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Abstract 
Radiotherapy for thoracic and breast tumours is associated with a range of cardiotoxicities. Emerging evidence suggests car-
diac substructure doses may be more predictive of specific outcomes, however, quantitative data necessary to develop clinical 
planning constraints is lacking. Retrospective analysis of patient data is required, which relies on accurate segmentation of 
cardiac substructures. In this study, a novel model was designed to deliver reliable, accurate, and anatomically consistent 
segmentation of 18 cardiac substructures on computed tomography (CT) scans. Thirty manually contoured CT scans were 
included. The proposed multi-stage method leverages deep learning (DL), multi-atlas mapping, and geometric modelling 
to automatically segment the whole heart, cardiac chambers, great vessels, heart valves, coronary arteries, and conduction 
nodes. Segmentation performance was evaluated using the Dice similarity coefficient (DSC), mean distance to agreement 
(MDA), Hausdorff distance (HD), and volume ratio. Performance was reliable, with no errors observed and acceptable vari-
ation in accuracy between cases, including in challenging cases with imaging artefacts and atypical patient anatomy. The 
median DSC range was 0.81–0.93 for whole heart and cardiac chambers, 0.43–0.76 for great vessels and conduction nodes, 
and 0.22–0.53 for heart valves. For all structures the median MDA was below 6 mm, median HD ranged 7.7–19.7 mm, and 
median volume ratio was close to one (0.95–1.49) for all structures except the left main coronary artery (2.07). The fully 
automatic algorithm takes between 9 and 23 min per case. The proposed fully-automatic method accurately delineates cardiac 
substructures on radiotherapy planning CT scans. Robust and anatomically consistent segmentations, particularly for smaller 
structures, represents a major advantage of the proposed segmentation approach. The open-source software will facilitate 
more precise evaluation of cardiac doses and risks from available clinical datasets.
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Introduction

Radiotherapy (RT) planning involves evaluation of risks ver-
sus benefits of planned dose to target volumes versus result-
ing dose to organs at risk (OARs) for toxicity. In thoracic and 
breast RT, automatic segmentation of cardiac substructures is 
necessary for the analysis of large datasets in order to develop 
improved cardiotoxicity risk models [1–7]. Suitability of these 
tools is dependent not only on delineation accuracy, but also 
on anatomically-consistent definitions of cardiac structures, 
robustness and reliability (including for smaller and low-con-
trast structures that are difficult to delineate manually), and 
software availability [8–11]. Additionally, potential to translate 
segmentation tools into the clinical RT workflow is impor-
tant: risk models derived using specific definitions of cardiac 
substructures can only be applied prospectively if the same 
definitions are used, and since manual contouring is challeng-
ing, time consuming, and subject to intra- and inter-observer 
errors, automation is highly desirable.

Recent studies have demonstrated the potential of machine 
learning methods to automatically and accurately delineate 
cardiac substructures [12–20]. Existing methods can require 
large training datasets, fail to provide practicable segmenta-
tions for smaller structures, or rely on imaging not typically 
used in routine RT. Considering these factors, along with 
limitations in manual contouring, the aim of this work was 
to develop an automated approach to define a comprehensive 
set of 18 cardiac structures accurately, reliably, and consistent 
with anatomical definitions. Additionally, a focus of this work 
was to develop an approach that can be used with variable CT 
scans representing different patient cohorts, inclusive of com-
mon imaging artefacts, of varying resolution, slice thickness, 
use of contrast, and acquired from both 3D and 4D protocols. 
In this study, we detail a hybrid approach that combines deep 
learning (DL) segmentation, a new multi-atlas mapping algo-
rithm extending our previous work [21–23], and a set of novel 
geometric modelling tools to accurately and consistently delin-
eate cardiac substructures on highly variable CT scans, includ-
ing some structures that are problematic to contour manually.

Materials and methods

An overview of the study design is presented in Fig. 1. The 
following sections describe the data used in this study, the 
design and implementation of the automatic segmentation 
approach, and the analysis used in validation.

Patient data

For training a DL model for whole heart (WH) segmentation 
(detailed in Sect. 2.2), a dataset of 300 CT scans and corre-
sponding WH contours were extracted from a local clinical 
RT database, comprising data from 150 breast cancer and 
150 lung cancer patients treated between 2014 and 2018. 
The WH volume was manually contoured by either a radia-
tion therapist or radiation oncologist using local protocols. 
These protocols are consistent with published contouring 
guidelines [24], however there is unavoidable inter- and 
intra-observer variation due to differences in interpretation 
of these guidelines.

