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Abstract
The patient setup technique currently in practice in most radiotherapy departments utilises on-couch cone-beam computed 
tomography (CBCT) imaging. Patients are positioned on the treatment couch using visual markers, followed by fine adjust-
ments to the treatment couch position depending on the shift observed between the computed tomography (CT) image 
acquired for treatment planning and the CBCT image acquired immediately before commencing treatment. The field of view 
of CBCT images is limited to the size of the kV imager which leads to the acquisition of partial CBCT scans for lateralised 
tumors. The cone-beam geometry results in high amounts of streaking artifacts and in conjunction with limited anatomical 
information reduces the registration accuracy between planning CT and the CBCT image. This study proposes a methodol-
ogy that can improve radiotherapy patient setup CBCT images by removing streaking artifacts and generating the missing 
patient anatomy with patient-specific precision. This research was split into two separate studies. In Study A, synthetic CBCT 
(sCBCT) data was created and used to train two machine learning models, one for removing streaking artifacts and the other 
for generating the missing patient anatomy. In Study B, planning CT and on-couch CBCT data from several patients was 
used to train a base model, from which a transfer of learning was performed using imagery from a single patient, producing 
a patient-specific model. The models developed for Study A performed well at removing streaking artifacts and generating 
the missing anatomy. The outputs yielded in Study B show that the model understands the individual patient and can gener-
ate the missing anatomy from partial CBCT datasets. The outputs generated demonstrate that there is utility in the proposed 
methodology which could improve the patient setup and ultimately lead to improving overall treatment quality.
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Introduction

In conventional radiotherapy, cancer patients often receive 
a fractionated dose of radiation, with the aim of minimising 
toxicity and improving the effectiveness of tumor cell eradi-
cation. This is supported by the principles of radiobiology 
which include the 5Rs; repair, repopulation, reoxygenation, 

redistribution, and intrinsic radiosensitivity [1–3]. In a typi-
cal fractionation schedule, the radiation dose is divided into 
20 to 30 daily treatment sessions, with the cumulative dose 
in each fraction totalling the prescribed dose. While this 
approach leads to manageable toxicity, it introduces new 
challenges such as the potential for patient setup error due 
to the need for multiple fractions [4–6]. Radiotherapy linacs 
are designed to deliver precise amounts of radiation to the 
same volume within the body with high reproducibility for 
each fraction [7]. Therefore, it is essential that the patient 
is set up in the exact same location and orientation for each 
fraction. Previously, patients were positioned using lasers 
fixed in the walls of the treatment room which were aligned 
with crosshairs tattooed on the patient’s body [8, 9]. While 
the tattoos remain fixed in place on the patient’s skin, the 
internal anatomy is constantly moving with the patient’s 
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physiology i.e., respiration, organ function, and fullness of 
the stomach/bladder/bowel [10, 11].

In modern radiotherapy treatment machines, a kilo-
voltage x-ray beam is used to obtain a CBCT image of the 
patient while they are on the treatment couch [12]. This 
image is then registered to the planning CT images using 
software that matches the patient’s anatomy in both images 
[13, 14]. The registered CBCT images are then used to 
ensure that the patient is in the correct position and ori-
entation for treatment. This is achieved by comparing the 
registered images with the planning images and making any 
necessary adjustments to the patient’s position, such as repo-
sitioning the treatment couch or moving the patient’s body 
[7]. Once the patient is properly aligned, the radiation treat-
ment can be delivered with high precision and accuracy. At 
present, all modern radiotherapy machines using the CBCT 
technique for patient setup and are doing so using partially 
acquired images. Figure 1 shows a typical CBCT to CT reg-
istration where the entire patient anatomy does not fit within 
the field of view of the CBCT scanner. 

The quality of the CBCT images has become essential to 
the accuracy of patient setup, thus research into improving 
CBCT images is increasingly common [15]. CBCT images 
have two main shortcomings which limit their planning CT 
registration accuracy. Firstly, due to the cone-beam geometry 
and the presence of high-density materials such as metal-
lic implants or dental fillings, CBCT images suffer from 
an increased amount of x-ray scatter which results in high 
amounts of streaking artifacts [16, 17]. These artifacts can 
lead to inaccurate dose calculations and impair the ability to 
accurately target the tumor, which can compromise the suc-
cess of the radiotherapy treatment. Secondly, CBCT images 
have a field of view that is not typically large enough to 
include the entire patient’s cross-section, leading to part of 

the patient’s anatomy not being captured particularly if the 
tumour is lateralised [18–20].

