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Neutral Zone Classifiers Using
a Decision-Theoretic Approach

With Application to DNA Array Analyses

Hua YU, Daniel R. JESKE, Paul RUEGGER, and James BORNEMAN

Two-class neutral zone classifiers were recently proposed for use in microbial com-
munity profiling applications. These classifiers allow a region of neutrality for cases
where probe hybridization outcomes are too ambiguous to have adequate confidence in
assigning a “binding” or “no binding” result. In this paper, we generalize the idea of
neutral zone classifiers to an arbitrary number of classes and apply it to improve the pro-
cess of microbial community profiling by considering a third class for the outcome of
probe hybridization experiments, “partial binding.” We introduce a family of class dis-
tributions that uses a mixture of Gaussian distributions as a model for a Box–Cox power
transformation of the raw intensity measurements. Stratified cross-validation analyses
are used to assess the efficacy of the proposed three-class neutral zone classifier. This
article has supplementary material online.
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1. INTRODUCTION

Classification is a procedure in which objects are assigned class labels based on values
of attribute variables describing features of the objects. A classifier is an algorithm that
realizes this mapping from the feature space to the label set. Based on a set of previously
labeled training data, the classifier learns to predict class labels and finally operates on
objects with unknown labels. Accuracy is essential to the success of classifiers. Especially
in some circumstances, the accuracy of the classifier is so crucial that a wrong prediction
may result in extraordinarily high costs. A good example of this is medical diagnosis of
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thyroid dysfunction. There are three possible statuses for thyroid function: hypothyroidism
(underactive), hyperthyroidism (overactive) and normal (Berardi and Zhang 1999). Mis-
classifying thyroid conditions may have a variety of potentially harmful results. Patients
may be suffering from improper drug or radioactive iodine treatment or even have their
thyroid surgically removed if misclassified as hyperthyroidism, while patients may unnec-
essarily experience a lifelong hormone supplement regiment if they are misdiagnosed as
hypothyroidism. Those who actually have a thyroid dysfunction but are mislabeled as nor-
mal may suffer from long-term organ damage; in some cases, the error can even lead to
death. There exist many other examples which are analogous to medical diagnosis where
misclassification can bring serious consequences.

Misclassifications may come from the high similarities of the feature set between two
objects, which makes it difficult to distinguish them precisely. For example, a blood test is
the main feature used in diagnosing thyroid abnormalities. However, the test result features
of under- or overactive thyroid are not consistent across different patients that have the
same level of dysfunction. It would be helpful to manage this situation if there were a
classifier which can more satisfactorily deal with this uncertainty and imprecision.

Jeske et al. (2007) proposed a classifier with an enlarged action space that includes “no
classification” as a prediction outcome. The so-called neutral zone classifier was utilized
in a microbial community profiling application. In that application, a classification rule
is needed to predict whether a nucleotide probe successfully binds to an rRNA gene. For
those binding experiments that are too ambiguous to show enough evidence for a confi-
dent prediction, the neutral zone classifier uses the “no classification” outcome because
inaccurate prediction of the binding status can confuse a subsequent clustering analysis of
rRNA gene fingerprints. “No classification” is a useable classification outcome since the
profiling application utilizes multiple probes to obtain the gene fingerprint. The enlarged
action space enables the user to minimize the risks associated with misinformation in the
fingerprint and be prompted to potentially conduct further investigations that could lead to
assigning a crisp label.

In this paper, we generalize the development of the neutral zone classifier to handle
k classes, being motivated to do so by an intent to improve the microbial community
profiling process via use of “partial binding” as a third possible outcome to the binding
experiments. Intuitively, introducing the partial binding outcome should provide more dis-
criminative information for the subsequent clustering analysis of the gene fingerprints,
and therefore result in a more accurate microbial taxonomy. Within the context of our
application, we quantitatively compare the advantage of the three-class neutral zone clas-
sifier.

The rest of this paper is organized as follows. In Section 2 we derive the general form
of the k-class neutral zone classifier. In Section 3, we introduce a flexible family of class
distributions whose need was motivated by our application. Details of applying the neutral
zone classifier to our microbial community profiling application are described in Section 4.
Included in Section 4 is a validation study where 5-fold stratified cross-validation analy-
sis is used to evaluate the effectiveness of the three-class neutral zone classifier relative
to a reduced two-class neutral zone classifier that merges the no binding and partial bind-
ing classes. In addition, the performance of the neutral zone classifier is compared to an
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extended version (adapted to handle three classes) of a min-max classifier proposed in
Valinsky et al. (2002a, 2002b). Finally, Section 5 summarizes the work presented in this
paper.

