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Abstract
Cardiac image segmentation is a critical step in the early detection of cardiovascular disease. The segmentation of the 
biventricular is a prerequisite for evaluating cardiac function in cardiac magnetic resonance imaging (CMRI). In this paper, 
a cascaded model CAT-Seg is proposed for segmentation of 3D-CMRI volumes. CAT-Seg addresses the problem of biven-
tricular confusion with other regions and localized the region of interest (ROI) to reduce the scope of processing. A modi-
fied DeepLabv3+ variant integrating SqueezeNet (SqueezeDeepLabv3+) is proposed as a part of CAT-Seg. SqueezeDee-
pLabv3+ handles the different shapes of the biventricular through the different cardiac phases, as the biventricular only 
accounts for small portion of the volume slices. Also, CAT-Seg presents a segmentation approach that integrates attention 
mechanisms into 3D Residual UNet architecture (3D-ResUNet) called 3D-ARU to improve the segmentation results of the 
three major structures (left ventricle (LV), Myocardium (Myo), and right ventricle (RV)). The integration of the spatial 
attention mechanism into ResUNet handles the fuzzy edges of the three structures. The proposed model achieves promis-
ing results in training and testing with the Automatic Cardiac Diagnosis Challenge (ACDC 2017) dataset and the external 
validation using MyoPs. CAT-Seg demonstrates competitive performance with state-of-the-art models. On ACDC 2017, 
CAT-Seg is able to segment LV, Myo, and RV with an average minimum dice symmetry coefficient (DSC) performance gap 
of 1.165%, 4.36%, and 3.115% respectively. The average maximum improvement in terms of DSC in segmenting LV, Myo 
and RV is 4.395%, 6.84% and 7.315% respectively. On MyoPs external validation, CAT-Seg outperformed the state-of-the-
art in segmenting LV, Myo, and RV with an average minimum performance gap of 6.13%, 5.44%, and 2.912% respectively.
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Introduction

Cardiovascular diseases (CVDs) are one of the top three 
causes of death globally, posing a serious threat to human 
health [1]. Early detection and evaluation of cardiovascular 
disease are critical to improving human life [1, 2]. Diagnosis 
of CVDs involves an extensive examination of the cardiac 
system [2]. In clinical practice, cardiac radiologist traces the 
biventricular contours during the end-systolic (ES) and end-
diastolic (ED) phases, which typically requires a lot of time 

for skilled cardiac radiologists to analyze the MRI slices of a 
single patient [3]. The physiological shape of the biventricu-
lar substructures (left ventricle (LV), myocardium (Myo), 
and right ventricle (RV)) is affected by most cardiovascular 
diseases [4]. It is possible to significantly reduce the risk 
of developing CVDs like heart failure and ischemic heart 
disease by detecting biventricular morphological structure 
changes over an extended period of time with repetitive con-
touring of cardiac structure ratios or dysfunction [2]. Hence, 
automated biventricular segmentation has a significant 
impact on the detection and treatment of CVDs [3]. Moreo-
ver, the development of fast, robust, precise, and clinician-
friendly segmentation tools is essential in order to increase 
clinician productivity and enhance patient care because the 
current delineation methods are very time-consuming [4].

In the era of deep learning in health care management 
[5, 6], classification [7, 8] and segmentation of cardiac 
MR images (CMRI) has drawn a lot of attention [9–22]. 
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Various semi-automatic and automatic cardiac segmen-
tation methods have been developed. Early segmenta-
tion methods employed semi-automatic segmentation 
approaches such as those presented in the work of Ding 
et al. [9], Sharan et al. [10] and Decourt et al. [11]. Semi-
automatic methods necessitate significant user interven-
tion, as a result, they are unsuitable for applications requir-
ing rapid segmentation. Therefore, recent studies focused 
on automatic CMRI segmentation. Some are focused on 
LV segmentation, while others consider biventricular, per-
forming this task in one or more stages. Lately, end-to-
end deep learning segmentation models have frequently 
been used in conjunction with traditional methods. Table 1 
summarizes the recent approaches developed to address 
cardiac segmentation. Some of the recent approaches 
lost the generalization of the model by removing patients 
with complex congenital intra-cardiac anatomies such as 
patients with univentricular hearts and patients following 
surgical correction of transposition of great vessels [14, 
16].

The majority of current segmentation models require 
biventricular prepositioning and redundant learning parame-
ters, which results in poor segmentation performance. More-
over, some of the mentioned models [15, 17] don’t consider 
the ES phase. The difficulty of considering the ES phase 
is the need to handle different portions of the biventricular 
with varying scales. In addition, the biventricular suffers 
from distorted unclear borderline. To address these short-
comings, the proposed framework in this paper is inspired 
by ResNet and UNet of the aforementioned methods, which 
breaks down the segmentation process into two steps: 
localization and segmentation [2, 10, 14, 15, 17]. However, 
unlike previous methods, each step is designed with specific 
techniques capable of producing promising results while 
considering the segmentation time. An approach based on 
DeepLabv3+ and SqueezeNet is proposed for ROI locali-
zation. In addition, 3D-ARU architecture is proposed that 
combines UNet, ResNet with a spatial attention mechanism 
for the segmentation process. As a result, CAT-Seg, the pro-
posed framework, can achieve efficient segmentation results, 

Table 1   Previous approaches to address biventricular cardiac segmentation

Ref First author Dataset Segmented structure Method Mean DSC

Localization Segmentation

[13] Yang et al ACDC Biventricular – Applied fuzzy attention 
mechanism to SegNet in 
both up and downsampling