Artificial intelligence (AI) techniques have been devel-
oped to reduce streaking artifacts on CBCT images, and sev-
eral studies have reported promising results. One approach 
is to use deep learning algorithms, such as convolutional 
neural networks (CNNs), to learn the underlying patterns 
of the artifacts and remove them from the images. Several 
studies have shown that a CNN-based method can effectively 
reduce streaking artefacts in CBCT images while preserving 
image details [21, 22]. Another approach is to use iterative 
reconstruction algorithms, such as model-based iterative 
reconstruction (MBIR) to reduce artifacts [23–25].

This study explores the use of a machine learning algo-
rithm to firstly, remove image artifacts and secondly, to 
increase the field of view of CBCT images and generate the 
full patient anatomy. The aim of this research was to use 
the output image to set up a patient more accurately for a 
radiotherapy fraction than what the regular CBCT is capable 
of providing. Figure 2 demonstrates the proposed workflow. 

This research was completed as two sequential studies. 
Study A used sCBCT images to train two machine learning 
models: one model for artefact removal, and the other to 
generate the missing patient anatomy (image imputation). 
Study B used patient CBCT and planning CT images to 
train a single machine-learning model to remove artifacts 
and generate patient anatomy outside the field of view of 
the CBCT image.

Fig. 1   Current industry standard 
for setting up a radiotherapy 
patient in the correct position 
for treatment
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Materials and methods

Study A

Training image datasets for Study A included publicly avail-
able, anonymised CT images collected by United States 
researchers for the National Lung Screening Trial. The trial 
enrolled 53,454 people and compared the effectiveness of 
detecting lung cancer using a chest X-ray compared to a 
low-dose CT scan [26]. 422 of the CT volumes captured for 
this trial are available online [27]. To decrease variability 
in training data, the dataset was reduced by only utilising 
images of the same dimensions, taken on the same model of 
CT scanner including images of the thoracic region only. All 
images are 512 × 512 and were taken on a Siemens Biograph 
40 PET CT Scanner, with CT volumes cropped to exclude 
anatomy above and below the thoracic region. This signifi-
cantly reduced the size of the dataset while simultaneously 
increasing its quality. After completing pre-processing of the 
data, the dataset was reduced to a total of 6200 CT images 
from 168 patients. 6100 images for training and a further 
100 for testing.

Machine learning models were developed using the pix-
2pix Conditional Generative Adversarial Network (CGAN) 
implemented in MATLAB [28, 29]. The advantage of this 
network is translational ability. This allows the algorithm 
to receive an input image containing limited information 
and based on the image’s underlying features, generates a 
plausible output. Description of the network layers can be 
found in Table 1.

Creation of synthetic CBCT images

CBCT images were simulated by adding streaking artifacts 
to the ground truth CT image and then reducing the field 
of view. Firstly, a random elastic deformation matrix was 

applied to the image to create distortion. A radon trans-
form was then performed on both the original image and 
the distorted image to produce the image sinograms. Using 
a random replacement of sinogram values, up to 10% of 
the original image sinogram was replaced with the distorted 
image sinogram. An inverse radon transform was applied 
to the combined image sinogram to produce original CT 
images with additional streaking artifacts [21]. The field of 
view was reduced by randomly selecting a isocentre which 
would result in partial CBCT acquisition should the subject 
be set up on a radiotherapy treatment couch. Pixels located 
beyond 128.px from the isocentre were assigned a value 
of zero to simulate a partial acquisition. The images were 
not recentered and padding was not reduced to simulate the 
sCBCT already being registered to the original CT image. 
A diagram showing the creation of the sCBCT images can 
be seen in Fig. 3.

Training data: streak‑removal model

During the creation of the sCBCT images, the original 
CT image was cropped with the same dimensions to form 
the ground truth dataset to train the streak-removal model. 
Training was executed for 200 epochs (~ 10 days), after 
which, the outputs yielded were almost indistinguishable 
from the ground truth. At this point, the model was saved 
and was used to create the input dataset to train the image 
imputation model.

Training data: image imputation model

The output of the streak-removal model was used as the 
input to the image imputation model which was again trained 
for 200 epochs (~ 10 days). The image imputation model 
receives the output from the streak-removal model and 
based on the partial anatomy generates the missing anatomy. 

