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Abstract
Combined	magnetic	resonance	imaging	(MRI)	and	positron	emission	tomography/computed	tomography	(PET/CT)	may	
enhance	 diagnosis,	 aid	 surgical	 planning	 and	 intra-operative	 orientation	 for	 prostate	 biopsy	 and	 radical	 prostatectomy.	
Although	PET-MRI	may	provide	 these	benefits,	PET-MRI	machines	 are	 not	widely	 available.	 Image	 fusion	of	Prostate	
specific	membrane	antigen	PET/CT	and	MRI	acquired	separately	may	be	a	suitable	clinical	alternative.	This	study	com-
pares CT-MR registration algorithms for urological prostate cancer care. Paired whole-pelvis MR and CT scan data were 
used	(n	=	20).	A	manual	prostate	CTV	contour	was	performed	independently	on	each	patients	MR	and	CT	image.	A	semi-
automated	 rigid-,	 automated	 rigid-	and	automated	non-rigid	 registration	 technique	was	applied	 to	align	 the	MR	and	CT	
data.	Dice	Similarity	Index	(DSI),	95%	Hausdorff	distance	(95%HD)	and	average	surface	distance	(ASD)	measures	were	
used	to	assess	the	closeness	of	the	manual	and	registered	contours.	The	automated	non-rigid	approach	had	a	significantly	
improved	 performance	 compared	 to	 the	 automated	 rigid-	 and	 semi-automated	 rigid-registration,	 having	 better	 average	
scores	and	decreased	spread	for	the	DSI,	95%HD	and	ASD	(all	p <	0.001).	Additionally,	the	automated	rigid	approach	had	
similar	significantly	improved	performance	compared	to	the	semi-automated	rigid	registration	across	all	accuracy	metrics	
observed	 (all	 p <	0.001).	 Overall,	 all	 registration	 techniques	 studied	 here	 demonstrated	 sufficient	 accuracy	 for	 explor-
ing	 their	clinical	use.	While	 the	 fully	automated	non-rigid	 registration	algorithm	 in	 the	present	 study	provided	 the	most	
accurate	 registration,	 the	semi-automated	rigid	registration	 is	a	quick,	 feasible,	and	accessible	method	 to	perform	image	
registration	for	prostate	cancer	care	by	urologists	and	radiation	oncologists	now.
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ASD  Average surface distance
VTK	 	Visualisation	toolkit

Introduction

Prostate	specific	membrane	antigen	(PSMA)	positron	emis-
sion	 tomography/computed	 tomography	 (PET/CT)	 is	 a	
growing tool in diagnosis and staging of prostate cancer. It 
is more sensitive for tumour detection than magnetic reso-
nance	 imaging	 (MRI)	 reported	 according	 to	 the	 Prostate	
Imaging-Reporting	and	Data	System	(PI-RADS).	Therefore,	
the	combination	of	both	 imaging	modalities	may	enhance	
diagnosis and tumour characterisation [1] to aid surgical 
planning	and	intra-operative	orientation	for	prostate	biopsy	
and	 radical	 prostatectomy.	 Potential	 clinical	 benefits	 are	
improved	detection	of	clinically	significant	prostate	cancer	
with	prostate	biopsy	and	reduced	positive	surgical	margins	
during radical prostatectomy [2–4].	Although	hybrid	PET/
MRI	may	provide	combined	imaging,	PET/MRI	machines	
are	 not	 widely	 available	 and	 have	 image	 resolution	 limi-
tations.	 Conversely,	 image	 fusion	 of	 PSMA	 PET/CT	 and	
MRI	may	 be	 a	 practical	 alternative	 that	 can	 be	 clinically	
integrated,	 however	 is	 labour	 intensive	with	 questionable	
precision.

Registration algorithms are routinely used to perform 
image	fusion	of	PSMA	PET/CT	and	MRI	in	radiation	oncol-
ogy	but	not	in	urology,	and	thus	clinical	methods	and	val-
ues for alignment and registration errors rely on radiation 
therapy guidelines. Prostate clinical- and planning-target 
volumes	 (CTVs	 and	 PTVs)	 delineate	 the	 prostate	 and	 a	
5–10	mm	border	around	the	prostate	to	account	for	uncer-
tainties [5–7], respectively. It is important that uncertain-
ties	 including	 patient	 positioning,	 acquisition	 times,	 time	
between	imaging	modalities	and	registration	errors	do	not	
exceed	 the	 typical	 PTV	 boundary.	 In	 addition,	 it	 is	 well	
understood that compared with MRI, CT scans overesti-
mate prostate CTVs [8].	As	such,	there	has	been	extensive	
research investigating registration methods to accurately 
align	CT	and	magnetic	resonance	(MR)	images	[8–20].