0.9244

[14] Penso et al Two clinical datasets Biventricular – Redesigned skip connection 
of FCN to include dense 
blocks, and transposed 
convolution was used 
instead of up convolution

DB1: 0.9013
DB2: 0.8920

[15] Zhang et al ACDC
Local dataset
York Sunnybrook

Biventricular – proposed a nested U-shape 
Fully Convolutional Dense 
Network (FCD) with com-
pressed dense blocks

ACDC:
0.91050

[16] Abdeltawab et al ACDC LV and Myo Allocated the LV center 
using FCN

Applied Inception to seg-
ment LV

0.9125

[17] Cheng et al ACDC Biventricular Adopted U-Net as an initial 
localization stage

Applied UNet to segment 
the biventricular

0.9130

[18] Dong et al Sunnybrook LV – Applied two parallel modi-
fied UNet. The endo and 
epi contours were obtained 
by averaging the two 
segmentation maps

0.9256

[20] Budai et al ACDC Biventricular Applied ResNet Applied pseudo gradient 
calculation for the regres-
sion model to segment the 
biventricular

0.9133

[21] Chen et al Sunnybrook LV – Applied ResNet as the 
backbone of their model to 
capture more discriminat-
ing information

0.9300

[19] Wu et al Local dataset LV Applied CNN to localize the 
center of the LV

Applied UNet to segment 
LV

0.9510
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considering both the ES and ED phases in terms of DSC and 
Intersection over Union (IoU). The proposed deep learning 
framework is motivated by the depicted challenges, which 
impose limitations on the performance of the available car-
diac segmentation frameworks. The contributions can be 
summarized as follows:

1.	 A fully automatic two-stage framework for biventricular 
segmentation of cardiac MRI, which eliminates the need 
for manual prepositioning and delineation saving cardio-
radiologists time and effort. The framework surpassed 
the performance of cascaded detection and segmentation 
counterparts.

2.	 An enhanced version of DeepLabv3+ called Squeeze-
DeepLabv3+ with varying atrous rates to automatically 
localize the three structures of different shapes, scales, 
and locations within the slice, reducing learning param-
eters.

3.	 A 3D attention ResUNet architecture called 3D-ARU 
for cardiac segmentation. The network incorporated the 
attention mechanism to solve the problem of the fuzzy 
blurred edges of cardiac substructures.

4.	 A comparative analysis of the performances of estab-
lished architectures in cardiac MRI segmentation with 
the proposed framework CAT-Seg.

Methodology

In this section, we introduce the details of the data source 
used for biventricular segmentation in advance. Then, the 
architecture of the proposed framework for segmenting the 
three cardiac substructures is introduced.

Dataset

Two datasets are used to validate the performance of our 
proposed framework CAT-Seg. The datasets used are the 
Automated Cardiac Diagnostic Challenge Dataset (ACDC 
2017) [23] from the 2017 MICCAI challenge and the 
MyoPS dataset from the 2020 MICCAI challenge [24]. 
The ACDC 2017 dataset includes clinical data from 150 
patients’ cardiac magnetic resonance imaging (CMRI), 
which included 12–35 frames of short-axis MRI in both 
the ED and ES cardiac phases. There were every 30 
patients fell into one of the five categories: normal (NOR), 
dilated cardiomyopathy (DCM), hypertrophic cardiomyo-
pathy (HCM), Myocardial infarction (MINF), and abnor-
mal right ventricle (RV). The dataset was collected at the 
University Hospital of Dijon over a 6-year period using 
two MRI scanners with different magnetic strengths [1.5 
T (Siemens Area, Siemens Medical Solutions, Germany) 
and 3.0 T (Siemens Trio Tim, Siemens Medical Solutions, 

Germany)]. The biventricular short-axis slices have thick-
nesses ranging from 5 to 8 mm and a spatial resolution 
of 1.37 1.68 mm2/pixel. Additional information about 
the subjects is also included in the dataset such as (ages, 
weights, heights, and diastolic-systolic phase instants). 
Samples of the dataset are depicted in Fig. 1. The biven-
tricular contours, as previously stated, change shape and 
size throughout the cardiac phases. It varies according to 
the severity of the cardiac condition as well. The ACDC 
dataset provided as the training dataset consists of 100 
patients and the testing dataset consists of 50 patients. For 
the experiments, the training dataset is randomly divided 
into training and validation sets. The training set con-
sists of 80 patients, while the validation set consists of 20 
patients. The test dataset consists of 50 patients.

Second, the MyoPS dataset from the 2020 MICCAI 
challenge is used to externally validate the performance 
of our proposed framework CAT-Seg without training on 
the dataset. It is used for external validation to investigate 
the robustness and the generalization performance of CAT-
Seg. The MyoPS dataset includes data from 45 patients 
as paired three-sequence CMR images (bSSFP, LGE, and 
T2 CMR) and each sequence typically contains 2–6 slices. 
MyoPS 2020 contains 25 (102 slices) multi-sequence 
CMR images as a training set and 20 (72 slices) images 
as a testing set and it was collected using Philips Achieva 
1.5T. The three CMR sequences' short-axis slices were all 
breath-hold, multi-slice. All patients are males suffering 
from myocardial infarction (MI). Three observers were 
used to manually label the LV, RV, and Myo from each 
of the three CMR sequences in order to create the ground 
truth segmentation. Before being employed in the creation 
of the ground truth segmentation, three experts in cardiac 
anatomy approved all of the manual segmentation results. 
The numerous hand delineations were averaged using a 
shape-based method to produce the final segmentation.

