

An important aspect when considering any projection of future climate is understanding
the uncertainties associated with such projections. Generally speaking, there are three main
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sources of uncertainty (see, for example, the commentary in Mearns 2010, and the refer-
ences therein). The first is uncertainty about future greenhouse gas and aerosol emissions,
and a variety of emissions scenarios have been considered. Of course it is not clear which
or even if a predefined scenario will occur. Another source of uncertainty is the climate
system’s response to changing emissions, and, finally, the natural variability of the climate
system must also be considered. When climate models are added to the mix, there are a
number of additional uncertainties that arise. For example, there is uncertainty from the
different assumptions about physical processes and how they are implemented in climate
models (an example of a type of structural uncertainty) as well as uncertainties that arise
from how sub-grid-scale processes are approximated (an example of a type of paramet-
ric uncertainty). Collections of model output, termed ensembles, are often used to explore
these uncertainties. These ensembles might be made up from a single model with different
initial conditions or with different assumptions about physical processes (i.e., perturbed
physics ensembles; see, for example, Murphy et al. 2007) or from entirely different models
(i.e., multimodel ensembles; see, for example, Tebaldi and Knutti 2007).

GCMs generally have grid boxes on the order of a 100–200 kilometers, and the large
computational demands of GCMs make it infeasible to run them at higher resolutions.
Unfortunately, many impacts studies require climate and climate change projections on a
much finer grid. Downscaling refers to methods that use the information from GCMs to
model climate at higher resolutions. Statistical downscaling uses empirical relationships
between GCM output and observations at regional and local levels. One challenge to this
approach is the implicit assumption that the empirical relationship will remain the same
in the future. Dynamic downscaling is an alternative that uses higher-resolution climate
models. However, there is generally some price to be paid for the increase in resolution.
For example, one approach simply uses the atmospheric component of a fully coupled
GCM with observed or perturbed sea-surface temperatures in place of an ocean model.

Another approach to downscaling involves regional climate models (RCMs), which
have grid boxes on the order 25–50 kilometers. Typically run over a limited spatial domain,
RCMs use time-dependent boundary conditions such as temperature, winds, atmospheric
moisture, etc. supplied by a global climate model. Downscaling and the choice of climate
model resolution introduces another source of uncertainty in projections of future climate.
NARCCAP has the goal of exploring these uncertainties in climate change projections by
creating an ensemble of RCM output using a different combinations of GCMs and RCMs
in a statistically designed experiment.

1.2. MODEL OUTPUT

For this paper, seasonal averages were created for five different RCMs from the NARC-
CAP experiment. Three of the RCMs are both driven by the same global model, NCAR’s
Community Climate System Model (CCSM) to achieve some control over that source of
uncertainty. The remaining two models were driven by Canada’s Coupled Global Climate
Model (CGCM3). The three regional models driven by CCSM are the Canadian Regional
Climate Model (CRCM), the Weather Research and Forecasting model (WRFG), and the
PSU/NCAR mesoscale model (MM5I). WRFG and CRCM models driven by the CGCM3
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model were also used. The current run of each RCM spans 1970–2000 while the future
run spans 2040–2070. The future run also uses the A2 emissions scenario (Nakicenovic
et al. 2000) which increases CO2 concentration levels from the current values of around
380 ppm to about 870 ppm by the end of the 21st century.

For temperature, average values were computed for each season for all years in which
the model results are available. The seasons are defined as follows: winter (December,
January, February), spring (March, April, May), summer (June, July, August), and fall
(September, October, November). The average for each RCM was computed separately.

1.3. PAPER OUTLINE

In the following section, we outline a multivariate spatial statistical model for annual
profiles constructed from seasonal summaries of climate model output. Section 3 discusses
some results, based on a subset of the NARCCAP ensemble (at this point in time, the output
from the entire NARCCAP experiment is not available), focusing on understanding how
these profiles change over time, how they vary spatially, and how they vary between two
different RCMs. Finally, Section 4 discusses some extensions and plans for future work.

