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Abstract
Assessment of the prosthetic gait is an important clinical approach to evaluate the quality and functionality of the prescribed 
lower limb prosthesis as well as to monitor rehabilitation progresses following limb amputation. Limited access to quantitative 
assessment tools generally affects the repeatability and consistency of prosthetic gait assessments in clinical practice. The 
rapidly developing wearable technology industry provides an alternative to objectively quantify prosthetic gait in the uncon-
strained environment. This study employs a neural network-based model in estimating three-dimensional body segmental 
orientation of the lower limb amputees during gait. Using a wearable system with inertial sensors attached to the lower limb 
segments, thirteen individuals with lower limb amputation performed two-minute walk tests on a robotic foot and a passive 
foot. The proposed model replicates features of a complementary filter to estimate drift free three-dimensional orientation 
of the intact and prosthetic limbs. The results indicate minimal estimation biases and high correlation, validating the ability 
of the proposed model to reproduce the properties of a complementary filter while avoiding the drawbacks, most notably in 
the transverse plane due to gravitational acceleration and magnetic disturbance. Results of this study also demonstrates the 
capability of the well-trained model to accurately estimate segmental orientation, regardless of amputation level, in different 
types of locomotion task.
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Introduction

Lower limb amputation, the final clinical option for pain and 
infection control [1], is both life-saving and life-changing. 
Following the loss of major muscle groups, the gait of lower 

limb amputees is frequently reported to be different from the 
able-bodied gait [2–5]. Prosthetic gait can be affected by 
numerous factors such as socket fit, prosthetic alignment, 
and the efficacy of prosthetic components [6]. Gait analy-
sis is commonly used to assess the degree of deviation of 
prosthetic gait as the feedback to prosthesis prescriptions 
[7]. It is also important for the evaluations of rehabilitation 
and therapy outcomes, mobility, and fall risk [8]. In pros-
thetic biomechanics, gait analysis provides useful informa-
tion in the development of active prostheses and prosthetic 
components.

Visual observation is the most common and accessi-
ble tool for in-clinics prosthetic gait analysis. In order to 
improve the reliability and sensitivity of the assessments, 
different scales are normally used to categorize the outcome 
of observational gait analysis [9–11]. The outcome measure 
is, however, subjective and qualitative with no guidelines 
on the selection of relevant assessment scales. Furthermore, 
gait abnormalities that occur rapidly are hardly noticeable 
through naked eyes, thus reducing the sensitivity of pros-
thetic gait assessment [9].
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Quantitative gait analysis which involves optical motion 
capture system provides an objective means to prosthetic 
gait evaluation. Detailed analysis of body segment and joint 
movements allows accurate characterization of motion, even 
with subtle gait deviations, providing systematic documenta-
tion to the assessment of an amputee’s gait and rehabilita-
tion progress monitoring [8]. Nevertheless, the availability 
of motion capture system as part of the clinical settings is 
often limited by the high setup cost. Moreover, operation 
of the sophisticated equipment requires skilled personnel 
with measurements of gait assessment being restricted in a 
confined capture volume [12–15].

Recent advances in wearable technology have opened up 
new perspective for prosthetic gait assessment with fewer 
constraints. In contrast to the optical motion capture system, 
the ambulatory system consisting of miniature inertial meas-
urement units (IMUs) is portable with simple setup proce-
dures [16]. Such system is capable of providing continuous 
measurement of human movements beyond the constraints 
associated with spaces and environments [13, 16].

Accelerometer which measures linear acceleration along 
its sensitive axis is the most common inertial sensor used 
in ambulatory gait analysis, thanks to its robustness, dura-
bility, low cost and low power consumption [14, 17]. Not-
withstanding the special features, high frequency move-
ments negatively affect the accuracy of accelerometer with 
dynamic errors produced in the mechanical structures of 
the sensor [17]. Gyroscope which measures angular veloc-
ity about an axis is frequently used alongside the acceler-
ometer to compensate the aforementioned limitation. The 
two sensors are complementary, providing good estimates 
of orientation by combining the advantages of both sensors 
at varying movement frequencies. Nevertheless, the accel-
erometer is also affected by gravity where the existing gravi-
tational acceleration vector confounds dynamic acceleration 
measured along the vertical axis, restraining measurement 
to two-dimensional (2D) [17–19].