Model

The proposed framework consists of two stages to seg-
ment the three biventricular substructures (LV, Myo, and 
RV) in both cardiac phases (ED and ES). The first stage 
focuses on reducing the image's scope by roughly extract-
ing the initial region of interest (ROI) using SqueezeDee-
pLabv3+ to overcome the problem of class imbalance as 
the biventricular system only accounts for a small portion 
of MRI slices. The second stage comprises the generation 
of the final LV, Myo and RV segmentations by 3D ARU 
and overcoming the problem of fuzzy edges due to heart 
movements. The details of the proposed segmentation 
framework are shown in Fig. 2.
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ROI localization

For the first stage of the proposed framework, SqueezeDee-
pLabv3+ is proposed to extract the initial contours for LV, 
Myo, and RV. A relatively small region of interest (ROI) that 
includes LV, Myo, and RV is extracted. This step is used to 
reduce the scope of each volume by removing background 

regions that could impede the segmentation model's learn-
ing. Also, it reduces the computations performed by the 
proposed framework through reducing the slice size, as it 
focuses on the ROI only. Another advantage is the allevia-
tion of pixel class imbalance, a prevalent issue in medical 
image processing [25]. In the ROI localization step, each 
volume is input to SqueezeDeepLabv3+, which is based on 

Fig. 1   Samples from ACDC Dataset during End-diastolic and End-systolic for the four different pathologies and normal heart (LV: Green, Myo: 
Blue, and RV: Red)

Fig. 2   The proposed CAT-Seg framework for segmenting the biventricular system (LV, Myo, and RV)
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DeepLabv3+  [21] semantic segmentation network with its 
encoder-decoder structure. SqueezeDeepLabv3+ is used to 
generate masks that will be used as a guide to locate the 
most appropriate segments for ROI. The details of the archi-
tecture are described in more depth below.

SqueezeDeepLabv3+ enriches the encoder by incorporat-
ing the SqueezeNet to capture essential information from 
the image as shown in Fig. 3. To overcome the problem of 
detecting small objects with a limited number of parameters, 
the proposed architecture’s encoder employs a squeeze net-
work rather than Xception in the original DeepLabv3+. Han 
et al. [22] proposed SqueezeNet, which is a lightweight and 
efficient CNN model. It has fewer parameters than Xcep-
tion, and a single model’s accuracy comparable to Xception. 
The SqueezeNet is primarily optimized and compressed as 
it uses CNN microstructure optimization. It employs many 
1 × 1 small convolution kernels in place of 3 × 3 convolution 
kernels to optimize the design of a single convolution layer, 
resulting in a ninefold reduction in parameters count. It also 
employs CNN macrostructure optimization by reducing the 
3 × 3 convolution kernel's input channel count and convolu-
tion kernel parameters, splitting the convolution layer into 
the squeeze layer and expand layer, and encapsulating it in 
the fire module. The fire module is the basic unit of the 
SqueezeNet network that uses modular convolution. The 
fire module primarily consists of two layers of convolution 
operations, each of which connects to a ReLU activation 
layer: the squeeze layer which contains all 1 × 1 convolu-
tion kernels; and the expanding layer with 1 × 1 and 3 × 3 
convolution kernels. The SqueezeNet model consists of nine 
layers of fire modules, and three levels of maximum pooling 
that are interspersed throughout. Furthermore, it enlarges the 
convolution layer perception field of vision.

The high-level semantic characteristics are then merged 
by an atrous spatial pyramid pooling (ASPP) module to 

better capture the overall semantic information of the image 
before the low-level features of the backbone network are 
fed into the decoder. The ASSP technique was inspired by 
the success of atrous convolutional operations and spatial 
pyramid pooling. (SPP) [19]. ASPP resamples feature maps 
produced by the encoder at various atrous rates. The results 
of applying a parallel convolution filter to the feature maps 
at various atrous rates are then concatenated in order to pre-
cisely and efficiently capture large multiscale information, 
as shown in Fig. 3. In this study, the ASPP module, which 
comprises of 1 × 1 convolution followed by 3 × 3 convolu-
tions with different dilation rates and a max-pooling layer 
in parallel. The suitable dilation rates for the problem under 
study are determined experimentally and found to be d = 4, 
8, and 12. Biventricular irregularities of different densities 
and sizes have been attempted to be segmented with high 
sensitivity using depth-wise convolution rather than standard 
convolution.

Segmentation

In the second stage, the proposed 3D-multiple attention 
ResUNet is used to segment the three cardiac structures 
(LV, Myo and RV) from the localized slices by Squeeze-
DeepLabv3+ . Because the LV, Myo, and RV have distinct 
characteristics, primarily in terms of shape and size, the 
ROI localization step was able to extract the area where all 
three structures are located. However, it occasionally failed 
to capture each shape, particularly in the ES cardiac cycle. 
To improve the segmentation process and contour each of 
the three structures (LV, RV and Myo), just the extracted 
ROI portion of the original slice will be sent to 3D-ARU in 
this phase.