A separate set of 30 CT scans was used to develop and 
optimise the substructure segmentation model. This dataset 
was also obtained from the local clinical RT database, and 
comprised 20 non-contrast scans from breast cancer patients 
[21] (hereafter, the breast atlas set), on which three inde-
pendent observers (medical students) contoured the heart 
and cardiac substructures, and an additional 10 CT scans 
from lung cancer patients (hereafter, the lung atlas set) on 
which a single observer (radiation oncologist) contoured 
these same volumes. All contours were further verified by a 
cardiologist prior to inclusion in this study. The cases from 
lung cancer patients were specifically selected for variations 
in imaging, such as image artefacts, use of contrast agent, 
and anatomical variations known to affect performance of 
automatic heart segmentation [25].

Contouring of the 30 scans was performed with reference 
to existing RT-specific guidelines [24]. The contoured struc-
tures included the WH, four cardiac chambers: left atrium 
and ventricle (LA and LV), right atrium and ventricle (RA 
and RV), bases of the great vessels: ascending aorta (AA), 
pulmonary artery (AA), superior vena cava (SVC), four 
coronary arteries: left anterior descending coronary artery 
(LAD), left circumflex artery (LCX), left main coronary 
artery (LMCA), right coronary artery (RCA), and heart 
valves: aortic valve (AV), pulmonary valve (PV), mitral 
valve (MV), tricuspid valve (TV). The conduction nodes 
(AVN and SAN) were not manually contoured, and instead 
automated geometric models were used to delineate these 
structures based on existing substructure contours (described 
in Sect. 2.2).

The CT imaging used in this study was acquired supine, 
however, arm position was variable (both arms raised, sin-
gle arm raised, neither arm raised) to match the treatment 
position. Intravenous contrast agent was administered for a 
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subset of lung cancer patients as per clinical protocols. For 
some lung patients the imaging was acquired as a 4DCT and 
the average intensity projection, which was used locally for 
radiotherapy dose calculations, was selected as the relevant 
image for manual contouring and automatic segmentation. 
Imaging for breast cancer patients was acquired as either a 
free breathing or deep inspiration breath hold CT. All CT 
images were reconstructed in axial planes with in-plane 
image resolution between 0.9766 × 0.9766 and 1.172 × 1.172 
mm2 , and slice thickness between 2.0 and 2.5 mm.

Automatic segmentation

A novel hierarchical framework was designed that consisted 
of three distinct sequential stages, or modules: (1) DL WH 
segmentation, (2) WH-guided multi-atlas mapping of car-
diac chambers and great vessels, and (3) geometric models 
of heart valves, coronary arteries, and conduction nodes. 
This fully-automated process is illustrated in Fig. 2.

Automatic WH segmentation was used to initialise and 
guide intracardiac structure segmentation. The 300 CT scans 
and WH contours were used to train a DL segmentation 
model using the state-of-the-art nnU-Net framework [15, 
26, 27]. Four model types were evaluated: 2D (inference 
made on axial slices), 3D (inference made on 3D patches) 

low-resolution and full-resolution, and an ensemble model 
that uses weighted segmentations from each of the three 
previous models. Each model was trained using 5-fold cross-
validation, with 1000 epochs for each fold and with the final 
models (for each of the four types) defined using an ensem-
ble. Both the training and inference were executed using a 
NVIDIA Quadro RTX 8000 (48 GB) GPU, with a 16-core 
2.2 GHz CPU and 128 GB RAM. The configuration of train-
ing parameters were set to the default settings provided by 
nnU-Net [26].

The second module was used to delineate seven larger 
cardiac substructures: the four chambers (LA, LV, RA, 
RV) and bases of the three great vessels (AA, PA, SVC). 
Atlas images and corresponding substructure contours were 
mapped to each target image using the automatically seg-
mented WH as a reference. This atlas mapping used a regis-
tration framework consisting of affine alignment of atlas and 
target heart volumes, deformable structure-guided registra-
tion, and deformable image registration (DIR) (see Fig. 3). 
Details of the multi-atlas mapping method used to delineate 
the cardiac chambers and great vessels are provided below. 