2. A BAYESIAN HIERARCHICAL SPATIAL MODEL

With a multivariate spatial model based on an intrinsic Markov random field at its core,
we develop a Bayesian hierarchical statistical model (Banerjee, Carlin, and Gelfand 2004;
Rue and Held 2005) for the annual profiles and to aid in modeling the uncertainty about
those profiles. The statistical model consists of three levels: data, process, and prior, and
Markov chain Monte Carlo (MCMC; e.g., Gilks, Richardson, and Spiegelhalter 1996) via
a Gibbs sampler (Geman and Geman 1984; Gelfand and Smith 1990; Gelfand et al. 1990)
is used to sample from the posterior distribution of the model parameters.

Throughout this paper, the following notation will be used. Let Y be an 8N × 1 vector
representing seasonal average temperature, where N is the number of grid boxes. There are
eight values at each grid box representing the four seasons for each of two runs (current
and future) of the regional model representing. Y is structured as follows:

Y = [
YT

cw1 . . . Y T
cwN YT

csp1 . . . Y T
cs1 . . . Y T

cN YT
f w1

]
,

where c or f represents current or future, w, sp, s, and f represent the four seasons, and
1, . . . ,N represents the grid-box number.

2.1. DATA LEVEL

The following statistical model is used for temperature:

Y = Xβ + U + ε, (2.1)

where X is a regression matrix with dimension 8N × 18. Main effects are considered for
the four seasons, run (current and future), elevation, and a land–sea indicator. Also, two
way interactions are considered between all variables, with the exception of elevation and
the land–sea indicator.
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Other predictors such as soil moisture (an input to regional climate models), latitude
and longitude, and three-way interactions were considered but did not improve model fit.
The 8N ×1 vector U is a spatial effect, and the 8N ×1 error vector, ε, is assumed to be in-
dependently and identically Gaussian distributed. With these assumptions, Y is distributed
as follows:

Y |U,β,σ 2 ∼ N(Xβ + U,σ 2I8N).

2.2. PROCESS LEVEL

The spatial component of (2.1) is specified at the process level. Consider the vector
U = [UT

1 UT
2 . . . UT

8 ]′ where all Ui are vectors of length N representing a random spatial
field for each season from the current and future runs of the regional climate model. Care
needs to be taken in considering the spatial covariance of U . There are 14,606 and 16,100
grid boxes in the WRFG and CRCM models, respectively, which make many specifications
based, for example, on geostatistical ideas challenging. That, along with the fact that the
climate models are generally on regular spatial grids and that the scope of any inference
is also on that same regular grid, we assume that each Ui follows a first-order, intrinsic
Gaussian Markov random field (IGMRF; see Rue and Held 2005, Chapter 3) with mean 0
and precision matrix V . Further, when all eight Ui are modeled jointly, a separable form is
assumed, i.e., [U ] ∝ |S|N/2exp(− 1

2 (UT (S ⊗V )U)), where S is 8×8, and V is N ×N . For
identifiability, the constraint

∑N
j=1 Uij = 0 is placed on the Ui ’s. A similar construction

was utilized in Cooley and Sain (2010) for the analysis of precipitation extremes from
RCMs. Note that S is 8 × 8 allowing for correlation between the 8 random effects, 4 for
each season, current and future.

It should be noted that IGMRFs are improper, but are well suited for prior distributions.
To construct the precision matrix, the diagonal entries of V , vii , are the number of neigh-
bors of the ith grid box. The off-diagonal elements, vij take the value −1 when grid boxes
i and j are neighbors. Otherwise, they are 0. (In this case, “neighbors” are defined to be the
grid boxes directly north, south, east, and west of the grid box of interest.) So, not only are
we specifying the precision matrix rather than the covariance matrix to keep from having
to perform expensive matrix inversions, the precision matrix is sparse, and sparse-matrix
methods can be used for additional computation advantages (Furrer and Sain 2010).