Several	previous	works	have	applied	manual	[8, 10, 11], 
semi-automated [9, 11–13, 16, 17, 19], automated rigid [14] 
and non-rigid [15, 18, 20] methods to perform MR-CT reg-
istration. Rigid prostate MR-CT registration studies have 
utilized	 point-based	methods	 requiring	manual	 placement	
of	landmarks	[8–13],	iterative	closest	points	between	auto-
matically	identified	landmarks	[14], crude manual matching 
paired	 with	 automated	 intensity	 matching	 (using	 focused	
and	 non-focused	 regions	 of	 interest)	 [9], and automated 
voxel similarity methods measuring mutual information 
[11, 16]. In addition to rigid-only methods, Rivest-Henault 
and	 colleagues,	 developed	 a	 robust	 inverse-consistent	

algorithm	 combining	 both	 rigid	 and	 non-rigid	 techniques	
well suited to CT–MR alignment in prostate radiation ther-
apy [15].	Similarly,	Zhong	et	al.	presented	a	combined	rigid	
and	deformable	registration	before	their	adaptable	deform-
able	registration	method	with	finite	element	modelling	[17]. 
Further	 deformable	 registration	 algorithms	 have	 utilized	
displacement	 vector	 fields	 [18],	 a	 probabilistic	 Bayesian	
framework	 [18], normalized mutual information [19] and 
a	biomechanically	constrained	deep	learning	network	[20]. 
However,	previous	works	have	not	compared	the	accuracy	
and	feasibility	of	clinical	 translation	for	a	semi-automated	
clinical	 rigid	 registration	 technique	 with	 fast	 and	 eas-
ily	 explainable	 automated	 rigid	 and	 non-rigid	 registration	
techniques.

The hypothesis of the current study was that accuracy 
(according	to	volume	and	distance-based	contour	validation	
metrics)	would	be	higher	for	the	automated	non-rigid	reg-
istration method than automated rigid and semi-automated 
rigid methods. The purpose of the present study was to com-
pare three types of registration processes: semi-automated 
clinical rigid registration, automated rigid, and non-rigid 
registration	 to	quantify	 the	accuracy	associated	within	 the	
CT-MR	fusion	process	(initial	step	of	PET/CT	and	MRI	reg-
istration	process)	for	urological	care	of	prostate	cancer	and	
discuss	the	feasibility	and	accessibility	of	their	integration	
into clinical practice.

Methods

Patient data

The present study analysed paired whole-pelvis MR and CT 
scan data from 20 prostate patients from Dowling et al.’s 
prior study [21].	The	sequences	used	within	this	study	were	
in line with PI-RADS standards. All patients were diag-
nosed with stage T1 to T3 tumours and intended to proceed 
with	 radiotherapy.	Prior	 to	 the	 acquisition	of	MR	and	CT	
planning	images,	each	patient	had	three	pure	gold	fiducial	
markers	inserted	transrectally	to	assist	with	landmark	local-
ization [21].	These	gold	fiducial	markers	could	be	used	for	
registration development. However, not all patients present-
ing	for	urological	care	of	prostate	cancer	require	or	consent	
to	the	insertion	of	gold	seeds.	Within	this	paper,	we	wanted	
to	 present	 an	 accessible	 and	 easily	 explainable	 algorithm	
which	can	be	broadly	used	across	patients.	Therefore,	we	
chose to not use the gold seeds as part of the assessment in 
this paper.

The	 conventional	 planning	 CT	 scans	 (voxel	 size:	
0.977	×	0.977	×	2.5	 mm)	 were	 acquired	 with	 either	 a	 GE	
(Milwakee,	 USA)	 LightSpeed	 radiotherapy	 large	 bore	
scanner	 with	 2.5	 mm	 slices	 or	 a	 Toshiba	 (Tokyo,	 Japan)	
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Acquilion	scanner	with	2.0	mm	slices	[21]. The MR images 
were	 acquired	 with	 a	 2-dimensional	 axial	 T2-weighted	
turbo	 spin	 echo	 sequence	 (repetition	 time:	1400	ms,	 echo	
time:	97	ms,	field	of	view:	200	mm,	flip	angle:	135°,	voxel	
size: 0.625 × 0.625 ×	2	mm)	on	a	Siemens	 (Erlangen,	Ger-
many)	Skyra	 3T	 scanner	 [21]. For further information on 
the	CT	 and	MR	protocol,	 bladder	 and	 bowel	 preparation,	
patient and MR coil positioning, refer to [21].