2. NEUTRAL ZONE CLASSIFIERS

2.1. GENERAL FORMULATION

Suppose there are k possible classes for an object, say C ∈ {0,1, . . . , k − 1}. A clas-
sifier based on a p × 1 vector of attributes Y is to be built. We assume the conditional
class probability density functions for Y , written as {fi(y)}k−1

i=0 , are known or other-
wise can be estimated from training data with negligible error. Let {πi}k−1

i=0 denote the
(known) a priori class probabilities. The corresponding posterior class probabilities are
pi(y) = fi(y)πi/

∑k−1
j=0 fj (y)πj , and the usual Bayes classifier with equal misclassifica-

tion costs is Ĉ(y) = argmax0≤i≤k−1 pi(y).
When the two highest posterior probabilities are very close together, the evidence for a

confident classification is weak. In this case, it might be preferable to avoid making a crisp
label assignment and instead classify the object as “N ,” for no classification, with the in-
terpretation being that follow-up is necessary in order to more reliably classify the object.
Mathematically, instances when the N classification outcome is needed can be character-
ized by the condition p(k)(y)−p(k−1)(y) ≤ L, where p(k)(y) and p(k−1)(y) denote the two
largest values among {pi(y)}k−1

i=0 , and where 0 ≤ L ≤ 1 is to be determined. The k-class
neutral zone classifier can be formally written as

Ĉk(y;L) =
{

argmax0≤i≤k−1 pi(y), if p(k)(y) − p(k−1)(y) > L

N, if p(k)(y) − p(k−1)(y) ≤ L.
(2.1)

2.2. SPECIAL CASES

It can be shown that for the two-class problem, k = 2, the neutral zone classifier defined
by (2.1) can be simplified as

Ĉ2(y;L) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if p0(y) > 1/2 + L/2

1 if p0(y) < 1/2 − L/2

N if 1/2 − L/2 ≤ p0(y) ≤ 1/2 + L/2,

(2.2)

which reveals that when p0(y) falls in the interval (1/2 − L/2,1/2 + L/2), there is not
enough evidence in the data to make a confident decision about whether the object belongs
to class 0 or class 1. The classifier Ĉ2(y;L) was used in Jeske et al. (2007).

For the three-class problem, k = 3, the neutral zone classifier defined by (2.1) can be
simplified as

Ĉ3(y;L) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if p1(y) > 1 − 2p0(y) + L and p1(y) < p0(y) − L

1 if p1(y) > p0(y) + L and p1(y) > −p0(y)/2 + 1/2 + L/2

2 if p1(y) < 1 − 2p0(y) − L and p1(y) < −p0(y)/2 + 1/2 − L/2

N otherwise.

(2.3)
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(a) (b)

Figure 1. (a) Three-Class Bayes Classifier. (b) Three-Class Neutral Zone Classifier.

Figure 1 contrasts the equal cost Bayes classifier with the neutral zone classifier. Re-
ferring to Figure 1a, the point [p0(y),p1(y)] maps to a region corresponding to which of
{pi(y)}2

i=0 is the largest. Figure 1b similarly shows the classification regions for the neutral
zone classifier. Together, regions A, B and C comprise the neutral zone region. Region A
represents the neutral zone between class 0 and 1, region B represents the neutral zone
between class 1 and 2, region C represents the neutral zone between class 0 and 2. The
following two properties associated with Figure 1b are proved in Yu (2009):

Property 1. The width of region A is
√

2L, while the width of regions B and C are

each L.

Property 2. The area of all three regions A, B, C is equal to (2 − L)L/6.

2.3. SELECTING L

According to (2.1), we will have k true class labels versus k + 1 predicted class labels.
A misclassification cost matrix is shown in Table 1, defining the costs for each possible
misclassification error. Let A0,A1, . . . ,Ak−1 and AN denote the regions in the space of Y

Table 1. Costs of Misclassification Errors of k-Class Neutral Zone Classifier.

True Class Label Predicted Class Label

0 1 2 · · · k − 1 N

0 0 c01 c02 · · · c0,k−1 c0,N

1 c10 0 c12 · · · c1,k−1 c1,N

2 c20 c21 0 · · · c2,k−1 c2,N

· · · · · · · · · · · · · · · · · · · · ·
k − 1 ck−1,0 ck−1,1 ck−1,2 · · · 0 ck−1,N



478 H. YU ET AL.

corresponding to where the neutral zone classifier predicts the labels 0,1, . . . , k −1 and N ,
respectively. That is,

Aj =
{
y : p(k)(y) − p(k−1)(y) > L and j = argmax

0≤i≤k−1
pi(y)

}
,

j = 0,1, . . . , k − 1,

AN = {
y : p(k)(y) − p(k−1)(y) ≤ L

}
.

The corresponding misclassification probabilities of the neutral zone classifier are then

P
[
Ĉk(y;L) = j

∣
∣ C = i

] =
∫

Aj

fi(y) dy,

i = 0,1, . . . , k − 1,

j = 0,1, . . . , k − 1,N.