Finally, it is clear from this formulation that all rows and columns of V sum to 0. Thus
V is rank-deficient, having rank of N − 1. One advantage to the first-order IGMRFs is that
they are invariant to the addition of a constant.

2.3. PRIOR LEVEL

Prior distributions for β , σ 2, and S−1 must also be specified.
First, β is assumed to be normally distributed with mean μ and covariance �. The

element of μ corresponding to the intercept is estimated by the mean temperature, and
remaining values are set to 0. The covariance of β is assumed to be diagonal. Various
choices for μ and � were considered with the goal of choosing values that were not overly
informative. Initial tests showed that specific choices had little impact on the posterior.
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Noninformative priors are also used for both σ 2 and S−1. Specifically, σ 2 is assumed
to be inversely proportional to itself, while S−1 is proportional to |S| 8−1

2 .

2.4. MODEL FITTING

Sampling a multivariate posterior distribution with a Gibbs sampler involves drawing
repeated samples from the conditional distributions of the statistical model parameters
(conditional on the data and current values of other model parameters). These conditional
distributions are given in the Appendix. A variety of starting values were used to initialize
the chains, and convergence was monitored via trace plots as well as using Gelman’s

√
R

statistic, which measures consistency across the chains (Gelman 1996). Chains of length
8500 were run, with the first 1000 taken as the burn-in. Following burn-in, every 13th
sample was retained for posterior inference.

Residuals based on comparing the posterior mean of Xβ + U from (2.1) were exam-
ined, as well as other diagnostics used to ensure model adequacy. Plots of residuals do not
show any strong, systematic spatial patterns indicating that this statistical model adequately
captures the spatial dependence in the climate model output.

3. RESULTS

Our aim is to analyze the annual profile of temperature to see how this profile changes
between the current and future runs of the regional climate models, in effect seeing how this
profile changes in light of the anthropogenic forcings included in the future run. We will
also examine how these changes vary spatially and between climate models. Of particular
interest is the concept of interactions—we want to investigate the impacts of RCM, the
boundary conditions from the GCM, the greenhouse gas forcings, the season, and possible
regional differences. For example, one might believe that two RCMs, run with the same
boundary conditions and forcings, would lead to similar temperature profiles. In another
level of complexity, a profile may be shifted up or down relative to the other, indicating that
one model simply runs hotter than another, regardless of season or forcing. This would be
indicative of a strong RCM or greenhouse gas affect effect, but little or no interaction
between RCM, forcing, or season.

One might expect the temperature for a given season to depend on the RCM. For ex-
ample, the winter season for one model might be hotter than the rest, while the summer
season for that same model is colder than the rest. This would suggest an interaction be-
tween RCM and season. When the boundary conditions supplied by the GCM are also
varied, even more complex interactions are possible. Further, understanding and quantify-
ing the magnitude of these effects would suggest how to design future experiments (i.e.,
more or less RCMs, more or less GCMs, different combinations of RCM and GCM, etc.)
or even how to consider combining results from multimodel experiments and integrating
these results into impacts studies. Understanding the response of an RCM to a particular
GCM and the connection between the physics implemented in the two models would give
modelers insight into how to improve their models.
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Figure 1. Temperature profiles for the current (solid) and future (dashed) time periods in degrees Celsius. The
projected differences (future minus current) are shown below the horizontal gray line. Credible intervals in this
case are quite small and are not visible in this figure. All three RCMs shown were forced by the CCSM CGM.

The results from our analysis will be broken into two sections. In the first, the results
from three RCMs driven by the same GCM will be investigated with the intention of look-
ing at the response of different regional climate models to the same boundary conditions
from the GCM and greenhouse gas forcings. In the second, the results from runs with two
RCMs and two GCMs will be investigated. In both of these, the statistical analysis is done
for each run of the RCM separately, making the comparisons more qualitative.