A manual contour of the prostate CTV was performed 
by	 an	 experienced	 radiation	 oncologist	 independently	 on	
the MR and CT image of each patient [21]. These manual 
contours were considered the gold standard and used in 
subsequent	 registration,	prostate	volume,	and	surface	area	
analyses of the current study.

Prostate contour registration

Semi-automated clinical practice registration

A	clinician	 (urology	 registrar,	2	years	clinical	experience)	
used	 built-in	 automatic	 boxed-based	 registration	 tools	 to	
grossly and rigidly align the CT and MR images in two 
stages	 using	 commercial	 software	 (MIM	 Maestro	 7.6.1, 
MIM Software Inc, USA).	Firstly,	gross	alignment	was	per-
formed	by	 selecting	 a	 region	 of	 interest	 (ROI)	with	 bony	
landmarks,	then	a	refined	ROI	was	chosen	around	the	soft-
tissue	 of	 the	 prostate.	 Subsequently,	 manual	 translation	
adjustments were applied to improve the visual registration 
fitting.	The	output	registration	transform	was	used	to	project	
the	moving	CT	prostate	manual	contour	into	the	fixed	MR	
image	space	using	nearest	neighbour	interpolation	with	the	
3D	Slicer	software	(version	5.0.3)	[22, 23].

Automated rigid registration

Libraries	within	the	Simple	ITK	package	(version	2.1.1.2)	
were used to produce the automated rigid and non-rigid 
registration	 algorithms	 described	 below.	 Initially	 a	 nega-
tive normalized cross correlation image metric [24] was 
applied	 to	 the	fixed	MR-	and	moving	CT-prostate	manual	
contour.	This	correlation	quantified	the	extent	which	the	two	
images	move	in	opposite	directions.	Subsequently,	the	gra-
dient descent optimizer and rigid transformation [24] with 
additional scaling were applied to calculate the updated 
position of the moving contour iteratively. The alignment 
transformation was computed using linear interpolation [24] 
between	 the	 fixed	 MR-	 and	 moving	 CT-prostate	 manual	
contour.	This	transformation	was	used	in	combination	with	
linear interpolation [24] to align the moving CT image with 
the	fixed	MR	image.	Subsequently,	the	calculated	transform	
was	 applied	 with	 nearest	 neighbour	 interpolation	 [24] to 
register	the	moving	CT	prostate	manual	contour	to	the	fixed	

MR	manual	contour.	We	note	the	automated	rigid	registra-
tion involved additional scaling to account for discrepan-
cies in CT and MR prostate volumes reported previously in 
the literature. Herein, our automated rigid registration with 
scaling	will	be	reported	as	the	automated	rigid	registration.

Automated non-rigid registration

The	signed	Maurer	distance	map	filter	[25]	(implemented	in	
[24])	was	applied	to	the	fixed	MR	manual	contour	and	the	
rigidly registered CT manual contour. The fast symmetric 
forces	demon’s	registration	filter	[26]	(implemented	in	[24])	
was	then	computed	on	these	distance	map	volumes	to	obtain	
a	 deformation	 field.	 The	 deformation	 field	 was	 applied	
with	 nearest	 neighbour	 interpolation	 to	 perform	 a	 grey-
scale-based	registration	[24]	between	the	fixed	MR	manual	
contour	and	the	rigidly	registered	CT	manual	contour.	Sub-
sequently,	 the	 deformation	 field	was	 used	 in	 combination	
with	BSpline	resampling	to	perform	deformable	registration	
[24]	between	the	fixed	MR	image	and	the	rigidly	registered	
CT image.

Prostate segmentation registration analyses

Manual contours of the prostate from MR examinations 
were used to assess each registration method. The aligned 
contours from each registration method were compared 
using	the	Dice	similarity	index	(DSI)	[27] for volume over-
lap	 (1	 representing	 perfect	 overlap	 and	 0	 representing	 no	
overlap)	and	surface	distance	differences	(mm)	based	on	the	
95%	Hausdorff	distance	(HD)	[28] and average surface dis-
tance	(ASD)	[29]. The HD is a measurement of the largest 
minimum	distance	between	two	contours.	The	95%	HD	was	
used	rather	than	the	HD	based	on	the	sensitivity	of	the	HD	
to outliers [28]. The ASD is the average distance calculated 
from	the	set	of	minimum	distances	between	two	contours.	
Figure 1 displays example illustrations of the DSI and HD 
measurements	on	an	axial	(column	1),	sagittal	(column	2)	
and	coronal	(column	3)	plane	within	a	3-dimensional	MR	
image of the prostate registered using an automated rigid 
(row	1)	and	non-rigid	registration	(row	2).