The proposed 3D-ARU architecture, as illustrated in 
Fig. 4, integrates both the spatial attention mechanism and 

Fig. 3   The proposed Squeeze-
DeepLabv3+ with SqueezeNet 
as backbone to enrich the 
network encoder. And modify-
ing the atrous rate to localize 
the small objects like RV in the 
ES phase
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the residual module with full pre-activation. The residual 
module improves the channel inter-dependencies, while 
at the same time reducing the computational cost. It also 
facilitates network training. Furthermore, the rich skip con-
nections in the ResUNet [26] contribute to the better flow 
of information between different layers, which enhances 
gradient flow during training. Due to these benefits, we use 
ResUNet as the foundational architecture. The encoder fea-
ture maps and the decoder feature maps are directly concat-
enated in the combined U-Net [30] and ResNet methods. 
Despite the effectiveness of ResUNet, the fuzzy boundaries 
in cardiac images present a challenge to the model. There-
fore, the attention module is incorporated to allow focusing 
on the crucial regions of the feature maps.

We incorporated the attention block in the decoder 
portion of our architecture in order to be able to concen-
trate on the crucial regions of the feature maps, which 
is motivated by the success of the attention mechanism. 
The attention mechanism narrows its focus to a subset of 
its input. It focuses on a specific area of the image while 
ignoring the others [31] similar to human visual percep-
tion, in which they can focus on a specific point or area 

while suppressing the surrounding areas. By suppressing 
feature activations in irrelevant areas of the image, atten-
tion gates can reduce false positives [31]. In Fig. 5, the 
attention gate shows how the skip connection connects the 
encoder to the associated decoder. Two inputs are provided 
to the attention gate, the first of which comes from the 
skip connection of the associated encoder and contains all 
the contextual and spatial information in that layer. The 
second input is the gating signal from the decoder layer 
underneath it, and because it originates from a deeper area 
of the network, it has a better feature representation. It 
improves the learning of target regions relevant to the seg-
mentation task while suppressing nontarget regions. First, 
both inputs are passed through the convolution operation 
and added. Following that, the first activation function, 
ReLU, is used, followed by the convolution operation. Fur-
thermore, the output is resampled and passed through the 
second activation function Sigmoid to obtain the attention 
map, after which the encoder feature is multiplied pixel by 
pixel by the attention map to obtain the output. Figure 5 
depicts a representation of the attention gate's structure.

Fig. 4   Proposed 3D-ARU model

Fig. 5   Structure of attention 
mechanism
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Figure 6 depicts sample slices, and their ground truth 
together with the output of CAT-Seg. As shown in Fig. 6, the 
final segmentation phase identifies the contours of each of 
the three structures and solves the problem of fuzzy bounda-
ries. Also, it doesn’t include other cardiac subsections as the 
attention module gives more attention to the boundaries and 
the intensities of the three structures.

Training

Each model (SqueezeDeepLabv3+ and 3D-ARU) was 
trained for 100 epochs using the Adam optimizer with a 
learning rate of 10–3, a decay factor of 0.1 per epoch, and the 
weight decay (L2 regularization) was set to 1xe−4. The train-
ing set used in this case is composed of all classes of slices. 
The proposed 3D-ARU has 97,831,734 trainable parameters 
and the proposed SqueezeDeepLabv3+ has 7,051,556 train-
able parameters.

Evaluation and statistical analysis

In biventricular segmentation from MRI, the region of 
interest (ROI), represented by true positives (TP), is too 
small compared to the entire slice. True negatives repre-
sent the background. Therefore, it is necessary to focus on 
the Dice similarity coefficient (DSC) and intersection over 
union (IoU) that robustly and reliably reflect model per-
formance [28]. The metrics used to evaluate the similarity 

between the proposed model’s segmentation masks and 
the ground truth. In this study, the performance of the 
proposed CAT-Seg framework was evaluated in terms of 
the following metrics.

The Dice similarity coefficient (DSC) is a measure-
ment of the overlap between the foreground pixels and 
the ground truth foreground pixel region of the segmented 
image. It is the metric commonly used to gauge how effec-
tively the medical image segmentation method works. The 
formula is as follows:

Another metric is the Intersection over Union (IoU), 
indicates the degree of dissimilarity between the seg-
mented image's foreground pixels and the ground truth 
foreground pixel region. It is determined as follows:

R indicates the real predicted results, and G indicates 
the ground truth. The true positive (TP): is the number of 
pixels correctly associated with the ROI, the false posi-
tive (FP): is the pixels indicated as ROI by the proposed 
model but as background by the ground truth, and the false 
negative (FN): is the pixels associated with the ROI by the 
ground truth but missed by the proposed model. All these 
values are used to determine the DSC and IoU.

(1)DSC(R,G) = 2 ∗
R ∩ G

R + G
= 2 ∗

TP

TP + FP + TP + FN

(2)IoU(R,G) =
R ∩ G

R + G − R ∩ G
=

TP

TP + FP + FN

Fig. 6   CAT-Seg final segmentation results where the RV is marked 
in blue, LV marked in yellow while Myocardium shown in green. 
Showing that segmentation results solve the problem on ROI Local-
ized images by Removing the noisy regions that has the same inten-

sity values as the cardiac structures, overcoming the problem of fuzzy 
boundaries, and extracting sharp edges. Also, it removed the over-
lapped tissues
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Results

In this section, the performance of the proposed architectures 
is verified for single-stage and multi-stage segmentation.