Accurate measurement in three-dimensional (3D) can 
be achieved with an additional reference axis to the wear-
able system. In this regard, magnetometer which detects 
the local magnetic north is most commonly used to provide 
a supplementary reference axis [20–22]. The deployment 
of accelerometer, gyroscope, and magnetometer enables 
detailed analysis of 3D human gait in terms of kinematics 
and spatiotemporal parameters through sensor fusion algo-
rithms such as the Kalman filters that extract special features 
from each sensor [21–24]. In recent years, IMU comprises 
the accelerometer, gyroscope, and magnetometer has gained 
interest as the leading means of wearable technologies in 
clinical applications [25]. Unfortunately, the sensing ability 
of magnetometer is distorted with the presence of ferromag-
netic interference, leading to significant errors in orientation 
measurements, notably in the heading direction [22, 26]. 

The issue is ever present in clinical settings which comprise 
mainly of ferromagnetic materials and magnetic field-based 
devices. Where characterizing local magnetic field a priori 
in uncontrolled environments can be laborious, compensa-
tion of ferromagnetic interference thus remains the major 
challenge of 3D ambulatory gait analysis in clinical applica-
tions [22, 26, 27].

The current study presented an alternative to compute the 
kinematics of prosthetic gait using a neural network model 
which requires only the gyroscope data. Presented with cha-
otic features in nature, human gait dynamics is frequently 
analyzed through the nonlinear signal processing meth-
ods [28–30]. The nonlinear autoregressive neural network 
model with exogenous inputs (NARX) is an important class 
of system identification and prediction for nonlinear time 
series data, e.g., physiological signals [31, 32]. The approach 
demonstrated outstanding performance in extracting 3D kin-
ematics of the knee joint for long-distance walking [33] and 
the control of lower limb exoskeleton robot [34, 35], proving 
its feasibility as a joint angle measurement tool. The aim of 
current study was to validate a NARX neural network model 
in the estimation of prosthetic gait kinematics using only 
the gyroscope signals. Secondly, the study aimed to show 
the ability of the NARX model, which was trained using 
healthy data, in extracting segment orientation of prosthetic 
gait including complex movement such as turns.

Method

Wearable system

Four IMUs (OPAL, APDM Inc., Portland, USA) attached 
bilaterally with elastic straps to the shank or pylon and foot 
(Fig. 1), were used to record gait signals in this study. Each 
sensor unit consisted of a 3D accelerometer (±11 g), a 3D 
gyroscope ( ±200◦ /s), a 3D magnetometer (±8 Gauss), a 
memory unit and a wireless transmitter. All sensor units 
were connected through a wireless synchronization system 
at sampling frequency 128 Hz. Data were streamed real-time 
to a computer and stored for analysis.

The IMUs which measured data in the technical frames 
were aligned to the body segment anatomical frames trough 
a calibration procedure. The subjects were first requested 
to stand upright for 10 s and the mean acceleration vector 
was used to align the y-axis to the superior-inferior Y-axis 
(i.e., gravity), pointing upward. The z-axis was then aligned 
to the mediolateral Z-axis (i.e., pointing to the right of the 
subject) of each segment by optimizing the angular velocity 
vector in the sagittal plane. Finally, the anterior-posterior 
X-axis (i.e., pointing forward) of each segment was obtained 
as the cross product of the Y- and Z-axes (Fig. 1). All data in 
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this study are reported in the body anatomical frame unless 
otherwise specified.

Subjects and measurement protocol

Thirteen subjects with transtibial and transfemoral pros-
theses aged between 24 and 69 were enrolled in this study 
(Table 1). All subjects were experienced prosthetic users of 
minimum 12 months experience. Individuals who presented 
ulcer, swelling, sore, or pain on the stump were excluded 
from the measurement trials.