Prostate segmentation overlap

Each	registered	binary	label	(generated	from	the	CT	manual	
contour)	 was	 threshold	 to	 a	 value	 not	 equal	 to	 1.	 Subse-
quently,	an	image	addition	between	the	corresponding	MR	
and	 threshold	 registered	binary	 label	produced	an	overlap	
of	 the	 two	contours	 (where	1:	MR	only;	2:	 registered	CT	
only;	3:	MR	and	CT	union).	This	overlap	contour	was	used	
for	 subsequent	 qualitative	 assessment	 of	 each	 registration	
algorithm to accurately align the MR and CT contours. The 
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applied to compare the performance of the semi-automated 
rigid, automated rigid and non-rigid registrations using sur-
face-	 and	 distance-based	metrics.	 Prior	 to	 performing	 the	
comparisons,	the	Shapiro-Wilk	test	was	applied	to	check	the	
normality	of	the	data	and	Wilcoxon	signed-rank	tests	were	
used	if	the	data	did	not	have	a	normal	distribution.	For	the	
t-test	analyses,	Levene’s	method	was	used	to	assess	homo-
geneity	of	variances	and	Welch’s	test	was	applied	if	samples	
did	not	have	equal	variances.	Statistical	significance	was	set	
a priori at p < 0.05 and all statistical analyses were calcu-
lated	using	a	python	package,	SciPy	(version	1.7.3)	[34] .

Results

On average, the semi-automated rigid-, automated rigid- 
and automated non-rigid-registration was completed within 
~ 5 min, 1 min 38 s and 23 s, respectively.

Registration comparison

Figure 2	 displays	 boxplots,	 and	Table	 1 provides a sum-
mary of the mean and standard deviation data for the DSI 
(Fig.	2a),	95%	HD	(Fig.	2b)	and	ASD	values	(Fig.	2c)	for	
the semi-automated rigid-, automated rigid- and automated 

assessment was performed on the prostate volume in three-
dimensional	 space	 to	 visualize	 the	 number	 of	mislabelled	
prostate voxels.

Prostate surface generation and assessment

The	manual	(CT/	MR)	and	registered	CT	(semi-automated	
rigid/	automated	rigid/	automated	non-rigid)	prostate	man-
ual contours were converted to surfaces using the marching 
cubes	algorithm	[30]. These surfaces were then smoothed 
using the windowed sinc algorithm [31] and used to cal-
culate the prostate volume and surface area for compari-
son with previous reports of greater CT prostate volumes 
compared	to	those	obtained	using	MR	images	[8]. In further 
analyses, the surface distance was calculated using the visu-
alisation	toolkit	(VTK)	[32]	signed	distance	polydata	filter	
between	 the	 registered	CT	contours	 and	 the	MR	contours	
to	compare	the	alignment	accuracy	of	different	registration	
algorithms.

Statistical analyses

Paired	t-tests	or	Wilcoxon	signed-rank	tests	[33] were used 
to	observe	comparisons	for	volume	and	surface	area	anal-
yses of the CT and MR prostate surfaces. They were also 

Fig. 1 A representative view of the prostate contour overlap in each 
planar	 orientation	 (i.e.,	 axial,	 sagittal	 and	 coronal)	 illustrates	 differ-
ences	between	 the	manual	MR	contours	 and	 the	contours	generated	
through the registration of the CT and MR images. The grey circles 
(row	1	(a-c))	and	grey	arrowheads	(row	2	(d-f))	indicate	the	location	of	
maximal	HD	(the	largest	minimum	distance	between	the	manual	and	
registered	contour)	in	each	plane	within	the	3-dimensional	image	(i.e.,	

axial	(column	1),	sagittal	(column	2)	and	coronal	(column	3)).	The	DSI	
measures the magnitude of overlap of two contours. M, manually con-
toured	voxel;	R;	registered	contour	voxel;	Blue	label	(M	∩	R),	manual	
and	registered	contour	overlap	voxels;	Green	label	(R),	registered	con-
tour	only	voxels;	Yellow	label	(M),	manual	contour	only	voxels;	MR,	
magnetic	resonance;	CT,	computed	tomography;	DSI,	dice	similarity	
index;	HD,	Hausdorff	Distance
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significantly	improved	performance	compared	to	the	semi-
automated	 rigid-registration	 having	 better	 average	 scores	
and	decreased	spread	 for	 the	DSI,	95%	HD	and	ASD	(all	
p <	0.001).