The performance of the proposed architectures: Squeeze-
DeepLabv3+ and 3D-ARU variants are tested individually 
as single-stage segmentation models. They are compared to 
available architectures depicted in Table 2. The architectures 
in Table 2 are chosen to present the direct counterparts of 
the proposed models as they can be considered as compo-
nents of the proposed architectures. The obtained results are 
shown in Table 3. The results validate the positive effect of 
the proposed modification on the standard 3D-ResUNet and 
DeepLabv3+. As shown in Table 3, the proposed 3D-ARU 
improved the mean DSC of the ResUNet by 1.060, attention 
UNet by 2.180%, and the original UNet by 3.405%. Moreo-
ver, the proposed 3D-ARU improves the mIoU of the ResU-
Net by 2.050%, attention UNet by 7.080%, and the original 
UNet by 13.815%. In addition, the proposed SqueezeDeep-
Labv3+ improved the mean DSC and mIoU of the original 
DeepLabv3+ by 1.235% and 6.180% respectively.

Figure 7 depicts sample segmentation results of existing 
architecture and the two proposed variants SqueezeDeep-
labv3+ and 3D-ARU to allow visual inspection. The ground 

truth shows that the thickness of the myocardium wall is 
uneven, and the edge contour of the biventricular is fuzzy 
and difficult to extract along with irregularity in the biven-
tricular shape. With the use of an attention mechanism, the 
proposed 3D-ARU model is able to extract the edge informa-
tion effectively, and the reconstructed LV and Myo contours 
were significantly better than those of the UNet, attention 
UNet, and ResUNet models. It demonstrates that the incor-
poration of the attention mechanism solves the problem of 
the fuzzy edges but still the problem of segmenting the small 
object such as RV persists. In the lower bottom row, the role 
of the modified SqueezeDeepLabv3+ with different atrous 
rates is elucidated in detecting small objects such as RV. 
DeepLabv3+ misses segmenting some tissues as Myo and 
LV due to its larger atrous rate. Moreover, ResUNet was 
unable to segment Myo and RV due to fuzzy boundaries. In 
addition, UNet was able to segment Myo and LV but with 
an enlargement of LV and thinner Myo contour. ARU solve 
some of the UNet, attention UNet and ResUNet such as 
fuzzy boundaries but failed to extract the RV. Hence, it can 
be seen ARU and SquzzeDeepLab3+ complement the func-
tionality of each other so a two-stage segmentation model 
would be expected to yield better results. CAT-Seg output 
is shown in the proposed framework column, which depicts 
the favorable effect of their combination.

Table 2   Model versions for the 
ablation experiment

Method Description

DeepLabv3+  [27] The original DeepLabv3+ 
UNet [28] The original four-layer UNet
UNet + Attention Mechanism [29] UNet with a spatial attention mechanism
ResUNet [26] The original ResUNet
3D-ARU​ The ResUNet incorporates with an attention mechanism
SqueezeDeepLabv3+  DeepLabv3+ with modified backbone by SqueezeNet 

and modified Atrous rate

Table 3   Results of various of 
single-stage experiments on the 
ACDC 2017 dataset

Model Phase DSC Mean DSC IoU mIoU

LV Myo RV LV Myo RV

DeepLabv3+ ED 0.9358 0.9211 0.8925 0.9164 0.8891 0.8651 0.7897 0.8479
ES 0.9210 0.8895 0.8787 0.8967 0.7600 0.7302 0.6610 0.7170

3D-UNet [28] ED 0.9281 0.9104 0.852 0.8968 0.7601 0.7421 0.6709 0.7243
ES 0.9115 0.8991 0.8341 0.8815 0.7322 0.7097 0.6629 0.7016

Attention 3D-UNet [29] ED 0.9281 0.9202 0.8859 0.9114 0.8105 0.8016 0.7628 0.7916
ES 0.9132 0.9105 0.8506 0.8914 0.7882 0.7697 0.7492 0.7690

ResUNet ED 0.9319 0.9268 0.8997 0.9194 0.8715 0.8536 0.8001 0.8417
ES 0.9263 0.9122 0.8789 0.9058 0.8493 0.8404 0.769 0.8195

3D-ARU​ ED 0.9501 0.9342 0.9047 0.9296 0.9004 0.8783 0.8152 0.8646
ES 0.9400 0.9202 0.8902 0.9168 0.8815 0.8514 0.7800 0.8376

SqueezeDeepLabv3+ ED 0.9425 0.9213 0.9192 0.9276 0.8919 0.8801 0.8123 0.8614
ES 0.9317 0.9023 0.8966 0.9102 0.8601 0.8421 0.7791 0.8271
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In the following, the effectiveness of CAT-Seg is experi-
mentally verified against various two-level segmentation. 
The ROI localization is performed by either 3D-ARU or 
SqueezeDeepLabv3+, followed by fine segmentation. 
The localized ROIs are input to four architectures namely: 
3D-UNet, Attention 3D-UNet, 3D-ARU, and SqueezeDeep-
Labv3+ for segmentation. 3D-UNet, and Attention 3D-UNet 
are selected for the coming experiment as they are frequently 
used in similar studies [14, 17–20, 30, 31]. All sets comprise 
the volumes of the same patients.