The expected cost of misclassification is

ECk(L) =
k−1∑

j=0

k−1∑

i=0

P
[
Ĉk(y;L) = j

∣
∣ C = i

]
πicij

+
k−1∑

i=0

P
[
Ĉk(y;L) = N

∣
∣ C = i

]
πiciN

and the minimum expected cost-neutral zone classifier is defined by Ĉk(y;L∗), where
L∗ ∈ [0,1] is the value of L which minimizes ECk(L). Note that if all non-zero costs are
equal, Ĉk(y;L∗) is the equal-cost Bayes classifier, since in this case the right-hand side of
ECk(L) is proportional to the overall probability of misclassification.

3. UNIVARIATE CLASS DISTRIBUTION MODEL

In this section, motivated by the three-class microbial community profiling application
which will be discussed in detail in Section 4, we introduce a flexible univariate class
distribution model based on Gaussian mixtures. We also discuss evaluation of the misclas-
sification probabilities of the three-class neutral zone classifier under this model.

It has been customary in the literature of DNA array data analysis to model gene in-
tensity measurements using normal distributions (Giles and Kipling 2003) or to trans-
form first with a log transformation and then use normal distributions (Hoyle et al. 2002;
Jeske et al. 2007). We seek to extend these approaches by utilizing more general transfor-
mations and also Gaussian mixtures. In particular, we assume each of the three underlying
class distributions is a two-component Gaussian mixture and prior to fitting that type of
model we propose use of a Box–Cox power transformation (Box and Cox 1964) to further
improve the goodness of fit.
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Denoting the training intensity measurements by {xij }, for i = 0,1,2 and j = 1, . . . , ni ,
define

yij =
⎧
⎨

⎩

xλ
ij −1
λ

if λ �= 0

logxij if λ = 0.

For λ ∈ [−2,2], the transformed training data in each class i is assumed to follow a two-
component Gaussian mixture model

fi(y;qi1,μi1, σi1, qi2,μi2, σi2) = qiφ
(
y;μi1, σ

2
i1

) + (1 − qi)φ
(
y;μi2, σ

2
i2

)

(i = 0,1,2)

where φ(y;μ,σ 2) denotes the density of a normal distribution with mean μ and variance
σ 2 and qi ∈ [0,1] is the mixing proportion for the ith class. We denote the unknown pa-
rameters by the vectors θi = (qi,μi1, σi1,μi2, σi2), i = 0,1,2, and for a fixed λ we then
use the EM algorithm to obtain their conditional MLEs θ̃i (λ) = (q̃i(λ), μ̃i1(λ), σ̃i1(λ),

μ̃i2(λ), σ̃i2(λ)). Finally, we seek the value λ̂ which maximizes the profile likelihood
for λ:

logL(λ) =
2∑

i=0

ni∑

j=1

logfi

(
yij ; θ̃i (λ)

) + (λ − 1)

2∑

i=0

ni∑

j=1

logxij .

Replacing λ by λ̂ in the conditional MLEs, the corresponding vectors θ̂i = (q̂i , μ̂i1, σ̂i1,

μ̂i2, σ̂i2) are the unconditional MLEs of the model parameters.
Based on the Gaussian mixture model, each of the misclassification probabilities can be

expressed as

P
[
Ĉ3(y;L) = j

∣
∣ C = i

] =
∫

Aj

fi(y) dy

=
∫

IAj
(y)fi(y) dy

= qi

∫

IAj
(y)φ

(
y;μi1, σ

2
i1

)
dy

+ (1 − qi)

∫

IAj
(y)φ

(
y;μi2, σ

2
i2

)
dy (3.1)

where i = 0,1,2, j = 0,1,2,N and IAj
(y) is the usual set indicator function. The means,

variances and mixing probabilities in (3.1) can be replaced by their unconditional MLEs.
Analytical evaluation of the integrals in (3.1) is not easy due to the difficulty in inverting

the regions of integration. However, rewriting (3.1) in an approximate form as

P
[
Ĉ3(y;L) = j

∣
∣ C = i

] ≈ q̂i

∫ Ui1

Li1

IAj
(y)φ

(
y; μ̂i1, σ̂

2
i1

)
dy

+ (1 − q̂i )

∫ Ui2

Li2

IAj
(y)φ

(
y; μ̂i2, σ̂

2
i2

)
dy (3.2)
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where Uik = μ̂ik + 5σ̂ik and Lik = μ̂ik − 5σ̂ik (k = 1,2), enables the use of Gaussian
Legendre quadrature (Givens and Hoeting 2005). For a fixed L, all the misclassification
probabilities in EC3(L) can be calculated based on the quadrature approximations to (3.2),
and we can search over 0 ≤ L ≤ 1 to find the optimal value L∗ which minimizes the
expected cost. The corresponding rule Ĉ3(y;L∗) is the proposed three-class neutral zone
classifier.