3.1. RCM RESPONSE TO A COMMON DRIVING MODEL

Figure 1 shows the overall temperature profiles for the current and future years and the
projected changes across the domain for each of the seasons. The three models shown here
are all driven by the CCSM global model. We note some of the more dramatic features
suggested by Figure 1:

• All models experience the greatest temperature change in winter.

• Two models, the MM5I and the WRFG, have the smallest change in summer, while
CRCM has the smallest change in spring.

• The WRFG model has the coolest temperatures for current/future relative to the other
two models.

• The CRCM model has the hottest temperatures in spring and summer. The MM5I
model is hotter in the fall and winter.
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Figure 2. Current, future, and temperature change profiles in degrees Celsius for three metropolitan areas. The
shaded bands indicate the 90% credible interval. The blue curves represent the CRCMccsm model, the purple
curve the MM5Iccsm model, and the green curve the WRFGccsm model. The posterior mean difference was
computed by averaging all grid boxes contained in the metropolitan area, as defined by the US Census Bureau.

This indicates that temperature profile and temperature change profile depend on many
factors, not simply additive effects from RCM or forcing. First, the response of the RCMs
to the boundary conditions supplied by the GCM and the forcing from the changing green-
house gasses is not the same for all regional models. Second, the response is not consistent
across seasons for all RCMs. While a more comprehensive analysis is beyond the scope
of this paper, these results suggest that there is evidence for the presence of interactions
between RCM, season, and the greenhouse gas forcing and further suggest that a more
comprehensive analysis to quantify these effects and interactions is an important next step.

It is also possible to determine if there is spatial variability in these profiles. Figure 2
shows the same profiles for three specific metropolitan areas as defined in the U.S. Census
as Consolidated Metropolitan Statistical Areas (CMSA). To compute these profiles, an
average is computed for the metropolitan area using every thirteenth observation from each
grid box contained within the region. Of note in Figure 2:

• In the average profile, winter had the largest change. In the case of San Francisco,
winter does not have the largest change. In Dallas, winter has the largest change for
the WRFG model, but not for the other two. In Chicago, the change in winter appears
to be close to the change in summer.

• The coolest model is not consistent across all regions. In Dallas, the WRFG model is
the coolest across all seasons. In San Francisco, the WRFG model is coolest in the
summer, but not in any other season. Likewise, the hottest model is not consistent
across all regions. In summer, the CRCM model is the hottest for Sallas and San
Francisco.

• For Dallas and San Francisco, the credible intervals for temperature change for
WRFG and MM5I overlap for at least three seasons. In Chicago however, the credible
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Figure 3. Posterior probability of experiencing a change in temperature greater than 3 degrees Celsius for each
grid box and each season (winter, spring, summer, and fall). Each of these models was driven by the CCSM
model.

intervals overlap for the WRFG and CCSM models. The MM5I change looks quite
different.

These plots suggest temperature profiles, and their change are subject to differences
based on the regional climate model, the region, and the season. Moreover, it suggests that
there are interactions between all these factors, stressing the importance to consider the
spatial variability, in particular for impacts studies on regional and local scales.

Figure 3 shows the estimated probability of a temperature increase of more than 3 de-
grees Celsius for the CRCM, WRFG, and MM5i models driven by CCSM for each of the
four seasons. These plots highlights the major difference between climate models shown
in the previous plot. In winter, all models agree that the larger increases in temperature oc-
cur in the northern latitudes. During the summer, the CRCM model shows larger increases
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in the continental United States than the WRFG and MM5I models. The MM5I model
shows hardly any change. Thus the pattern seen in the profiles for the metropolitan areas
are present throughout the continental United States, with the exception of the Southeast
and Eastern coasts. In spring, all models highlight change in Alaska and Northwestern
Canada. The WRFG model shows larger increases in the Hudson Bay and the Northwest-
ern passages that is not apparent in the other two. In the fall, all models show increases
occurring along the northern border of the domain. These increases stretch down through
eastern Canada, through the midwestern United States and into the four-corners area for
the CRCM and WRFG models. In the WRFG model, however, the increases extend more
to the south, into Mexico.