Table 4 presents the segmentation results (DSC and IoU) 
of the different combinations for multistage ROI extrac-
tion and segmentation. First, 3D object detector frame-
works namely Mask R-CNN [27], and Retina U-Net [28] 
have been deployed to automatically detect a bounding box 
encompassing the heart in CMRI. The detected bounding 
box is then used for cropping the full images. Object detec-
tion performance is the contrasted to multigrain segmenta-
tion. Mask R-CNN is an extension of the Faster R-CNN 
[29] architecture that adds a branch for predicting object 
masks in parallel with the existing branch for bounding box 
recognition. This allows it to provide more precise object 
localization and instance segmentation. Retina U-Net 3D 
is a 3D extension of the RetinaNet architecture that is 
designed for volumetric medical image analysis. It uses a 
U-Net-like architecture with a feature pyramid network to 

detect 3D objects in medical images. CAT-Seg outperforms 
the usage of Mask R-CNN as a 3D detection framework 
instead of SqueezeDeepLabv3+ in segmenting LV, and Myo 
by 0.8909%, and 0.3526% respectively. Also, it outperforms 
the combination of using Mask R-CNN with SqueezeDee-
pLabv3+ in segmenting LV, Myo, and RV 0.9775%, 0.8515 
and 0.558% respectively. Despite the usage of Mask R-CNN 
instead of SqueezeDeepLabv3+ in segmenting RV outper-
forms the CAT-Seg framework by 0.0528%, it increases 
testing time by 0.4210%. Moreover, the CAT-Seg frame-
work outperforms the combination of using Retina U-Net 
with 3D-ARU in segmenting all the substructures. Also, 
for localization, the cascading of two consecutive 3D-ARU 
presents higher DSC in cases of segmenting Myo and RV 
in ES phase. However, the differences when compared to 
CAT-Seg is limited to 0.24% and 0.04% in case of Myo and 
RV respectively. In addition, the cascaded 3D-ARU testing 
time is 2.4 × higher than the proposed CAT-Seg. In addi-
tion, the testing time of using 3D-ARU as localization and 
then segmenting by squeezeDeepLabv3+ is 1.2368 × higher 
than the CAT-Seg. The CAT-Seg outperforms the cascaded 
SqeezeDeepLabv3+ by 0.11% and 0.46% in terms of mean 
DSC and mIoU respectively. The proposed CAT-Seg pre-
sents a performance gap of 4.87% and 15.78% compared to 
using 3D-ARU in localization and UNet in segmentation in 
terms of mean DSC and mIoU respectively. Although the 

Fig. 7   The effect of the 3D-ARU model in terms of fitting the shape 
of the (LV in yellow, Myo in green, and RV in blue) cardiac sub-
structures. From left to right, the images are the original cardiac MRI 

slice, the ground truth, the UNet model segmentation result, attention 
UNet and the attention ResUNet (3D-ARU) segmentation result on 
ACDC dataset
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combination of using SqueezeDeepLabv3+ for localization 
and UNet for segmentation has the lowest testing time, CAT-
Seg outperforms it by 4.88% and 15.8% in terms of mean 
DSC and mIoU respectively. Moreover, CAT-Seg, approxi-
mately, has testing time as the combination of squeezeDeep-
pLabv3+ and attention UNet but CAT-Seg draws a perfor-
mance gap of 4.29% and 9.66% in terms of mean DSC and 
mIoU respectively. While the testing time of the cascaded 
squeezeDeepLabv3+ is 0.9210 × the testing time of the CAT-
Seg, the mean DSC and the mIoU of the CAT-Seg are 3.29% 
and 2.22% better than the cascaded squeezeDeepLabv3+. 
Therefore, CAT-Seg is elected as the proposed model rather 
than any other cascaded approach.

Figure 8 shows the training and validation learning curves 
for both cardiac phases (ES and ED) using CAT-Seg. It dem-
onstrates that both cardiac cycles have a similar trend in the 
training and validation stage with small performance gap 
diminishing the possibility of overfitting.

In addition, to make full use of the limited training data 
and show the performance stability and robustness, the 
training and testing set has been combined to apply fivefold 
cross-validation where each fold consists of 30 patients such 
as 6 patients from each pathology. The experimental results 

show that the DSC and IoU of the segmentation results of 
the biventricular regions on the test set increase significantly 
by using cross-validation for both stages of the CAT-Seg 
framework and the overall pipeline. Table 5 illustrates the 
improvement in each of the cardiac structures when fivefold 
cross-validation has been applied.

Another aspect is investigated to show the stability in 
CAT-Seg performance, the mean and range of the results are 
shown by boxplot in Fig. 9. It demonstrates that the range of 
segmentation results in terms of both DSC and IoU is com-
pact and consistent for all three substructures. In Fig. 9a, the 
segmentation results of ACDC 2017 are presented. The LV 
segmentation results show that the DSC results are symmet-
ric in both cardiac cycles. Also, the LV segmentation results 
are symmetric in terms of IoU results in the ES phase, but 
it has negative skew in the ED phase. Moreover, for both 
cardiac phases, the myocardium shows positive skew in DSC 
results, but it has a negative skew in IoU results. Addition-
ally, the RV shows a spread in both cardiac phases but most 
of the results are symmetric. It has segmentation results that 
are consistent in terms of IoU than DSC. It is notable that the 
results in all cases are consistent with no outliers shown. The 
Mean IoU result in the ED cardiac phase is 0.8946 ± 0.0190 

Fig. 8   CAT-Seg DSC accuracy and loss during the training and validation process of segmenting cardiac biventricular during both cardiac 
phases ED in a and ES in b 
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and 0.8554 ± 0.0201 in the ES cardiac phase. In the ED 
cardiac phase, the mean DSC is 0.9298  ±  0.0270 and 
0.9216 ± 0.0256 in ES cardiac phase. The shown results 
covey the stable performance of CAT-Seg with minimal 
fluctuation in performance. Moreover, the CAT-Seg is 
tested using an external test set from MyoPs 2020 dataset to 
show the robustness of the framework, the mean and range 
of the results are shown by boxplot in Fig. 9b. It demon-
strates that the range of segmentation results in terms of 
both DSC and IoU is compact and consistent for all three 

substructures. It is notable that the results in all cases are 
consistent with no outliers shown. The LV DSC and IoU 
results are 0.967395 ± 0.015953 and 0.924215 ± 0.021997 
respectively with a small standard deviation that doesn’t 
exceed 2.2%. Also, Myo segmentation has a small stand-
ard deviation account to 1.6156% in DSC measure and 
3.0739% in the IoU measure with average DSC and IoU 
of 0.911325 and 0.832885 respectively. While RV has the 
highest standard deviation due to the variation between RV 
in the ACDC 2017 and the MyoPs 2020. The DSC and the 