4. APPLICATION TO MICROBIAL COMMUNITY PROFILING

4.1. INTRODUCTION TO APPLICATION

Microbial community profiling based on a fingerprinting strategy has been developed by
an interdisciplinary team of researchers at the University of California, Riverside (Valinsky
et al. 2002a, 2002b, 2004). It provides a novel cost-effective means for extensively analyz-
ing microbial community composition. In what follows, we give a relatively brief sketch
of the fingerprinting process, and refer the reader to Figure 1 in Valinsky et al. (2002a)
for further details. After conducting DNA extraction and PCR amplification for samples
taken from a host (e.g., soil, water, human, etc.), rRNA genes, which represent a specific
group of microorganism such as fungal or bacteria, are available (a fungal example is used
in this paper). Clone libraries of these rRNA genes are then constructed. The clones are
then subjected to a series of hybridization experiments with different 10-base nucleotide
probes whose sequences are known. The output of each hybridization experiment is a mea-
sured intensity level that carries evidence that binding has occurred between the probe and
the rRNA gene clone. Complete binding indicates the whole probe sequence is contained
within the full clone sequence. Partial binding would indicate a subset of the probe se-
quence is contained within the full clone sequence. A precise definition of partial binding
is given in Section 4.2 below. In this paper, the intensity level is input into a three-class neu-
tral zone classifier that tries to differentiate no binding (class 0) from either partial binding
(class 1) or complete binding (class 2).

A clone fingerprint consists of a vector (one position for each probe) of 0, 1 or 2 el-
ements, plus as many N elements as needed for the cases where a confident crisp label
assignment is not possible. Here, the N elements in the fingerprint result from use of our
three-class neutral zone classifier. Based on a clustering analysis of these fingerprints, the
rRNA gene clones are then grouped into subsets to reflect their similar binding characteris-
tics with respect to the probes. A full nucleotide sequence analysis of a representative clone
from each group is then used to find the best match within a public database containing
gene sequences of known microorganisms. In this way, information about the composition
of the microbial community in the host can be inferred.

The classification problem corresponding to this application is the assignment of labels
0, 1, 2 or N based on the measured intensities of each gene from the probe hybridization
experiments. The rationale for introducing the neutral zone classifier is that some of the
measured intensities are too ambiguous to provide enough evidence to confidently assign
0, 1 or 2, and a wrong prediction with one or more of the probes for a specific gene can have
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more of an adverse consequence on the clustering step than alternatively ignoring the result
from those binding experiments. On the other hand, unnecessarily ignoring hybridization
outcomes will weaken the fidelity of the clustering step. Consequently, our neutral zone
classifier is needed to appropriately make N assignments.

4.2. DATA AND CLASS DISTRIBUTIONS

In the microbial community profiling data discussed in Jeske et al. (2007), two out-
comes from the hybridization experiments with the control clones were defined. The bind-
ing outcome (denoted by 1) was declared when all 10 of the probe bases match (based
on Watson–Crick base-pairing rules) a 10-base long fragment somewhere in the rRNA
gene clone sequence. The non-binding outcome (denoted by 0) was declared when no
such match could be found. Usually, intensity levels corresponding to binding outcomes
are higher than intensity levels corresponding to non-binding outcomes. Our conjecture
(substantiated by Figure 2) is that within the class of non-binding outcomes, the intensity
level is largely proportional to the numbers of mismatches that occurred, although we do
recognize that the position of the mismatch is also a factor. For the microbial profiling
application presented in this paper, we define partial binding to be cases where complete
binding does not occur but for which there exists a fragment in the rRNA sequence where
just one base of the probe does not match. Non-binding cases are then correspondingly the
cases where neither complete binding nor partial binding occurs.

In Figure 2, we take the training data (intensity levels for 344 control clones) for probe
#3 as an example to illustrate the plausibility and intuition for the partial binding class.
Figure 2a shows nonparametric density estimates of the two-class outcome data, complete
binding and everything else as non-binding, and Figure 2b shows the effect of dividing the
non-binding class to form the partial binding class and the residual non-binding class. It
can be seen in Figure 2b that the distribution of the partial binding class sits between that
of the residual non-binding class and the unchanged binding class.

(a) (b)

Figure 2. (a) Non-binding and Binding Classes before Introducing Partial Binding Class. (b) Non-binding,
Partial Binding and Binding Classes.
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(a) (b) (c)

Figure 3. (a) Ecdf and Fitted Class Distribution for Non-binding Data. (b) Ecdf and Fitted Class Distribution
for Partial Binding Data. (c) Ecdf and Fitted Class Distribution for Binding Data.