non-rigid-registered prostate manual contours. Overall, the 
automated	non-rigid	approach	had	a	significantly	improved	
performance compared to the automated rigid- and semi-
automated	 rigid-registration	 having	 better	 average	 scores	
and	decreased	spread	 for	 the	DSI,	95%	HD	and	ASD	(all	
p <	0.001).	Additionally,	the	automated	rigid	approach	had	a	

Fig. 2 Boxplots of the evaluation metrics used in this study for com-
parisons	between	the	semi-automated	rigid-,	automated	rigid	and	non-
rigid	 registration	 algorithm	 performance.	 (a)	 DSI	 values.	 (b)	 95%	

HD	values.	(c)	ASD	values.	The	boxplot	centreline	marks	the	median	
value.	DSI,	dice	similarity	index;	HD,	Hausdorff	distance;	ASD,	aver-
age	surface	distance;	Auto,	automated;	***,	p < 0.001
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The	cases	displayed	obtained	 the	highest	 (row	1),	median	
(row	 2)	 and	 lowest	DSI	 (row	 3)	 reported	 using	 the	 auto-
mated non-rigid registration method. As such, the cases in 
this	figure	are	 representative	of	 the	contour	 results	within	
the	mid	prostate	region	obtained	from	the	full	cohort.	Visual	
assessments across axial prostate slices revealed the over-
lap	of	manual	and	registered	contour	results	appeared	to	be	
highest in the mid prostate and lower in the ends of the pros-
tate	gland	(apex	and	base).	Within	all	cases,	the	CT	contour	
registered using an automated non-rigid algorithm had an 
excellent	fitting	to	the	manual	contour.

Prostate volume delineated from MR and CT 
examinations

Figure 4	shows	boxplots	for	the	manually	contoured	CT	and	
MR	volume	(Fig.	4a)	and	surface	area	(Fig.	4b).	Compared	
to	 the	MR	examinations,	 the	CT	examinations	obtained	 a	
significantly	 larger	median	 prostate	 volume	 (35.40	 cm3 v 
31.89	cm3, p =	0.005)	and	a	non-significantly	larger	median	
surface	area	(60.77	cm2	v	54.94	cm2, p =	0.052).	On	aver-
age	the	manual	prostate	segmentations	had	a	CT/	MR	vol-
ume of 51.28 ±	40.95/	 38.54	± 22.61 cm3. On average the 

Prostate segmentation overlap

Figure 3 displays axial view illustrations of the overlap 
between	 the	 manual	 prostate	 contour	 completed	 on	 the	
MR examination and the CT contour registered using the 
semi-automated rigid-, automated rigid- and automated 
non-rigid-registration method. This visualization clearly 
shows	the	significantly	improved	fitting	(shaded	in	blue)	of	
the	CT	contour	using	 the	automated	 rigid	 (column	2)	and	
automated	 non-rigid	 registration	 (column	 3)	 compared	 to	
the	 semi-automated	 rigid	 registration	method	 (column	 1).	

Table 1 Mean and standard deviation data for the semi-automated 
rigid-, automated rigid- and automated non-rigid-registration method 
in	the	DSI,	95%	HD	and	ASD	results
Registration 
Method

DSI 95%	HD	
(mm)

ASD	(mm)

Semi-automated 
rigid

0.778 ± 0.077 6.768 ±	3.189 2.522 ±	1.369

Automated rigid 0.892	± 0.031 3. 018 ± 1.364 0.955	± 0.325
Automated 
non-rigid

0.963	±	0.009 0.951	± 0.208 0.192	± 0.025

DSI,	 dice	 similarity	 index;	HD,	Hausdorff	distance;	ASD,	 average	
surface distance