All subjects performed a two-minute walk test (2MWT) 
at self-selected speed, with unrestricted U-turns between 
straight walking [36, 37]. First, each subject walked along 
a 1 × 2 m (width × length) walkway (with support bars for 
safety consideration) using the originally prescribed pros-
thetic foot (i.e., passive foot). Then, walking trials were 
repeated with a robotic foot  (RoMicP®, Bioapps, Kuala 
Lumpur, Malaysia) fitted to the prosthesis. Note that the sub-
jects were not trained on using the robotic foot before the 
second walking trials. All fitting and alignment procedures 
were performed by professional prosthetists.

Reference Segment Orientation

The reference orientation of body segment was estimated 
based on a complementary filter (CF) due to its simple struc-
ture and robustness in multi-source data fusion [38, 39]. In 
the present study, the CF fused data from the accelerometer, 
gyroscope, and magnetometer. Considering rotation in one-
dimension, e.g., the sagittal plane, the acceleration vector 
(a) measured by the accelerometer can be represented as:

where X, Y, and Z denote the axes of the body anatomi-
cal frame defined in the Wearable System Section. Using 
the acceleration vector, angular position of body segment 
( pacc(t) ) can be measured by the accelerometer as:

Gyroscope is also capable of estimating angular position 
( pgyro(t) ) through a single time integration of angular veloc-
ity ( �):

where �Z(.) denotes the angular velocity in the Z-axis.
Outputs of the accelerometer and gyroscope, however, 

are subjected to high frequency and low frequency noises 
or drift, respectively. Therefore, the CF fused signals of the 
accelerometer and gyroscope by eliminating drift errors, 
which can be represented in the Laplace form as:

where k∕(S + k) and S∕(S + k) are a low pass and a high pass 
filter, respectively. k is the cut off frequency of the filter. 
pgyro(t) and �gyro(t) are related by Ngyro(S) = SPgyro(S) in the 
S-domain. In this study, the CF in Eq. 4 provided estimation 
of segment orientation in the sagittal and frontal planes.

The existence of gravity negatively affects accelerometer 
signal in the transverse plane, as the rotation around the 
superior-inferior axis becomes indistinguishable from the 
gravitational acceleration vector. In this context, the mag-
netometer was used as a substitute of accelerometer. The 
magnetic field (m) measured by the magnetometer is:

where X, Y, and Z denote the axes of coordinate system simi-
lar to the accelerometer. Rotation or angular position can 
then be measured by the magnetometer as:

(1)a = [aX aY aZ]

(2)pacc(t) = tan−1
(

aX

aY

)

(3)pgyro(t) = ∫
t

0

�Z(�) d�

(4)
Pacc_gyro(S) =

k

S + k
Pacc(S) +

S

S + k
Pgyro(S)

=
k

S + k
Pacc(S) +

1

S + k
Ngyro(S)

(5)m = [mX mY mZ]

Fig. 1  Illustration of the measurement system. (A) A subject fitted 
with inertial sensors on the shank, pylon, foot and artificial foot. (B) 
Definition of the sensor technical frame(xyz) and the foot anatomical 
frame (XYZ)

Table 1  Subject demographic. The age, body mass, and height are 
presented as mean ± standard deviation (minimum, maximum)

Gender 13 male
Age (years) 55.23 ± 12.13 (24, 69)
Body mass (kg) 82.31 ± 18.81 (64, 120)
Height (cm) 177.77 ± 5.39 (172, 189)
Amputation side 6 left, 6 right, 1 bilateral
Level of amputation 10 below knee, 3 above knee
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where p0 denotes the initial state of the magnetometer with 
no rotations. Thus, the CF implemented in the transverse 
plane can be represented as:

In general, the filters in Eq. 4 and Eq. 7 can be combined to 
the CF estimating 3D orientation as:

with � being a weight parameter between 0 and 1. This study 
specifically focused on two cases, � = 0 for the sagittal and 
frontal planes (i.e., Eq. 4) and � = 1 for the transverse plane 
(i.e., Eq. 7).