Fig. 2   The proposed workflow. 
Incorporation of a machine 
learning model which generates 
the anatomy not captured by 
typical on-couch CBCT imag-
ing to aid image registration to 
the planning CT
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While the purpose of the image imputation model was not to 
remove artifacts, given that the input data was the output of 
the streak-removal module, and the output was the original 
CT, naturally, the model attempted to remove any remaining 
artifacts left behind by the streak-removal model as well as 
generate the missing data. Study A was performed in MAT-
LAB 2022b on a Windows 10 machine with 8GB of RAM, 
i7 6700k CPU and a GTX 1060 6GB graphics card.

Study B

After observing the streak-removal and image imputation 
models’ superior capability to accurately transform the 
sCBCT image into the original CT image, the next logical 
stage of this research was to develop a model using real 
patient image data. In the proof of concept using synthetic 
data, two models were produced, one to remove streak-
ing artifacts and one for image imputation. Retaining this 

Table 1   Description of individual layers within the pix2pix generator model

Layer # Layer description Layer # Layer description Layer # Layer description

1 Image Input Layer 21 Leaky ReLU Layer 41 Batch Normalization Layer
2 Convolution 2D Layer 22 Convolution 2D Layer 42 Dropout Layer
3 Leaky ReLU Layer 23 Batch Normalization Layer 43 Leaky ReLU Layer
4 Convolution 2D Layer 24 Leaky ReLU Layer 44 Depth Concatenation Layer
5 Batch Normalization Layer 25 Transposed Convolution 2D Layer 45 Transposed Convolution 2D Layer
6 Leaky ReLU Layer 26 Batch Normalization Layer 46 Batch Normalization Layer
7 Convolution 2D Layer 27 Dropout Layer 47 Leaky ReLU Layer
8 Batch Normalization Layer 28 Leaky ReLU Layer 48 Depth Concatenation Layer
9 Leaky ReLU Layer 29 Depth Concatenation Layer 49 Transposed Convolution 2D Layer
10 Convolution 2D Layer 30 Transposed Convolution 2D Layer 50 Batch Normalization Layer
11 Batch Normalization Layer 31 Batch Normalization Layer 51 Leaky ReLU Layer
12 Leaky ReLU Layer 32 Dropout Layer 52 Depth Concatenation Layer
13 Convolution 2D Layer 33 Leaky ReLU Layer 53 Transposed Convolution 2D Layer
14 Batch Normalization Layer 34 Depth Concatenation Layer 54 Batch Normalization Layer
15 Leaky ReLU Layer 35 Transposed Convolution 2D Layer 55 Leaky ReLU Layer
16 Convolution 2D Layer 36 Batch Normalization Layer 56 Depth Concatenation Layer
17 Batch Normalization Layer 37 Dropout Layer 57 Transposed Convolution 2D Layer
18 Leaky ReLU Layer 38 Leaky ReLU Layer 58 Batch Normalization Layer
19 Convolution 2D Layer 39 Depth Concatenation Layer 59 Leaky ReLU Layer
20 Batch Normalization Layer 40 Transposed Convolution 2D Layer 60 Depth Concatenation Layer

61 Convolution 2D Layer

Fig. 3   Creation of synthetic 
CBCT images
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methodology for Study B would require cropping the plan-
ning CT to the exact dimensions of the registered CBCT to 
create the ground truth dataset. For this reason, the meth-
odology for Study B was revised to eliminate the need for 
augmenting the ground truth dataset and a single model 
capable of removing artifacts and imputing the missing 
anatomy was trained.

A machine learning model which can generate missing 
image data will only be useful if it is accurate. Given that 
every patient has a unique anatomy or perhaps anatomical 
variations, how accurate can the model be? A one-size-fits-
all approach to this problem is guaranteed to produce images 
of unsatisfactory accuracy for clinical use. The methodol-
ogy used in Study A was revised to overcome this flaw. The 
methodology in Study B was to train a ‘base’ machine learn-
ing model using CT/partial CBCT image pairs from several 
patients and then perform a transfer of learning on a single 
patient’s image data to produce a patient-specific model. 
This new model with the application of transfer learning can 
receive partial CBCT input images and generate the missing 
anatomy specific to that patient.

Training data consisted of treatment planning CT and 
setup CBCT image sets showing partial anatomy for 15 
patients who underwent treatment for non-small cell lung 
cancer (NSCLC). Three CBCT sets and one planning CT 
from a 16th patient was used for transfer learning and test-
ing. All ground truth CT images were acquired on a radio-
therapy CT scanner and input CBCT images were acquired 
on an Elekta XVI CBCT scanner. In total, the training data-
set included 1365 image pairs and the transfer learning data-
set included 98 image pairs and a further 49 image pairs for 
testing.