These plots indicate that no region or area is necessarily vulnerable to large temperature
increases across all seasons. While there appears to be small change in the southern part of
the domain that is consistent across all seasons, the increases as one moves north is both
region and model dependent. It does appear that the northernmost section of the domain
is most vulnerable to change in winter, spring, and fall, while the more central regions are
vulnerable to larger change in the summer and fall.

Finally, we note that the effects of other covariates included in the data model are as
expected and are mostly consistent across climate model. Elevation has a negative rela-
tionship with temperature, and the magnitude of that effect is comparable for all models.
Land temperatures are on average lower than the ones at sea. The WRFG and MM5I mod-
els shows less of a land/sea effect than the CRCM model. Another effect of interest is the
interaction between run, current and future, and elevation. Overall this effect is significant
for CRCM and WRFG but small, less than –0.2 Celsius. This indicates higher elevations
are less subject to climate change than lower elevations. The interaction between run and
land and sea is not significant for the CRCM or MM5I models and is also small, less than
−0.2 for the WRFG model. Information about the posteriors of the S matrices can be found
in the online supplement.

3.2. RCM–GCM INTERACTIONS

The previous section showed the profile variability experienced when the boundary con-
ditions were provided from the same GCM and greenhouse gas forcings were the same for
current and future runs of each RCM. In this section, we will investigate the role of the
previously mentioned factors when the boundary conditions are varied. Figure 4 shows the
average estimated profiles and change for the CRCM and WRFG models driven by both
the CCSM and CGCM3 models. Note that:

• The two models driven by the CGCM3 model have similarly shaped temperature
change profiles. This is not true for the CCSM models.

• The CGCM3 models indicate an interaction between the regional model and the
season—the WRFG model is hotter in winter and spring and cooler in summer. For
the CCSM driven models, the WRFG model is cooler than the CRCM model across
all seasons.
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Figure 4. Temperature profiles for the current (solid) and future (dashed) time periods and projected difference
in degrees Celsius. The shaded bands indicate the 90% credible intervals. The models in the left plot were driven
by the CGCM3 model, while those on the right were driven by the CCSM model.

Figure 5. Plots on the right show current and future temperature profiles in degrees Celsius for 3 metropolitan
areas. The projected temperature change is shown in the plots on the left. The shaded bands indicate the 90%
credible interval. The blue curves represent the CRCM regional model, and the green curve the WRFG regional
model. Plots in the first column are from the CCSM model, while plots in the second column are from the CGCM3
model.

• In summer, the CRCM CCSM future values are within a degree of the current WRFG
values. For the CGCM3 driven models though, the future CCSM values are closer to
the WRFG future values than the WRFG current values.

The temperature profiles and changes for each of the previously mentioned regions are
shown in Figure 5. These profiles show substantial spatial variation. Particularly of note,

• The profile shapes appear to be consistent within a city for the same RCM when
driven by these two GCMs. They do differ in magnitude however.

• In Dallas the CRCM model is hotter than WRFG when driven by both the CCSM
and CGCM3 models. In San Francisco, the CRCM model is hotter than the WRFG
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in winter and fall for both GCMs. In Chicago, the hotter model in winter depends on
the GCM.

• Overall, Chicago looks most like the average profile shown in Figure 4. The other
two cities show a clear level difference in temperature.

• The similar change profile plots from the overall average for the CGCM3 model is
not repeated in any of these metropolitan areas.

• With the CGCM3 forcings, the CRCM model always has the highest projected change
(or the same). With CCSM, the model with the largest projected change depends on
the season.

• In Chicago, the credible intervals for projected change when driven by CCSM overlap
for all seasons. When driven by CGCM3, none of the credible intervals overlap.

As in the previous section, these results suggest the presence of interactions with RCM,
season, location, and GCM. The presence of these interactions suggest the need for more
careful analysis to quantify the magnitude of these effects, and this is the focus of much of
our current research. It is interesting to note that the CGCM3 driven models show fewer
RCM spatial effects than the CCSM driven models. This clearly points to the need for an
analysis including more GCMs.