1. Affine registration. The atlas WH contour was regis-
tered to the DL segmentation using an affine transform. 
This structure-guided registration process aims to regis-

Fig. 1  Overview of the study 
design. Variations to several 
components of the fully-auto-
mated segmentation algorithm 
were evaluated to find optimal 
configurations, and the overall 
process was validated using 
30 cases. For definitions of 
acronyms please see the text. 
*This was performed using a 
leave-one-out analysis: to gener-
ate automatic segmentations for 
cases in the optimal atlas set 
this case was excluded
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ter the normalised distance maps of the target and atlas 
WH contours, which focuses the registration to the car-
diac volume of interest and is more robust than image-
based registration for this application, where differences 
in Hounsfield units are expected. The affine registra-
tion process accounts for gross differences in anatomy 
between the atlas and target patients, and initialises the 

next step. Registration was performed using a multi-res-
olution regime with 3 levels of downsampling (factors of 
16,8,4), and fixed sampling rate (0.75, grid sampling), 
maximum number of iterations (50 per resolution level), 
using the mean squared difference in intensity and gradi-
ent descent line search optimisation.

Fig. 2  Outline of the proposed 
hybrid segmentation approach. 
The automatic cardiac sub-
structure segmentation method 
comprises three modules that 
are used sequentially to fit a 
detailed model of the heart to 
individual patient CT imag-
ing. First, a U-Net-based deep 
learning model delineates the 
whole heart. Second, the whole 
heart volume is used to guide 
a novel multi-atlas mapping 
process used to delineate the 
four cardiac chambers (LA, LV, 
RA, RV) and the bases of three 
cardiac vessels (AA, SVC, PA). 
Third, geometric modelling 
is used to define the coronary 
arteries (LAD, LCX, LMCA, 
RCA), heart valves (AV, MV, 
PV, TV), and conduction nodes 
(AVN, SAN). Acronyms: 
H - (whole) heart, LV - left 
ventricle, RV - right ventricle, 
LA - left atrium, RA - right 
atrium, AA - ascending aorta, 
PA - pulmonary artery, SVC - 
superior vena cava, AV - aortic 
valve, PV - pulmonic valve, MV 
- mitral valve, TV - tricuspid 
valve, LAD - left anterior 
descending coronary artery, 
LCX - left circumflex artery, 
RCA - right coronary artery, 
LMCA - left main coronary 
artery, AVN - atrioventricular 
node, SAN - sinoatrial node. 
*The nnU-Net framework [26] 
was used in this study
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2. WH-guided deformable transformation. A novel WH-
guided registration algorithm with distance-preserving 
regularisation was implemented, as developed by Finne-
gan et al. (2022) [28]. This process also uses normalised 
distance maps to optimise a deformable transformation 
from the registered atlas WH delineation from step 
1 to the automatic segmentation on the target image. 
Registration was performed in three resolution levels 
with fixed isotropic voxel sizes (16 mm, 8 mm, 3 mm) 

and maximum number of iterations (50 per level). As 
with standard structure-guided registration, this process 
results in near-perfect co-registration of the whole heart 
boundary, however it also guarantees the preservation 
of relative distances inside the heart volume, which was 
observed to provide a more consistent initialisation for 
the next step.

3. Deformable image registration. The last step in this 
module is deformable image registration, applied 

Fig. 3  The multi-atlas mapping stage in the proposed cardiac seg-
mentation framework was designed to delineate the heart chambers 
and great vessels. Three registration steps are used to co-register a 
set of ten atlases to the target image (top row). This included a novel 
WH-guided deformable registration process with distance-preserving 
regularisation (middle row). The atlas contours are combined using 

label fusion (bottom left), and then processed to produce the final 
contours (bottom centre and right). Acronyms: WH - whole heart, 
LV - left ventricle, RV - right ventricle, LA - left atrium, RA - right 
atrium, AA - ascending aorta, PA - pulmonary artery, SVC - superior 
vena cava
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between each atlas and the target image. This imple-
mentation used a multi-resolution, log-domain, sym-
metric-forces diffeomorphic demons algorithm [29–31], 
restricted to the vicinity of the heart to reduce computa-
tional cost and prevent misregistration of the heart into 
nearby tissues (e.g. diaphragm, liver, stomach, lung 
tumours). Registration was performed in three resolu-
tion levels with fixed isotropic voxel sizes (6 mm, 3 mm, 
1.5 mm) and maximum number of iterations (200, 150, 
100).