Orientation estimation based on NARX

Segment orientation was computed based on the NARX neu-
ral network following the method presented in Tham et. al. 
[33]. As illustrated in Fig. 2, training of the NARX model 
involved IMU signals obtained from healthy gait. Gait signals 
were first collected from a healthy subject (28 years old, 78 kg, 
1.67 m) performing level-ground walking on a treadmill at 
self-selected speed with the same setup of wearable system 
as in the Wearable System Section. Fusing acceleration and 
angular velocity in the sagittal plane, the foot orientation was 
estimated by the CF described in the Reference Segment Ori-
entation Section and selected as the target output to train the 
NARX model. On the other hand, angular velocity of the foot, 
measured by the gyroscope in the sagittal plane, was used as 

(6)pmag(t) = tan−1
(

mZ

mX

)

− p0

(7)Pmag_gyro(S) =
k

S + k
Pmag(S) +

S

S + k
Pgyro(S)

(8)

P(S) =
k

S + k

[

�Pacc(S) + (1 − �)Pmag(S)
]

+
S

S + k
Pgyro(S)

the input in training. Training and testing of the NARX model 
were then completed using the approach described in Tham 
et. al. [33]. The model was trained using the Bayesian Regu-
larization (BR) algorithm and the training hyperparameters are 
documented in Table 2.

Estimation of segment rotation using the NARX neural 
network required only the angular velocity signals meas-
ured by the 3D gyroscope during gait trials. Structure of the 
NARX neural network used in this study was similar to the 
one proposed in Tham et. al. [33]. Normalized angular veloc-
ity and the recurrent output of angular position constituted 
the input parameters. A hidden layer with weight distribution 
established in the network training process comprised three 
processing neurons that produced output parameters to the 
output layer. Denormalized output parameters represented 
3D segment orientation as flexion and extension in the Z-axis, 
abduction and adduction in the X-axis, and internal and exter-
nal rotation in the Y-axis.

Validation

Estimation errors of segment orientation were computed as the 
subtraction of 3D orientation estimated by the CF (i.e., refer-
ence method) from the NARX model for each time sample 
(Eq. 9). To assess the performance of the proposed method, 
the intra-subject bias and precision, defined as the mean and 
standard deviation (SD) of estimation error for all time sam-
ples, were calculated for each trial. The intra-subject bias and 
precision in the sagittal plane can be calculated using Eq. 10 
and Eq. 11; similar equations were used in the frontal and 
transverse plane.

(9)errorn =�n∣ref − �n∣x

(10)bias =mean

(

∑

n

error

)

Normalization

NormalizationComplementary
Filter

Delay

Gyroscope
signals

Accelerometer
signals

Neural network
input data

Neural network
target

Fig. 2  Flowchart for the NARX neural network training. The NARX 
model was trained with the gyroscope signals of the sagittal plane 
as input and the orientation of the sagittal plane computed from the 
combination of gyroscope and accelerometer signals using the CF as 
the target output of the network

Table 2  Training hyperparameters of the BR algorithm

Maximum number of epochs 75000
Performance goal 0
Marquardt adjustment parameter (mu) 0.005
Decrease factor for mu 0.4
Increase factor for mu 10
Maximum value for mu 10

10

Maximum validation failure infinite
Minimum performance gradient 10

−18
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where � is the orientation, n is the number of time sample, 
ref is the reference method, and x is the proposed NARX 
model.

Furthermore, the root mean square error (RMSE) of each 
subject was also calculated. Linear dependency between the 
NARX model and the reference was quantified by comput-
ing the Pearson’s correlation coefficients (r). Results of the 
study were reported in the following section as the means 
and standard deviations of the intra-subject biases, preci-
sions, RMSEs, and correlation coefficients. Results were 
also compared across different categories, i. e., between 
the intact limb and prosthetic limb, below knee prosthesis 
(BK) and above knee prosthesis (AK), and the robotic foot 
and passive foot. Agreement between the NARX model and 
the reference method was evaluated in a graphical means 
using the Bland-Altman plots [40]. Signal processing, data 
analysis, and statistical evaluations of the entire dataset were 
performed using MATLAB (R2021a, The Mathworks Inc., 
Natick, MA, USA).