In this application, 33 probes were hybridized to 344 control clones. For each probe,
the intensity level data divides into three classes according to the definition outlined
above. A single-component Gaussian distribution following a Box–Cox transformation
did not show a good fit to the data. For example, QQ-plot diagnostics revealed inade-
quate fit in the tails as well as bimodal characteristics for many of the probes. Differ-
ent reasons such as array spot background noises or spot size variation from the printing
process, as well as nature itself, may account for this. In a small percentage of cases,
the background-subtracted binding intensities from the hybridization experiments on the
control clones were negative. Since intensity measurements are inherently non-negative,
it is believed that such outcomes reflect errors in the experimental procedure and they
were therefore removed from the training data before fitting the class distributions. For fu-
ture clones, outside the training data set, if negative intensity measurements are observed
for a probe-binding event, the neutral zone classifier is defined to classify the outcome
as N .

We use the two-component Gaussian mixture model combined with the Box–Cox
transformation that was discussed in Section 3 to model the intensity measurements.
The table in the Web Appendix shows the class size ni , the Box–Cox parameter λ̂, and
θ̂i = (q̂i , μ̂i1, σ̂i1, μ̂i2, σ̂i2), i = 0,1,2, for each of the three classes and for each of the 33
probes. Empirical cumulative distribution functions (Ecdfs) of the Box–Cox transformed
intensity data with the overlaid fitted Gaussian mixture provide a visual display of the ade-
quacy of the class distribution model. Figure 3 shows the set of Ecdfs for probe #24 and is
illustrative of how well the proposed class distribution model fits the data. Similar figures
for the remaining probes are included in the Web Appendix.

4.3. THREE-CLASS NEUTRAL ZONE CLASSIFIER

In our application, class labels 0, 1 and 2 correspond to no binding, partial binding
and binding, respectively. Similarly to Jeske et al. (2007) we assume a symmetric cost
structure. The cost of “hard” misclassification errors, where no binding is misclassified
as binding (or vice versa), is denoted by c1. We assume the cost of misclassifying no
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binding as partial binding (or vice versa) is the same as the cost of misclassifying binding
as partial binding (or vice versa) and denote these “medium” misclassification error costs
as c2. The cost of making an N classification will be denoted by c3. We take c1 ≥ c2 ≥
c3 to reflect the severity of hard errors relative to medium errors and the fact that an N

classification can be viewed as a relatively “soft” error. With these simplifications, and
introducing the shorthand notation Ĉ3 ≡ Ĉ3(y;L), the expected cost of misclassification
becomes

EC3(L) = P [Ĉ3 = 1 | C = 0]π0c2 + P [Ĉ3 = 2 | C = 0]π0c1 + P [Ĉ3 = N | C = 0]π0c3

+ P [Ĉ3 = 0 | C = 1]π1c2 + P [Ĉ3 = 2 | C = 1]π1c2

+ P [Ĉ3 = N | C = 1]π1c3 + P [Ĉ3 = 0 | C = 2]π2c1

+ P [Ĉ3 = 1 | C = 2]π2c2 + P [Ĉ3 = N | C = 2]π2c3.

It is not necessary to explicitly specify c1, c2 and c3. Rather, it will suffice to know the
ratios ρ1 = c1/c3 and ρ2 = c2/c3 since we can alternatively write

EC3(L) ∝ π0
(
ρ2P [Ĉ3 = 1 | C = 0] + ρ1P [Ĉ3 = 2 | C = 0] + P [Ĉ3 = N | C = 0])

+ π1
(
ρ2P [Ĉ3 = 0 | C = 1] + ρ2P [Ĉ3 = 2 | C = 1] + P [Ĉ3 = N | C = 1])

+ π2
(
ρ1P [Ĉ3 = 0 | C = 2] + ρ2P [Ĉ3 = 1 | C = 2] + P [Ĉ3 = N | C = 2])

≡ h(L). (4.1)

The relationship c1 ≥ c2 ≥ c3 implies ρ1 ≥ ρ2 ≥ 1. The values of ρ1 and ρ2 can be specified
by the user, or alternatively, can be determined by utilizing application-specific constraints.
The next two subsections illustrate each of these cases.

4.3.1. Known (ρ1,ρ2)

As an illustrative example of this case, suppose the user selects ρ1 = 3 and ρ2 = 2 for
probe #24. Following the approach outlined in Section 3, for each value of L ∈ [0,1] we
first approximate the values of all nine misclassification probabilities based on 2000-point
quadrature approximations to (3.2). We then calculate the corresponding value of h(L)

from (4.1) using specified values ρ1 = 3 and ρ2 = 2, and taking π0 = π1 = π2 = 1/3.
Finally, we search over the whole range of L to find the minimum value of h(L). Using
probe #24 to illustrate this approach, Figure 4 shows that h(L) obtains its minimum value
0.530 at L∗ = 0.054.