Parameter selection was based on previous work [21], with 
modifications to resolution staging based on the physical 
size of anatomical and imaging features contributing to 
registration and with higher numbers of iterations possible 
due to improved algorithmic efficiency and more power-
ful hardware. In the multi-resolution schemes used for atlas 
registration, the resulting transformation at each resolution 
was used to initialise the next stage. Multiple atlases were 
registered to the target image and the set of atlas contours 
were combined using label fusion [32]. Post-processing 
included a connected components filter to remove any non-
connected regions, morphological hole filling, and overlap 
correction (assigning the overlap region to the larger of the 
substructures). This implementation employed a probability 
optimisation scheme [21] to minimise the relative volume 
difference. In this study, the atlases used in this stage to 
generate automatic segmentations were mutually exclusive 
to the evaluation imaging to ensure the reliability of the 
experiments.

Heart valves and coronary arteries are difficult to visu-
alise, especially on non-gated, non-contrast CT scans com-
monly used in RT planning. Thus, contouring is typically 
based on anatomical knowledge (i.e. where these are located 
relative to observable cardiac structures). This precludes 
consistent manual contouring of these structures, as is evi-
dent in multi-observer contouring studies [21, 24, 33] and 
is a primary obstacle in the development of automatic seg-
mentation algorithms based on patient imaging. Instead, in 
the current work, geometric modelling was used to automati-
cally segment the heart valves, providing anatomic consist-
ency and uniform definitions for each patient, and a method 
that is independent of limitations in imaging information as 
it relies solely on segmentation of larger cardiac structures. 
Two approaches were developed to segment the heart valves, 
see Fig. 4. The AV and PV were defined using a dilation of 
the respective ventricle, masked by the corresponding great 
vessel. The thicknesses of the AV and PV were both set to 
8 mm following recently published guidelines [33]. The MV 
and TV were modelled as a cylinder, which was adjusted to 
sit at the junction of the respective atrium and ventricle, and 
rotated to align with the vector directed from the centroids 
of these chambers (Fig. 4). For the MV and TV the diameter 

and thickness were set to to 30 mm and 8 mm, respectively 
[33]. As described in our previous work [22, 23], each coro-
nary artery is defined as a 3D tube (diameter 4 mm [34]) 
constructed as a spline from the set of co-registered atlas 
contours.

Recently published contouring guidelines [35] provide 
definitions for the sinoatrial node (SAN) and atrioventricular 
node (AVN). To summarise: the AVN is defined as a sphere 
of radius 10 mm centered at the junction of the four cardiac 
chambers, and the SAN is defined as a sphere, also of radius 
10 mm, located at the junction of the SVC and right atrium 
such that it does not extend beyond the whole heart volume. 
Using these definitions, we developed an automated geomet-
ric algorithm that delineates these structures based on the 
relevant cardiac substructures.

The fully-automated segmentation algorithm was writ-
ten in Python 3.9 [36] and extensively uses the SimpleITK 
framework [37].

Evaluation and optimisation of segmentation 
performance

Cardiac substructures were automatically segmented using 
the hybrid approach on the 30 contoured CT scans to evalu-
ate segmentation performance. The contouring metrics used 
in this study were the Dice Similarity Coefficient (DSC), 
the mean distance to agreement (MDA), the (maximum) 
Hausdorff distance (HD), and volume ratio (computed as 
automatic/manual). The DSC is a common metric for assess-
ing spatial overlap. The MDA quantifies overall surface-to-
surface deviation between automatic and manual contours, 
while the HD provides an indication of the maximum devia-
tion. The volume ratio is an important measure of contouring 
similarity, particularly in the context of RT where calcula-
tion of dose metrics such as mean dose can be sensitive to 
systematic differences in structure volumes.

To select the optimal DL model for WH segmentation, 
contouring metrics were computed for automatic contours 
generated using each of the four models. The Wilcoxon 
signed-rank test was used to compare performance between 
the models. The impact of atlas selection was tested by 
using three independent atlas sets. In previous studies, it 
has been noted that performance of automatic atlas-based 
cardiac segmentation methods does not increase after the 
number of cases in the atlas set exceeds 6–10 [38–40], and 
as such the number of atlases was fixed at 10. Measures 
of inter-observer variability were computed using pairwise 
comparisons between the three manual contours on the set of 
20 breast cancer patient scans. The breast cancer cohort was 
divided into two sets of 10 cases by ranking all 20 atlases by 
the mean inter-observer MDA for the seven larger cardiac 
substructures and then selecting the 10 cases with lowest and 
highest variability, respectively. The 10 lung cancer patient 
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Fig. 4  Geometric models developed in this study to define the heart 
valves, using delineations of other cardiac substructures. This frame-
work includes a method to define the aortic and pulmonic valves 
(top), and the mitral and tricuspid valves (bottom). Acronyms: LA - 