Results

Data obtained through 26 trials (13 subjects, 2 trials each 
subject) were analyzed. For the sake of clarity, compari-
sons were categorized into level walking and U-turn for each 
plane of movement. The turning angle, computed as the dif-
ference of azimuth angle between two successive gait events, 
was used as the metric that separates straight walking and 
U-turn [41]. A total of 1266 gait cycles were collected dur-
ing level walking, of which the intact and prosthetic limbs 
recorded 578 and 688 gait cycles, respectively. Gait cycles of 
the prosthetic limb were further categorized into 484 cycles 
of BK and 204 cycles of AK. Moreover, level walking using 
the passive foot and the robotic foot comprised 364 and 324 
gait cycles, respectively. A total of 308 turns were obtained 
during U-turn, involving 142 turns on the intact side and 
166 turns on the prosthetic side. U-turn with the BK and 
AK consisted 112 and 54 turns, while the passive foot and 
the robotic foot consisted 90 and 76 turns, respectively. An 
example of the 3D shank and foot orientation computed by 
the NARX model and the CF, for a trial using the robotic 
foot is presented in Fig. 3. Similar profiles were found for 
all trials using the passive foot in the study.

Performance of the proposed NARX model in estimating 
sagittal shank and foot movements during level walking and 
U-turn is summarized in Table 3 and Table 4 as the inter-
subject mean, SD, minimum (min), and maximum (max) 
values of bias, precision, RMSE, and correlation coefficient 

(11)precision =SD

(

∑

n

error

) (r). In general, the foot was found to exhibit lower estimation 
errors during level walking, with the overall mean ± SD val-
ues of 0.02 ± 0.08° for bias, 0.35 ± 0.05° for precision, 0.36 
± 0.05° for RMSE, and 0.999 ± 0.002 for r. Higher accuracy 
was also found in the foot segment during U-turn, with a bias 
of 0.02 ± 0.09°, precision of 0.32 ± 0.07°, RMSE of 0.33 ± 
0.07°, and r value of 0.999 ± 0.002.

For the estimation of shank and foot orientation in the 
frontal plane during level walking and U-turn (Table 5 and 
Table 6), lower estimation errors were obtained in the foot 
segment for both activities. The overall mean ± SD values 
of bias, precision, RMSE, and r for the foot during level 
walking were -0.01 ± 0.18°, 0.40 ± 0.14°, 0.44 ± 0.15°, 
and 0.996 ± 0.007, respectively. On the other hand, the foot 
performing U-turn recorded a bias of − 0.02 ± 0.20°, preci-
sion of 0.50 ± 0.25°, RMSE of 0.53 ± 0.25°, and r value of 
0.997 ± 0.005.

Table 7 and Table 8 show the comparisons of shank and 
foot orientation estimation in the transverse plane for level 
walking and U-turn. The shank demonstrated better perfor-
mance in level walking, with a general mean ± SD of -0.08 
± 0.27° for bias, 1.11 ± 0.21° for precision, 1.15 ± 0.19° for 
RMSE, and 0.993 ± 0.011 for r. During U-turn, the shank 
demonstrated a bias of -0.23 ± 0.47°, precision of 1.73 ± 
0.66°, RMSE of 1.82 ± 0.61°, and r value of 0.998 ± 0.004.

Agreement between the shank and foot orientation esti-
mated using the proposed model and the reference method 
is illustrated in Fig. 4 and Fig. 5. The Bland-Altman plots 
include differences (i.e., errors, computed using Eq. 9) at 
each time sample for all subjects (represented as gray dots) 
and biases (i.e., mean error across all trials, computed using 
Eq. 10) for each subject (represented as blue circles, with a 
total of 13 points corresponding to 13 subjects) in all move-
ment planes during level walking and U-turn.