The discontinuities in the first derivative of h(L) shown in Figure 4 are caused by cor-
responding discontinuities in some of the non-neutral misclassification probability func-
tions involved in (4.1). We find that some of these functions have concave shapes and fall
to zero at values of L between zero and one. Since h(L) is a linear combination of the
misclassification probabilities, it will have first derivative discontinuities at those values.
Referring to (2.3), the corresponding three-class neutral zone classifier is thus Ĉ3(y;0.054)
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Figure 4. h(L) vs. L for Probe 24 as ρ1 = 3, ρ2 = 2.

Figure 5. Posterior Representation of Three-Class Neutral Zone Classifier for Probe #24 for Case
ρ1 = 3, ρ2 = 2.

and Figure 5 shows its corresponding two-dimensional posterior representation with the
neutral zone represented by the shaded region.

4.3.2. Unknown (ρ1,ρ2)

Now suppose the user is unable to specify ρ1 and ρ2. Then the classifier can be viewed
as a function of ρ1 and ρ2 since L∗ ≡ L∗(ρ1, ρ2) depends on ρ1 and ρ2. For this case
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we denote the classifier by Ĉ3(y;L∗(ρ1, ρ2)) and, as before, for notational convenience at
times we will write Ĉ3 ≡ Ĉ3(y;L∗(ρ1, ρ2)).

If a predicted fingerprint has too many N values, the clustering step in the overall profil-
ing process loses sensitivity and accuracy. It can be seen by examining (4.1) that the effect
of increasing ρ1 or ρ2 is to drive the classifier toward reducing the probability of making a
medium or hard error and, simultaneously, increase the probability of making a soft error.
Following Jeske et al. (2007), we can think of the process of constructing an OFRG finger-
print as a sequence of K independent trials where the trials correspond to classifying the
hybridization outcome of the K probes as either 0, 1, 2 or N .

Suppose the tolerance for N values can be characterized in terms of the proportion α of
fingerprints that are allowed to have more than a specified number s0 of N values. For the
j th probe let L∗

j (ρj1, ρj2) denote the value of L that minimizes h(L) when the cost ratios
are equal to (ρj1, ρj2). For a given p, define the locus

Rj (p) = {
(ρj1, ρj2) :P

[
Ĉ3

(
y;L∗

j (ρj1, ρj2)
) = N

] = p
}

where we note that

P
[
Ĉ3

(
y;L∗

j (ρj1, ρj2)
) = N

] =
2∑

i=0

πiP (Ĉ3 = N | C = i).

Provided each (ρj1, ρj2) ∈ Rj (p), it follows that the number of N values in a fingerprint
is a binomial random variable with parameters K and p. Hence, if we take p0 as the solu-
tion to

∑s0
j=0

(
K
j

)
p

j

0(1 − p0)
K−j = 1 − α, it would follow that the expected proportion of

fingerprints having more than s0 values equal to N will be α. Aside from this property, we
would like to have each (ρj1, ρj2) as large as possible to otherwise minimize the probabil-
ity of medium and hard errors. To this end, we define an aggregated expected cost due to
these types of errors as follows:

ECMH(ρj1, ρj2) ∝ ρj2
[
π0P(Ĉ3 = 1 | C = 0) + π1P(Ĉ3 = 0 | C = 1)

+ π1P(Ĉ3 = 2 | C = 1) + π2P(Ĉ3 = 1 | C = 2)
]

+ ρj1
[
π0P(Ĉ3 = 2 | C = 0) + π2P(Ĉ3 = 0 | C = 2)

]
.

An optimal selection of (ρj1,ρj2) is then (ρ∗
j1,ρ

∗
j2) = argmin(ρj1,ρj2)∈Rj (p0)

ECMH(ρj1,ρj2).
The set Rj (p0) can be constructed approximately by employing a numerical search over

a set that captures the feasible (application-dependent) space for (ρj1, ρj2). In particular,
let ϒj denote a maximum feasible value for ρj1 (we note here that in our application ϒj

will be the same for all j). Let (m,n) denote indices that vary to sweep out a discrete
lattice Lj (δ) = {(ρj1,m, ρj2,n),1 ≤ ρj2,m ≤ ρj1,n ≤ ϒj }, where δ denotes the step size in
each dimension. Define

Gj = {
(ρj1,m, ρj2,n) ∈ Lj (δ) :P

[
Ĉ3

(
y;L∗

j (ρj1,m, ρj2,n)
) = N

] ≤ p0
}
.
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Table 2. Three-Class Neutral Zone Classifiers when (ρ1, ρ2) Unspecified.