Fig. 3 Axial view prostate con-
tour	overlap	illustrations	between	
the manual MR contours and the 
contours generated through the 
registration of the CT and MR 
images.	Columns	1	(a, d, g),	2	
(b, e, h)	and	3	(c, f, i)	display	the	
semi-automated rigid-, automated 
rigid- and automated non-rigid-
registered results, respectively. 
Rows	1	(a-c)	,	2	(d-f)	and	3	
(g-i)	display	the	case	and	prostate	
region which achieved the maxi-
mum-, median- and minimum-
DSI result using the automated 
non-rigid registration method, 
respectively.	Blue	label,	manual	
and registered contour overlap 
voxels;	Green	label,	registered	
contour	only	voxels;	Yellow	
label,	manual	contour	only	vox-
els;	MR,	magnetic	resonance;	CT,	
computed	tomography;	DSI,	dice	
similarity index
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non-rigid-techniques.	Overall,	feasibility	of	all	three	meth-
ods	 is	 shown	by	 sufficient	 registration	accuracy	on	 image	
stacks	of	typical	clinical	quality	that	occurred	within	accept-
able	 timeframes	 (23	 s	 to	 ~	5	 min).	 The	 semi-automated	
rigid-registration	 method	 is	 accessible	 now	 via	 standard	
software while the higher accuracy automated non-rigid 
method	uses	an	accessible	and	easily	explainable	algorithm	
that	could	benefit	from	pairing	with	an	automated	segmen-
tation	technique.

When	 comparing	 the	 three	 registration	 techniques,	 the	
automated	non-rigid	approach	had	a	significantly	improved	
performance compared to the automated rigid- and semi-
automated	 rigid-registration.	 While	 the	 automated	 rigid	
approach	 had	 a	 significantly	 improved	 performance	 com-
pared to the semi-automated rigid-registration. Manual 
and registered contour overlap- and prostate surface dis-
tance-visualizations revealed a trend for increasing accu-
racy from the semi-automated rigid-, automated rigid- to 
the automated non-rigid registration results. As expected, 
compared to the MR examinations, the CT examinations 
obtained	a	significantly	larger	median	prostate	volume	and	
a	non-significantly	larger	median	surface	area.	On	average,	
the semi-automated rigid-, automated rigid- and automated 
non-rigid-registration was completed within ~ 5 min, 1 min 
38 s and 23 s, respectively.

In	 the	present	 study,	quantitative	and	qualitative	analy-
ses	 of	 three	 different	 CT-MR	 prostate	 registration	 algo-
rithms, revealed that automated non-rigid registration 
outperforms	 both	 automated	 rigid-	 and	 semi-automated	

manual	prostate	segmentations	had	a	CT/	MR	surface	area	
of 72.36 ±	37.40/	61.83	± 25.47 cm2.

Prostate surface assessment

Each prostate surface generated from the semi-automated 
rigid-, automated rigid- and non-rigidly-registered contour 
was compared with the manual MR generated surface sep-
arately using the VTK signed distance. Figure 5 displays 
selected coronal view CT prostate surfaces generated after 
semi-automated	 rigid-	 (column	 1),	 automated	 rigid-	 (col-
umn	 2)	 and	 automated	 non-rigid-registration	 (column	 3)	
with the MR image. This visualization clearly shows the 
significantly	improved	surface-based	fitting	of	the	CT	con-
tour using the automated rigid and automated non-rigid reg-
istration compared to the semi-automated rigid registration 
method.	The	cases	displayed	obtained	the	highest	(row	1),	
median	(row	2)	and	lowest	DSI	(row	3)	reported	using	the	
automated	 non-rigid	 registration	method.	Within	 all	 cases	
assessed, the CT contour registered using an automated 
non-rigid	algorithm	had	an	excellent	fitting	 to	 the	manual	
MR contour.

Discussion

The	 current	 study	 described	 and	 assessed	 three	 dif-
ferent	 CT-MR	 registration	 techniques	 which	 utilized	
semi-automated rigid-, automated rigid- and automated 

Fig. 4	 Original	CT	and	MR	image	manually	contoured	prostate	volumes	(a)	and	surface	areas	(b).	CT,	computed	tomography;	MR,	magnetic	
resonance

 

1 3

1797



Physical and Engineering Sciences in Medicine (2023) 46:1791–1802

to	surrounding	structures	on	a	T2-weighted	sequence,	and	
the	prostatic	base	transitioning	from	the	bladder	neck	[36]. 
Additional	 qualitative	 comparisons	 between	 the	 manual	
and registered prostate volume showed distinct improve-
ments in the signed distance values with the application of 
the automated registration algorithms in comparison to that 
requiring	manual	intervention	(Fig.	5).	This	visual	inspec-
tion supported the application of the automated non-rigid 
registration algorithm reported within this study to achieve 
a	globally	accurate	prostate	surface	fitting.