Pre‑processing of clinical data

When collecting image volumes for the purpose of machine 
learning, it is essential that both the image sets have the 
same slice thickness to ensure that for each CBCT image, 
there is a corresponding ground truth CT image. For each 
image pair, the CBCT was padded with 0s to allow the 
registration of the CT image. The CT image was resized 
and then registered to the padded CBCT image. The couch 
was removed from the CT image by assigning a value of 
− 1024 to all pixels below the surface of the couch. Figure 4 
shows a diagram of this workflow.

The base clinical model was trained for a total of 500 
epochs (~ 2 days), after which a transfer of learning was 
performed on a single patient’s image data to produce a 
patient-specific model.

Producing patient‑specific models via transfer learning

Transfer learning was achieved by taking the ‘base’ model 
and retraining the weights in only the final two layers of the 
machine learning network. Performing a transfer of learning 
is minimally computationally expensive for this reason as it 
is not producing an entirely new model, just a variation of 
the base model. The transfer of learning was initially com-
pleted using a single patient’s planning CT and one setup 
CBCT image set which included a total of 49 image pairs. 
Transfer learning was performed for 500 epochs (~ 3 hours) 
to create a variation of the model which is capable of pro-
ducing a reasonable estimation of the missing anatomy as 
can be seen in Fig. 6. The model produced after transfer 
learning using one CBCT dataset is regarded as ‘patient-
specific model 1’. Following this, transfer of learning was 

Fig. 4   Creation of the padded 
CBCT and registered CT for 
input to the base clinical model
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performed on the base clinical model again using the same 
patient’s planning CT data and two setup CBCT image sets 
which therefore doubled the transfer learning training data 
from 49 to 98 image pairs. This model was also trained for 
500 epochs (~ 4 hours). This model is regarded as ‘patient-
specific model 2’. Increasing the training data resulted in an 
improvement of the accuracy of the model’s output shown 
in Fig. 6. Each patient-specific model was tested on input 
CBCT images not previously seen by either model. Study 
B was performed in MATLAB 2023a on a Windows 11 PC 
running 16GB of RAM, i5 12400F CPU and a GTX 3060 
12GB graphics card.

Results

Demonstrated in Fig. 5, the streak-removal model performs 
well at retaining most of the detail in the input image and 
the image imputation model does an impressive job at esti-
mating the missing anatomy. The streak-removal model 
does appear to lose contrast between fat, soft tissue, and 
muscle. This is also true for the image imputation model in 
which there is a further loss of contrast in these areas. Aside 
from this loss of contrast, both models perform well at their 
respective tasks. It is evident that the model struggles par-
ticularly with generating bone and correctly estimating the 
edges of the patient and couch position. Regardless of these 
imperfections, the outputs generated by these models show 
utility in the methodology.

Performance of patient‑specific models

Figure 6 shows the performance of the patient-specific mod-
els. The input CBCT images used in Fig. 6 were kept the same 
in order to directly compare the performance of both models. 
As can be seen in the aforementioned figure, The patient-spe-
cific models are capable of producing anatomically plausible 
images with patient-specific precision and could perhaps rival 
the patient setup accuracy of the partial CBCT input image. 
The model can estimate the edges of the patient accurately 
but does appear to have difficulty in accurately generating 
the patient’s sternum. Structural Similarity Index Measure 
(SSIM) and Mean Absolute Error (MAE) were used to com-
pare the accuracy of the patient-specific models vs. the regular 
CBCT and was calculated across the entire testing volume 
and averaged. Increasing the number of images pairs used for 
transfer learning resulted in a small increase in image qual-
ity, SSIM and MAE. The mean SSIM, MAE and respective 
standard deviations can be found in Table 2. 

Discussion

Cone-beam computed tomography is a valuable tool in radi-
otherapy for patient setup and treatment planning. It pro-
vides high-resolution, 3D images of the patient’s anatomy, 
allowing for accurate and precise localisation of the tumor 
and surrounding structures [7]. In patient setup, CBCT is 
used to confirm the position and alignment of the patient 