Discussion

This study proposed a neural network-based method to esti-
mate the shank and foot orientation of lower limb amputees 
using body-worn inertial sensors. First, the proposed NARX 
model was trained using the sagittal plane data originated 
from a healthy individual, with the foot angular velocity and 
foot orientation computed by the CF, as the input and target 
output. The trained model was then applied to compute 3D 
segmental orientation of the lower limb amputees using the 
gyroscope signals as the input. In this study, the CF was 
selected as the reference method due to its well-known sim-
plicity and computational efficacy [42, 43]. The feasibility 
of CF in estimating body segment orientation had also been 
validated in Tham et. al. [33]. Performance of the proposed 
method was assessed as comparisons with the reference 
method, to validate the capability of the NARX model in 
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resembling the CF in computing segment orientation using 
only the gyroscope signals.

Generally, estimation biases produced in the foot were 
slightly lower compared to the shank for the sagittal and 
frontal planes. Better orientation prediction in the foot seg-
ment was the outcome of using the NARX model trained 
with the foot kinematics. On the other hand, biases, preci-
sions, and RMSEs produced in the transverse plane were 
the highest among the three movement planes, for both the 
shank and foot. Influenced by ferromagnetic interference of 
the clinical surroundings, performance of the magnetometer 

in the transverse plane was negatively affected, thus reducing 
the accuracy of orientation estimates using the CF (i.e., ref-
erence method). This explains the greater difference between 
the reference and the proposed model in which the NARX 
model was not affected in the transverse plane. Furthermore, 
higher estimation errors in U-turn observed across all move-
ment planes and lower limb categories were the effect of 
higher translational acceleration experienced by the lower 
limb segments during a rapid change in moving direction.

Despite the differences between lower limb segment and 
ambulation activities (Table 3 - Table 8), the NARX model 
generally estimated the shank and foot orientation with high 
accuracy. The small biases of less than 0.3° in the sagittal 
and frontal plane, and less than 1.5° in the transverse plane, 
correspond to the variation smaller than 0.5% (sagittal and 
frontal plane) and 0.75% (transverse plane) of the range 
of movement in the respective planes. Existing work of 

Fig. 3  Example of typical 3D orientation for the (A) shank and (B) 
foot of the intact limb and prosthetic limb (with the robotic foot), 
computed by the proposed NARX model (red solid line) and the 
reference CF (dashed line) during a random 20  s walk. Gray areas 
denote U-turn while white areas denote level walking

◂

Fig. 4  Bland-Altman plots of the proposed NARX model in the sagit-
tal (top panel), frontal (middle panel), and transverse plane (bottom 
panel) for the shank and foot, during level walking. The gray dots 
represent measurement errors of all time samples for the trials per-

formed by all subjects and the blue circles represent the biases of 
each individual across all trials. The dotted line corresponds to the 
mean, and the dashed lines represent the upper and lower limits of 
agreement (1.96 SD), respectively
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prosthetic gait assessment using the NARX neural network 
is not available, however, the variations of measurement 
errors in this study are comparable to the previous studies in 
other applications, involving comparisons to the CF [42, 44]. 
The results were further supported by the extremely high r 
values for the sagittal (0.984 to 1), frontal (0.988 to 0.999), 
and the transverse (0.982 to 0.997) planes. Furthermore, the 
Bland-Altman plots (Fig. 4 and Fig. 5) show that the major-
ity of biases between the NARX and the reference method, 
for every time sample throughout the trials, were within the 
limits of agreement, except for some minimal outliers where 
the biases were within the acceptable range.

The minor differences between all groups of compari-
sons (Table 3 - Table 8) indicate the ability of the proposed 
NARX model to replicate the properties of the CF in ori-
entation estimation of the amputee’s gait in all movement 
planes, although the model was trained using data in the 
sagittal plane of a healthy individual. Differences were not 
observed in the bias range of the prosthetic limb compared 

to the intact limb, regardless of the level of amputation and 
the type of prosthesis used during ambulation. These show 
generalization properties of the proposed NARX model 
in orientation estimation, which demonstrate the poten-
tial of a plug-and-play technique that is readily available 
to accommodate measurements of any gait types in the 
clinical environment without the hassle of retraining the 
network model.