Probe ρ∗
1 ρ∗

2 L∗(ρ∗
1 , ρ∗

2 ) Probe ρ∗
1 ρ∗

2 L∗(ρ∗
1 , ρ∗

2 )

1 3.0 2.1 0.136 25 4.3 1.9 0.006
2 2.1 2.1 0.050 26 4.9 1.9 0.153
3 2.1 2.1 0.084 27 2.1 2.1 0.069
4 3.2 2.0 0.092 29 2.4 2.4 0.167
6 2.2 2.2 0.086 30 2.1 2.1 0.045
8 2.1 2.1 0.052 31 3.5 2.0 0.028
9 2.8 2.8 0.302 32 2.2 2.2 0.130

10 2.1 2.1 0.078 33 2.9 2.9 0.307
13 2.7 2.0 0.122 34 3.6 3.6 0.450
15 2.0 2.0 0.028 36 4.7 1.8 0.069
16 2.2 2.2 0.081 37 2.1 2.1 0.062
17 2.0 2.0 0.014 38 2.3 2.3 0.114
19 2.3 2.0 0.054 39 3.7 2.0 0.037
21 1.9 1.9 0.002 40 4.8 2.1 0.084
22 2.1 2.1 0.038 43 3.0 1.9 0.023
23 2.1 1.7 0.006 44 2.7 2.1 0.087
24 3.0 2.0 0.054

A discrete approximation to the locus Rj (p0) is the set

Sj (p0) =
{
(ρj1,m, ρj2,n) ∈ Gj :

(ρj1,m, ρj2,n) = argmax
(ρj1,m,ρj2,n)∈Gj

P
[
Ĉ3

(
y;L∗

j (ρj1,m, ρj2,n)
) = N

]}

and a corresponding grid approximation to the optimal (ρj1, ρj2) is given by (ρ∗
j1, ρ

∗
j2)G =

argmin(ρj1,m,ρj2,n)∈Sj (p0)
ECMH(ρj1,m, ρj2,n).

As an example, suppose s0 = 3 and α = 0.1. Since K = 33, it follows that p0 = 0.054.
Considering again probe #24, taking ϒ24 = 5, and using 0.1 for the grid step size, we find
that (ρ∗

j1, ρ
∗
j2)G = (3,2) and correspondingly the three-class neutral zone classifier for

probe #24 is defined by L∗
24 ≡ L∗

24(3,2). Table 2 shows the results for all 33 probes.

4.4. MODEL EVALUATION

4.4.1. Benefit of Partial Binding Class

In the previous section, training data from 344 control clones were used to build the
classifiers shown in Table 2 for each probe. In this section, we use a 5-fold cross-validation
analysis to evaluate the classifiers. For a given probe, the training data divides the control
clones into three groups corresponding to no binding, partial binding and binding. Since
stratification improves the performance of the regular cross-validation in terms of having
lower bias and smaller variance (Kohavi 1995), 5-fold stratified cross-validation is used
by equally dividing each of the three groups into five approximately equal-sized subsets
to make the distribution of three classes in each fold as similar as possible. For example,
according to the table in the Web Appendix, probe 1 has 131 non-binding clones, 93 partial
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Table 3. Cross-Validation Estimated Costs of Classifiers for 33 Probes.

Three-Class Two-Class Three-Class Two-Class
Neutral Neutral Three-Class Neutral Neutral Three-Class

Probe Zone Zone Min-Max Probe Zone Zone Min-Max

1 0.431 0.748 0.747 25 0.756 0.781 0.949
2 0.622 0.733 0.926 26 0.446 0.729 0.964
3 0.433 0.761 0.772 27 0.374 0.794 0.783
4 0.438 0.757 0.940 29 0.452 0.885 0.953
6 0.516 0.811 0.944 30 0.463 0.754 0.728
8 0.465 0.743 0.855 31 0.623 0.725 0.929
9 0.296 0.978 0.721 32 0.429 0.821 0.951

10 0.540 0.749 0.858 33 0.297 0.983 1.760
13 0.410 0.782 0.943 34 0.279 1.267 2.486
15 0.537 0.687 0.909 36 0.443 0.642 0.899
16 0.618 0.821 0.852 37 0.396 0.711 1.005
17 0.481 0.696 1.029 38 0.321 0.803 0.708
19 0.543 0.783 0.947 39 0.555 0.702 0.970
21 0.547 0.684 0.873 40 0.546 0.749 0.830
22 0.498 0.755 0.814 43 0.535 0.808 0.917
23 0.498 0.612 0.775 44 0.525 0.815 0.926
24 0.533 0.761 0.913

binding clones, 120 binding clones. After the division, each of the 5-folds approximately
has 69 clones in total with 26 non-binding cases, 19 partial binding cases, and 24 binding
cases.