Fig. 5   Performance of the 
streak-removal and image impu-
tation models measured against 
the corresponding ground truth 
images. Intensity difference 
maps were creating by subtract-
ing the sCT pixel values from 
the from the ground truth pixel 
values
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on the treatment couch before each treatment session. This 
is important because small variations in patient position 
can lead to significant deviations in the dose distribution 
delivered to the tumor and surrounding healthy tissue [30]. 
Image registration algorithms aid in aligning and match-
ing the planning CT images to the cone-beam CT images 
acquired on the day of treatment ensuring precise and accu-
rate targeting of the tumor volume. Some of the commonly 
used methods include mutual information-based, normalized 

cross-correlation-based, and gradient correlation-based 
algorithms [31]. Deep learning has emerged as a promising 
technique for image registration in radiotherapy, as it can 
improve the accuracy and speed of the process [32–34]. It 
is also widely used to eliminate the artifacts observed on 
CBCT images [22, 35, 36]. Deep learning architectures such 
as U-Net, and variations of Generative Adversarial Networks 
(GANs) have their own strengths and limitations. A study by 
Fonesca et al. [37] has shown that the use of deep learning 

Fig. 6   Performance of patient-
specific models after 500 
epochs of transfer learning. 
The difference maps were cre-
ated by subtracting the model 
output image from the ground 
truth image. Colour scale is in 
Hounsfield Units (HU)
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to reconstruct and assess the accuracy of HU numbers on 
the CT image dataset in the region of extended field of view. 
Our study focusses on first eliminating the streaking artifacts 
and reconstructing the missing anatomy of CBCT images. 
The workflow presented in this study uses the pre-treatment 
CBCT image dataset acquired during the first fraction of 
radiotherapy treatment. Before the patient returns for their 
second fraction, a transfer of learning could be performed 
on the base machine learning model to create their patient-
specific model. This model can then be used to improve the 
quality of the CBCT images taken as the patient is set up for 
their second fraction and used to improve the accuracy of the 
patient’s setup. After each subsequent fraction, the patient’s 
CBCT image dataset grows, and via further transfer learn-
ing, an increasingly more accurate model can be produced. 
Transfer learning could take place routinely between each 
fraction or until the law of diminishing returns makes it no 
longer worth the computation time.

To reduce computation time when training a patient-specific 
model, the performance of the base machine learning model 
becomes paramount and therefore the number of images, their 
quality, and overall consistency of the training data are increas-
ingly important. To further reduce variability in the training 
data, separate models for male and female is recommended. 
Training data could be split by gender, height, weight, etc. 
to ensure that the training data is as consistent as possible. 
When a patient presents for a treatment and a CBCT dataset 
is acquired, the transfer learning could be performed on the 
most appropriate base model for that individual to improve 
the accuracy of the patient-specific model and minimise on-
site computation time. With a higher accuracy base model, 
the computational power required on-site to perform patient-
specific transfer learning could be satisfied by current, mid to 
high-range desktop PCs making it a quick, simple, and routine 
task performed cost-effectively in a radiotherapy clinic.

The machine learning model used in this research was 
the pix2pix implementation of a CGAN which is a general-
purpose, image-to-image translation model [28]. While 
this model shows promising utility in the imputation and 
translation of medical images, it is recommended that 
other machine learning algorithms be explored or perhaps 

a bespoke algorithm be developed to achieve faster learn-
ing and greater performance. Pre-processing of the data in 
this research was limited to the CBCT input images only, 
however, the target images could also be slightly modified 
to increase the accuracy of the model. In the planning CT 
datasets used, clothing is visible around the patient. This 
information is unnecessary for the purpose of the model and 
is essentially noise in the target image. Removing this noise 
will increase the quality of the dataset and naturally result 
in increased performance of the model.

The workflow proposed in this study is suitable for 
tumors located in a more lateral position and provides a 
solution to resolve the limitation of missing partial anatomy 
during CBCT imaging due to a limited field of view [38]. 
The method is applicable for treating tumors in the breast, 
lung, and liver, as well as for larger patients.

Conclusion

It has been demonstrated that modern, general-purpose, and 
open-source machine learning algorithms have the capabil-
ity to generate missing anatomy and remove streaking arti-
facts without the need for highly-expensive purpose-built 
computers. At present, patient setup using on-couch CBCT 
imaging is the industry standard and every radiotherapy 
department using this methodology is doing so using par-
tial CBCT images. The patient setup methodology proposed 
in this paper has exciting utility in all said radiotherapy 
departments.
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Table 2   Quantitative performance of the  patient-specific machine 
learning models as compared with the regular CBCT currently used 
for patient setup

Image volume SSIM Standard deviation MAE Standard 
deviation

Regular CBCT 0.9993  1.185 × 10
−4 72.8 1.79

Patient-specific 
model 1

0.9996  6.931 × 10
−5 13.5 2.70

Patient-specific 
model 2

0.9997  4.541 × 10
−5 12.2 2.42
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