Table 5   Evaluation of the CAT-Seg Framework and each stage separately in terms of DSC, IoU for fivefold cross-validation on ACDC dataset

Model Phase DSC IoU

LV Myo RV LV Myo RV

3D-ARU​ ED 0.9539 ± 0.0057 0.9400 ± 0.0061 0.9112 ± 0.0204 0.9121 ± 0.0085 0.8806 ± 0.0098 0.8213 ± 0.0209
ES 0.9508 ± 0.0081 0.9279 ± 0.00674 0.8986 ± 0.0218 0.8903 ± 0.0099 0.8589 ± 0.0110 0.7915 ± 0.0218

SqueezeDeepLabv3+ ED 0.9467 ± 0.0066 0.9241 ± 0.0075 0.9201 ± 0.0092 0.9002 ± 0.0101 0.8896 ± 0.0108 0.8214 ± 0.0175
ES 0.9381 ± 0.0084 0.9023 ± 0.0081 0.9063 ± 0.0140 0.8698 ± 0.0109 0.8517 ± 0.0112 0.7901 ± 0.0183

CAT-Seg ED 0.9808 ± 0.0041 0.9602 ± 0.0045 0.9590 ± 0.0089 0.9489 ± 0.0056 0.9101 ± 0.0071 0.8604 ± 0.0104
ES 0.9707 ± 0.0045 0.9588 ± 0.0058 0.9466 ± 0.0097 0.9204 ± 0.0078 0.8899 ± 0.0073 0.8211 ± 0.0110

Fig. 9   Box plots of the CAT-Seg framework results in terms of DSC and IoU a on ACDC dataset for the three cardiac substructures (LV, Myo, 
and RV) and the mean IoU and DSC in both cardiac phases (ED and ES), b on MyoPs 2020 dataset for external validation
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IoU results for segmenting RV are 0.870285 ± 0.041033 and 
0.817455 ± 0.055544 respectively.

Figure 10 depicts the importance of the localization phase 
as it compares the using the 3D-ARU in segmenting differ-
ent types of slices in terms of mean DSC and mIoU. First, 
it uses the full slice without any localization or annotation 
and thus it results in relatively low segmentation results 
due to the complex structure of the cardiac MRI and sur-
rounding objects. Then, the manually cropped slices were 
extracted as 128*128 blocks taken from the center following 
the standard used in the literature [14], 16. These slices are 
input to the proposed 3D-ARU model, but it also reflects a 
low segmentation evaluation. Moreover, cascaded 3D-ARU 
and the proposed model compete in the evaluation of the 
segmentation as both show approximately the same results 
in terms of mean DSC and mIoU. However, the proposed 
model takes roughly less than half of the testing time of the 
cascaded 3D-ARU.

Discussion

The performance of CAT-Seg is compared to existing 
approaches on the ACDC and MyoPs 2020 datasets for 
further validation. The comparison between the results 
for biventricular segmentation on ACDC dataset is shown 
in Table 6. CAT-Seg significantly outperformed all other 
methods in terms of the DSC and IoU on the ACDC test 
dataset. Since most of the state-of-the-art methods used 
DSC to evaluate the segmentation results, Table 6 details 
the evaluation comparison in terms of DSC. It is worth not-
ing that the segmentation effect is particularly good for the 
more difficult segmentation of the ES of the heart. CAT-
Seg is able to segment LV, Myo, and RV with an average 
minimum performance gap of 1.165%, 4.36% and 3.115% 
respectively. While the average maximum improvement in 

segmenting LV, Myo and RV is 4.395%, 6.84% and 7.315% 
respectively. The proposed model outperforms Li et al. [30] 
in LV, Myo and RV segmentation by 0.32%, 6.40%, and 
1.15% respectively in ED cardiac phase. Also, in ES cardiac 
phase compared to Li et al. [30] the proposed model shows 
an outstanding performance in segmenting LV, Myo and RV 
by a performance gap of around 3.87%, 4.28%, and 5.08%. 
Furthermore, the proposed model is able to segment LV with 
a DSC that is 1.295% higher than that of the Yang et. al 
[13] work. Also, it is able to segment RV with a DSC that is 
4.065% higher than that of the Yang et. al [13] model. Fur-
thermore, the improvement in segmentation Myo is 4.36% 
in DSC compared to Yang et. al [13] model. Moreover, the 
CAT-Seg outperforms Silva et al. [32]’s model in segment-
ing the three substructures in both ED and ES phases. It 
is able to segment LV with a DSC that is 1.3% and 3.5% 
higher than that of the Silva et al. [32] model in the ED and 
ES phases. Also, the improvement in segmentation Myo in 
DSC is 6.38% for ED and 6.57% for ES compared to Silva 
et al. [32] model. Additionally, it is able to segment RV 
with a DSC that is 2.58% and 8.65% higher than that of 
the Silva et al. [32] model in the ED and ES phases respec-
tively. Although the proposed model shows low average 