Consider now the j th probe. For ith fold (i = 1, . . . ,5), we use the remaining four
folds and the corresponding (known) ρ∗

j1 and ρ∗
j2 in Table 2 to build a three-class neutral

zone classifier and apply this classifier to classify the data in the ith fold. In this way, for
each probe, we use five different but similar classifiers to ultimately make an independent
classification for each clone in the training data. Empirical misclassification rates are then
calculated by comparing the predicted labels to the known class labels of the 344 training
data control clones. The empirical misclassification rates can then be used in (4.1) to obtain
an estimated cost associated with the classifier. The estimated cost can be used as a figure
of merit for the classifier and it is shown in column 2 and column 6 of Table 3.

To get a perspective of how the addition of the partial binding class improves the classi-
fication performance, the three-class neutral zone classification model was compared to a
two-class neutral zone classification model obtained by merging the training data for par-
tial binding outcomes with non-binding outcomes to reflect what would have been done
with the data analysis prior to our introduction of the partial binding class. We continue
to assume the same family of Box–Cox mixture Gaussian models for the underlying class
distributions, and when building the two-class neutral zone classifier, the reduced (com-
paring to Table 1) misclassification cost matrix is shown in Table 4 and cost ratio c1/c3 is
set equal to the value of ρ∗

1 that was derived in the context of the three-class model (refer
to Table 2). A 5-fold stratified cross-validation analysis is again used to estimate the em-
pirical misclassification rates. However, because there are really three underlying classes,
there are seven misclassification rates that can be estimated. In turn, these can be used to
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Table 4. Reduced Cost Structure for Two-Class Neutral Zone Classifier.

Predicted Class Label

True Class Label 0 2 N

0 0 c1 c3
2 c1 0 c3

Figure 6. Estimated Costs of Neutral Zone Classifiers for 33 Probes.

obtain the estimated cost associated with use of the two-class neutral zone classifier. The
results are shown in column 3 and column 7 of Table 3. A scatter plot of all 33 pairs of
estimated costs is shown in Figure 6 where it can be seen that the reduction in cost that
is realized by using the correct three-class neutral zone classifier rather than an incorrect
two-class neutral zone classifier is appreciable in most cases.

4.4.2. Comparison with a Min-Max Classifier

Valinsky et al. (2002a, 2002b) introduced a naïve but intuitive classifier for assigning
N to the outcome of hybridization experiments in the two-class context. We refer to this
method as the min-max classifier. The intuition for the classifier is that potential intervals
for the intensity measurement that include training data from neither or both populations
are considered ambiguous and result in assigning the N outcome. The min-max classifier
was compared to the two-class neutral zone classifier in the illustrative microbial profiling
application discussed by Jeske et al. (2007). Here we generalize the min-max classifier to
the case of three classes and correspondingly compare its performance to the three-class
neutral zone classifier.

The three-class min-max classifier operates directly on the raw intensity measure-
ment, x. Recall from Section 3 that the training data intensity measurements are denoted
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Figure 7. Estimated Costs of Min-Max and Neutral Zone Classifiers for 33 Probes.

as {xij }, for i = 0,1,2 and j = 1, . . . , ni . Extending the intuition for min-max classifiers
to the three-class scenario gives the following three-class min-max classifier:

Ĉ(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ min(maxx0,minx1,minx2)

1 if max(maxx0,minx1) ≤ x ≤ min(maxx1,minx2)

and max(maxx0,minx1) ≤ min(maxx1,minx2)

2 if x ≥ max(maxx0,maxx1,minx2)

N if otherwise.

Columns 4 and 8 in Table 3 show the estimated costs for the 33 probes using the three-
class min-max classifier. Figure 7 is the scatter plot of the estimated costs compared to the
three-class neutral zone classifier, where again we see better performance from the neutral
zone classifier.

5. SUMMARY

Neutral zone classifiers allow regions of neutrality to account for cases where the data
is too ambiguous to have adequate confidence in assigning a specific predicted class. They
can be used in many areas such as medical diagnosis, safety evaluation and biology. Be-
fore this paper, only a two-class neutral zone classifier had been proposed in the literature.
Motivated by a DNA array analysis application where we have proposed a new partial
binding class for probe hybridization experiments, this paper develops the general form of
a k-class neutral zone classifier. Our application also motivated use of a new class distri-
bution model obtained by combining a Gaussian mixture with a Box–Cox transformation.
Cross-validation analyses were used to demonstrate superior performance of the three-class
neutral zone classifier compared to practical alternative methods.



490 H. YU ET AL.

SUPPLEMENTARY MATERIALS

The Web Appendix referenced in Section 4.2 contains a table showing the fitted pa-
rameters of the class distributions for each probe and corresponding figures showing the
overlay of empirical distribution functions and fitted models. Both of these supplemental
materials are contained in a single.zip archive file.
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