4. DISCUSSION, CONCLUSIONS, AND FUTURE WORK

This work introduces a novel approach to assessing climate change on the basis of cli-
mate model experiments by considering an annual profile, in this case constructed from
seasonal temperature, and how that annual profile changes in response to the assumed an-
thropogenic forcings. At the heart of this approach is a hierarchical Bayesian construction
with a multivariate spatial model to deal with spatial correlation in the climate model out-
put. This statistical model allows quantification of the uncertainty in the changes to these
annual profiles, along with the ability to examine how these profiles and changes to these
profiles vary across season, space, RCM, and GCM.

This analysis specifically looks at an the annual profile change for temperature. Based
on this, a relationship is shown between the three regional climate models, CRCM, WRFG
(driven by the CCSM and CGCM3 global models), and MM5I (driven by the CCSM global
model). These models showed substantial variability across season, across the spatial do-
main, and based on the regional-global model combination.

These profiles also showed that for temperature, there are no specific regions at greater
risk for change across all seasons, although the north is more vulnerable for three of the
seasons. It should be noted that this approach could easily be adapted to examine precipi-
tation or any of the other climatological fields produced by these regional models; nor is it
restricted regional models as ensembles of global models could be analyzed in this manner.

This work just begins to touch on the questions of interest related to the annual cy-
cle of temperature and climate change. The presence of interactions between factors
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such as season, regional model, and global model shows that comparing climate mod-
els is tricky business and that a more in-depth, deliberate, and comprehensive analysis
is needed. Our ultimate goal is a comprehensive statistical model for this annual cy-
cle that spans key sources of uncertainty including the interannual variability and the
variability across different models. Improved understanding of how this annual profile
changes in response to anthropogenic forcings can be invaluable for impacts studies.
This statistical model will continue to build on the early work of Tebaldi et al. (2005)
and more recent effects in functional analysis of variance (e.g., Kaufman and Sain 2010;
Sain, Nychka, and Mearns 2011). Further, the multivariate approach can be expanded
to include simultaneous analysis of temperature and other covariates such as precipi-
tation, greatly expanding on previous work in this area (e.g., Tebaldi and Sansó 2009;
Sain, Furrer, and Cressie 2011).

APPENDIX

The posterior has the following form:

U,β,σ 2, S|Y ∝ |(σ 2I)|− 1
2 exp

[
− 1

2σ 2
(Y − Xβ − U)T (Y − Xβ − U)

]

× |S|N
2 exp

[
−1

2

(
UT (S ⊗ V )U

)]

× exp

[
−1

2
(β − μ)T �−1(β − μ)

]
(σ 2)−1|S| 8−1

2 .

From this expression the following conditional distributions can be derived and repre-
sent the distributions that are sampled with the Gibbs sampler:

σ 2|Y,U,β,S ∝ �−1
(

8N

2
,

1

2
(Y − Xβ − U)T (Y − Xβ − U)

)
,

β|Y,U,S,σ 2

∝ N

((
�−1 + XT X

σ 2

)−1(
�−1μ + XT Y

σ 2
− XT U

σ 2

)
,

(
�−1 + XT X

σ 2

)−1
)

,

Ui |Y,U−i , βS,σ 2

∝ N

((
siiV + IN

σ 2

)−1(
Y

σ 2
− Xiβ

σ 2
− V

∑

j �=i

sijUj

)
,

(
siiV + IN

σ 2

)−1
)

,

S|Y,U,β,σ 2 ∝ W
(
N + 2(8) − 1,U∗T V U∗),

where �−1 indicated the inverse gamma distribution, W the Wishart distribution, and N

the Normal distribution. Further, U−i indicates the collection of the elements of U except
the ith, and U∗ indicates the N × 8 matrix with ith columns Ui .
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SUPPLEMENTARY MATERIALS

Information about the posteriors of the S matrices.
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