The results also show the advantages of the NARX neural 
network over other types of neural networks. Possessing the 
properties of generalization, the general regression neural 
network (GRNN) is one of the common techniques used 
in biomechanics for movement recognition and prediction 
[45–47]. However, accuracy of the GRNN was shown to 
be low with small datasets being included to the models 
[48–50]. A sufficiently large dataset that includes vast vari-
ety of gait characteristics was suggested to train a GRNN 
model in order to reduce prediction errors in individuals 
of different populations [48]. Successive GRNN models 

Fig. 5  Bland-Altman plots of the proposed NARX model in the sagit-
tal (top panel), frontal (middle panel), and transverse plane (bottom 
panel) for the shank and foot, during U-turn. The gray dots represent 
measurement errors of all time samples for the trials performed by 

all subjects and the blue circles represent the biases of each individ-
ual across all trials. The dotted line corresponds to the mean, and the 
dashed lines represent the upper and lower limits of agreement (1.96 
SD), respectively
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developed on the basis of GRNN could also be the alterna-
tives to improve the performance and accuracy [49–51]. On 
the other hand, the proposed NARX model, with its minimal 
architecture, exhibited high accuracy in estimating segmen-
tal orientation given the diversity of the subject groups. This 
verified the ability of the NARX model to generate accurate 
predictions of human gait which is categorized as complex 
nonlinear time series data [31, 33, 52, 53].

Moreover, using only gyroscopes, the proposed NARX 
model is capable of computing 3D segmental orientation of 
the amputees effectively while avoiding measurement errors 
arising from the gravitational acceleration and magnetic field 
interference. This enables a more accessible, reliable, and 
accurate prosthetic gait assessment especially in the clinical 
applications. The proposed method can also be used in long 
term observation and monitoring for people with lower limb 
amputation by embedding IMUs in the prosthesis and its 
components. The robust technique can also provide reliable 
feedback to robotic prosthesis for a better control that ease 
mobility in daily life.

Nevertheless, there are some limitations of this study that 
are worth noting. First, the proposed model was compared to 
the CF as the reference instead of the optical motion capture 
system which is often considered as the gold standard. This 
was due to the unavailability of the motion capture cameras 
at the location of trials. Setup of the motion capture system 
is commonly a huge challenge, as the system requires high 
cost with dedicated space and personnel, which is frequently 
not favorable in clinical environments [54–57]. Despite of 
that, the validity of CF in estimating 3D body segment ori-
entation has been proven in previous study [33] and thus 
feasible to be selected as the reference of the present study. 
Second, trials of the study involved short walking distance 
that might not be sufficient to show the continuous perfor-
mance of the proposed method in orientation estimation over 
prolonged measurement course. This could be improved in 
future studies quantifying amputees’ gait in long-distance 
and real-life environments with more segmental orientation 
and joint angles to provide a comprehensive outcome meas-
ure in quantitative prosthetic gait assessment.

Conclusion

The proposed NARX network model demonstrated high 
accuracy in the estimation of 3D lower limb segment ori-
entation of the lower limb amputees. Compared to the CF, 
overall inter-subject RMSEs during level walking were 0.74 
± 0.20°, 0.48 ± 0.13°, and 1.15 ± 0.19° for the shank and 
0.36 ± 0.05°, 0.44 ± 0.15°, and 1.17 ± 0.29° for the foot, 
in the sagittal, frontal, and transverse planes, respectively. 
U-turn yielded the overall RMSEs of 0.60 ± 0.15°, 0.59 
± 0.25°, and 1.82 ± 0.61° for the shank and 0.33 ± 0.07°, 

0.53 ± 0.25°, and 2.30 ± 0.63° for the foot, in the sagittal, 
frontal, and transverse planes, respectively. Resembling the 
properties of CF, the proposed method is capable of estimat-
ing orientation without incorporating drift errors and fer-
romagnetic interference to the model. Future work should 
focus on long-term performance evaluation of the NARX 
model to investigate the potential of the model as a quanti-
tative measure to clinical assessment and monitoring of the 
prosthetic gait.
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