The	relatively	poorer	DSI,	95%	HD	and	ASD	achieved	
with	the	semi-automated	rigid	registration	could	be	at	least	
partially	 attributed	 to	 the	 significant	 (p =	0.005)	 prostate	
volumetric	difference	between	the	CT	(51.28	±	40.95	cm3)	
and	MR	(38.54	± 22.61 cm3)	acquired	scans	(Fig.	4,	Table	
S1).	In	agreement	with	these	results,	previous	works	have	
reported the prostate CTV delineated on CT images can 
be	up	 to	171%	of	 the	prostate	CTV	delineated	on	an	MR	

rigid-registration methods. The automated non-rigid reg-
istration	 achieved	 excellent	 average	 DSI	 (0.963	±	0.009),	
95%	HD	 (0.951	±	0.208)	 and	ASD	 (0.192	±	0.025)	 values	
(Fig.	2).	The	high	degree	of	agreement	between	the	manual	
and automatically registered prostate contours in the present 
work	compared	favourably	with	previous	prostate	CT-MR	
registration studies using manual [8, 12], semi-automated 
[16] and automated [14, 15, 18–20, 35]	methods	(Table	S1).	
Individual	qualitative	assessments	of	the	automated	non-rig-
idly registered contour intersection with the original manual 
contour showed almost perfect overlap within patients that 
were reported to have the minimum, median and maxi-
mum	DSI	value	of	the	full	cohort	(Fig.	3).	Furthermore,	the	
highest overlap of the registered and manual contour was 
present at the mid prostate and lowest at the prostate ends 
(apex	and	base)	which	is	consistent	with	studies	evaluating	
segmentation	 of	 zonal	 anatomy	of	 prostate.	This	 is	 likely	
due	to	the	prostatic	apex	having	a	similar	intensity	profile	

Fig. 5	 Coronal	view	prostate	surface	distance	between	the	manual	MR	
contours and the contours generated through the registration of the CT 
and	MR	images.	Columns	1	(a, d, g),	2	(b, e, h)	and	3	(c, f, i)	display	
the semi-automated rigid-, automated rigid- and automated non-rigid-
registered	results,	respectively.	Rows	1	(a-c),	2	(d-f)	and	3	(g-i)	display	

the case which achieved the maximum-, median- and minimum DSI 
result using the automated non-rigid registration method, respectively. 
The	signed	distance	scalar	bar	(rainbow	colour	map	on	right	side	of	
each	row)	has	units	in	mm.	MR,	magnetic	resonance;	CT,	computed	
tomography;	DSI,	dice	similarity	index
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the	verification	of	the	automated	non-rigid	registration	algo-
rithm	within	this	study	is	transferrable	to	potential	PET/CT	
clinical applications. It is also important for automated reg-
istration	algorithms	to	be	explainable	to	ensure	their	future	
integration within the clinic. If a clinician can understand 
an	algorithm,	they	are	more	likely	to	trust	the	results	it	pro-
vides	and	adopt	it	within	their	workflow.	However,	prior	to	
the adoption of the presented algorithm within the clinical 
workflow,	a	validation	study	should	be	conducted	in	a	pro-
spective	clinical	trial.	In	addition,	future	work	could	be	con-
ducted	 to	develop	an	automated	end-to-end	prostate	 (e.g.,	
lesion,	CTV,	PTV)	 segmentation	 and	 registration	 pipeline	
for paired CT-MR images. Previous automated MR prostate 
segmentation studies have reported very promising results 
[43–48].	The	combination	of	a	previously	developed	auto-
mated segmentation algorithm with the presented registra-
tion algorithm may reduce costs and image post-processing 
time, increase prostate contour and image alignment accu-
racy, to potentially improve prostate cancer diagnosis and 
management.

Although automated non-rigid registration is the most 
accurate method, all three registration methods demonstrate 
an accuracy level which is consistent with literature and 
complies with the recommendations in general [49]. Semi-
automated rigid registration, performed on clinical software 
available	in	hospitals	is	thus	a	quick	(performed	in	~	5	min),	
feasible,	and	accessible	option	currently	to	deliver	CT-MRI	
registration.	This	image	registration	can	lead	to	PSMA	PET/
CT	and	MRI	fusion,	which	can	be	utilised	for	prostate	can-
cer care. The automated registration methods are however 
promising	given	their	superior	accuracy	measures	and	lack	
of	 inter	 user	 variability.	Once	 automated	 prostate	 volume	
segmentation is integrated into the automated registration 
algorithm,	we	believe	they	may	be	ready	for	verification	in	
a clinical setting and for future clinical application.