0.8
0.82
0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

UoImcSDnaeM

Slice rescalling + 3D-ARU Manual cropping+ 3D-ARU

Cascaded 3D-ARU (CAT-Seg)

Fig. 10   Mean DSC and mIoU on ACDC dataset comparison between 
the whole slice and the three types of localized slices

Table 6   Comparison with state-of-the-art cardiac segmentation meth-
ods on ACDC dataset in segmenting (LV, Myo and RV) in terms of 
DSC for both cardiac phases

Author Cardiac phase DSC

LV Myo RV

Li et al. [30] ED 0.9700 0.8900 0.9400
ES 0.9300 0.9100 0.8900

Wu et al. [33] ED 0.9593 0.8960 0.9133
ES

Yang et. al [13] ED 0.9580 0.9098 0.9055
ES

Silva et. al [32] ED 0.9602 0.8902 0.9257
ES 0.9337 0.8871 0.8543

Sharan et.al [10] ED 0.9210  ×   × 
ES  ×   × 

Yang et al. [22] ED 0.8982
ES

Wang et al. [34] ED 0.9620  ×   × 
ES 0.9390  ×   × 

Budai et al. [20] ED 0.9270  ×  0.873
ES  × 

Cheng et al. [17] ED 0.9490 0.888 0.888
ES

Abdeltawab et al. [16] ED 0.9600 0.8800  × 
ES 0.9200 0.8900  × 

CAT-Seg ED 0.9732 0.9540 0.9515
ES 0.9687 0.9528 0.9408
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improvement in segmenting LV in ED, it draws an average 
improvement of 4.5316% in segmenting the three cardiac 
substructures in the ES cardiac phase. Moreover, the out-
standing performance of the proposed model in segmenting 
Myo and RV in ES cardiac phase improvement in the ES 
phase. Additionally, it reflects the strength of the proposed 
model to solve the mentioned challenge of ES segmentation 
especially for RV.

The performance of CAT-Seg is compared to existing 
approaches on the MyoPs dataset for further validation. The 
comparison between the results for biventricular segmen-
tation is shown in Table 7. CAT-Seg significantly outper-
formed all other methods in terms of the DSC on the MyoPs 
test dataset. CAT-Seg is able to segment LV, Myo, and RV 
with an average minimum performance gap of 6.13%, 5.44% 
and 2.912% respectively. While the average maximum 
improvement in segmenting LV, Myo and RV is 14.26%, 
10.37%, and 8.544% respectively. It is worth emphasis that 
the results shown in Table 7 for CAT-Seg are without train-
ing on the training set of MyoPs 2020 and succeeded to sur-
pass the performance of the state of the art. Hence, elucidate 
the generalization and robustness of the framework.

CAT-Seg attempts to provide a balance between the 
number of parameters and the accuracy, as the proposed 
SqueezeDeepLabv3+ uses SqueezeNet which is a light-
weight and efficient CNN model. Also, it has fewer param-
eters than Xception so the SqueezeDeepLabv3+ decreases 
the number of parameters by 40.1173% and improves the 
accuracy by 1.3623% over the original DeepLabv3+. While 
the proposed 3D-ARU increases the number of parameters 
by 23.9719% over the original ResUNet but it improves the 
accuracy by 1.1615% compared to the original architec-
ture. So, CAT-Seg framework compromises the number of 
parameters by using SqueezeNet for decreasing number of 
parameters and Attention mechanism which improves the 
accuracy, but it has greater number of parameters.

Conclusion

In this study, a fully automatic multi-stage segmentation 
framework CAT-Seg is proposed. The proposed framework 
is composed of two proposed architectures. In the first, ROI 
is localized by the modified variant SqueezeDeepLabv3+, 
to minimize processing and address the issue of pixel class 

imbalance. The proposed architecture for SqueezeDeep-
Labv3+ uses SqueezeNet to enrich the encoder path. Also, 
SqueezeDeepLabv3+ modifies the atrous rate to localize the 
small structures like RV in ES. The second step involves 
submitting the ROI to 3D-ARU for segmentation. The pro-
posed 3D-ARU uses ResUNet incorporating a spatial atten-
tion mechanism.

The results of the experiments show that the proposed 
method produces a mean DSC of 0.9595 in ED and 0.9541 
in ES. In comparison to the single-stage segmentation pro-
cess, the division into steps performed better. This is sup-
ported by the evaluation of the performance using the ACDC 
2017 test dataset, where the proposed method achieves 
higher performance compared to state-of-the-art approaches 
in segmentation. CAT-Seg achieved an average maximum 
improvement in segmenting LV, Myo and RV of 4.395%, 
6.84% and 7.315% respectively. Similar results are achieved 
when applied on the test set only of MyoPs 2020, produc-
ing a mean DSC of 0.9163 and mIoU of 0.8581. In conclu-
sion, CAT-Seg offers a useful assistive tool to aid the early 
detection and treatment planning of cardiovascular diseases, 
which is critical for a better prognosis. For future work, this 
study can be extended and applied to 3D medical images 
augmentation, which can solve the limitation of limited data-
set and reflect the changes in more samples.
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http://humanheartproject.creatis.insalyon.fr/database/#collection/637218c173e9f0047faa00fb
https://mega.nz/folder/BRdnDISQ#FnCg9ykPlTWYe5hrRZxi-w
https://mega.nz/folder/BRdnDISQ#FnCg9ykPlTWYe5hrRZxi-w
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