There are several limitations to this study. First, a rela-
tively small sample of 20 patients were assessed. Future 
works	are	required	to	confirm	the	conclusions	made	in	the	
current study. Second, the patients within this study did not 
have	 any	 PSMA	 PET	 images	 acquired.	 Therefore,	 addi-
tional	qualitative	analyses	assessing	the	utility	of	the	regis-
tration algorithms presented in this study for the diagnosis 
and	 staging	 of	 prostate	 cancer	 using	 PSMA	 could	 not	 be	
conducted. Third, the MR images used in the present study 
were	acquired	using	a	T2	sequence	on	a	Siemens	(Erlingen,	
Germany)	 Skyra	 3T	 scanner	 [21]. Future research should 
explore the utility of the automated registration algorithms 
presented	when	applied	to	other	3D	MR	sequences	such	as	
diffusion-weighted-,	dynamic	contrast-enhanced-	[50], and 
T1-weighted-imaging	which	have	been	reported	 to	have	a	
high diagnostic accuracy for prostate cancer [51]. Finally, 
the patients within this study did not undergo radical 

image [5, 8, 37]. In addition, earlier MR and CT studies 
assessing prostate volume are in good general agreement 
with our study where mean volumes delineated on MR and 
CT images of 30.8 to 33.0 cm3 and 46.0 to 46.5 cm3 have 
been	calculated,	 respectively	 [8, 10]. The automated non-
rigid and rigid registration within the current study applied 
a	 scaling	 step	 to	 account	 for	 the	 known	 prostate	 volume	
discrepancy	 between	 CT	 and	 MR	 acquired	 scans	 of	 the	
same	patient.	Without	 this	 scaling	 step,	 scan-specific	 vol-
ume	 differences	 can	 create	 registration	 inaccuracies	 (e.g.,	
those	reported	from	our	semi-automated	rigid	registration).	
A	comparison	between	the	semi-automated	and	automated	
rigid	(plus	scaling)	method	within	the	current	paper	can	be	
used	as	an	indication	of	the	effect	of	scaling.	The	substantial	
differences	between	the	current	study	CTV’s	and	the	GTV’s	
in	Ilamurugu	et	al.’s	 [9]	(CT:	22.11	cm3;	MR:	17.52	cm3)	
may	 be	 due	 to	 considerable	 differences	 in	 the	 size	 of	 the	
prostates in these cohorts.

Differences	in	internal	pelvic	anatomy	such	as	the	blad-
der	and	rectum	have	been	identified	to	create	a	prostate	bed	
tilt [38]	 and	 variability	 in	 the	 prostate	 position	 [39, 40]. 
Bladder	and	rectum	filling	can	alter	the	prostate	target	vol-
ume	position,	which	leads	to	difficult	image	registration.	In	
radiation	therapy,	 there	are	full	bladder	and	empty	rectum	
protocols	to	better	control	prostate	position	and	reduce	radi-
ation	 exposure	 risk	 outside	 the	 PTV,	 however	 even	 these	
protocols	 increase	bladder	size	variability	 [41, 42] and an 
empty rectum is hard to replicate. Furthermore, despite 
strict	adherence	to	this	imaging	protocol,	substantial	bladder	
volume changes can occur. In addition to these anatomical 
variations,	 CT	 and	MR	 images	 observe	 significant	 differ-
ences in the prostate size [8, 10, 19]. Although image regis-
tration	may	have	a	different	type	of	role	in	urology	through	
pre-operative planning and intra-operative guidance, non-
rigid	registration	can	be	utilized	to	perform	a	deformation-
based	alignment	of	the	images	of	interest	to	accommodate	
for	 these	 anatomical	 differences	 and	 imaging	 modality	
variabilities.

The	 current	 study	 presented	 a	 robust,	 fast,	 and	 easily	
explainable	automated	non-rigid	registration	algorithm	ideal	
for usage in a clinical setting. This non-rigid algorithm used 
an	anatomical	constraint	(i.e.,	the	MR	contour)	to	preserve	
the real prostate morphology during deformations. The lim-
its	of	 stretching	 for	 the	CT	morphology	are	bound	by	 the	
MR contour and the intensity of deformations depends on 
the	similarity	between	the	MR	and	CT	contour.	In	addition,	
although	the	CT	contour	can	be	overestimated,	our	applica-
tion	of	 the	MR	contour	 as	fixed	 reduced	 the	potential	 for	
discrepancies in the preservation of real morphology. The 
planning	CT	scan	used	in	the	current	study	had	an	equiva-
lent	quality	(i.e.,	not	a	high	dose	and	no	contrast	applied)	to	
the	CT	component	of	clinical	PET/CT	acquisitions.	As	such,	
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