left atrium, LV - left ventricle, RA - right atrium, RV - right ventricle, 
AV - aortic valve, PV - pulmonic valve, MV - mitral valve, TV - tri-
cuspid valve
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scans comprised the third atlas set. The atlas sets are derived 
from the validation data, but importantly remain completely 
independent during the generation of automatic delineation 
of cardiac substructures. This was achieved using a leave-
one-out approach: in situations where a test case would 
be included in the atlas set (e.g. automatic segmentation 
of a lung cancer case using the lung atlas) this test case is 
removed, leaving only 9 atlases.

Performance of the automatic segmentation tool was eval-
uated as the similarity to manual delineations. However, for 
smaller structures (e.g. coronary arteries and valves) where 
manual contouring is unreliable due to the characteristics 
of imaging used for RT planning, automatic segmentation 
performance was judged not only by similarity to manual 
contouring (with consideration for relatively large variabil-
ity), but also by agreement with anatomical definitions (e.g. 
position, size, and shape of these structures) and consistency 
between patients.

Threshold optimisation was performed using leave-one-
out analysis, and assessed by comparing the volume ratio 
before and after optimisation using the Wilcoxon signed-
rank test. The total time taken to perform automatic segmen-
tation was also recorded.

Results

Measures of contouring similarity for the four DL models 
for WH segmentation indicate higher performance in the 
breast dataset versus the lung dataset (Fig. 5A). Overall, 
the 2D model performed worst, with illustrative failures 
shown in Fig. 5B and C. There was no statistically signifi-
cant difference between the remaining three models in any 
of the similarity metrics ( p > 0.05 ). Inference made with 
the 3D low resolution model was substantially faster and 
had lower variation in contouring metrics between patients. 
This model was selected as the optimal WH segmentation 
model and subsequent results are reported with the 3D low 
resolution model used to initialise the segmentation of car-
diac substructures.

Contouring metrics for all cardiac structures are pre-
sented in Fig. 6. Measures of geometric similarity indicate 
performance of the hybrid segmentation model is close to 
the level of inter-observer contouring variability, for exam-
ple the median (± median absolute deviation) DSC and 
MDA for automatically delineated cardiac chambers was 
0.83 ± 0.07 and 2.0 ± 0.88 mm compared to measured inter-
observer DSC and MDA of 0.81 ± 0.01 and 1.9 ± 0.09 mm. 
Geometric accuracy was similar for each atlas set, however 
the high-variability breast atlas set generated the most accu-
rate segmentations overall, followed by the low-variability 
breast atlas (see Supplementary Tables S1, S2, S3, S4). For 
the high-variability breast atlas set, the median DSC across 

the set of 30 patients ranged between 0.81–0.93 for whole 
heart and cardiac chambers, 0.43–0.76 for great vessels 
and conduction nodes, and 0.22–0.53 for heart valves. The 
median MDA was 2.1 mm for the WH, 1.6–2.6 mm for the 
cardiac chambers and great vessels, 2.3–5.6 mm for the heart 
valves and conduction nodes, and 3.2 − 5.8 mm for the coro-
nary arteries. The median HD ranged from 7.7 mm (AVN) 
to 19.7 mm (RCA), and was notably higher for coronary 
arteries than other types of substructures. There are outli-
ers which suggest large discrepancies between manual and 
automatic delineations for a small number of cases.

The use of probability threshold optimisation resulted in 
statistically significant improvement in the volume ratio of 
structures it was applied to (see Fig. 7). Systematic differ-
ences remained for the structures that were not able to be 
directly optimised using this method (WH, valves and arter-
ies). The median volume ratio between the automatically and 
manually defined WH was 0.94 (range 0.83–1.08), suggest-
ing automatically-defined heart volumes are approximately 
6% smaller than those from manual contours, and valve vol-
umes from automatic segmentations were 26% (AV) to 53% 
(PV) larger than those from manual contours. Segmentation 
of cardiac substructures was more consistent with manual 
contouring in the breast cancer cohort than the lung cancer 
cohort (see Supplementary Fig. S1).

Spatial smoothing of the cardiac chambers and great ves-
sels was observed for automatic segmentations (8A). The 
hybrid approach was able to reliably delineate cardiac sub-
structures despite variations in patient anatomy and imaging, 
as demonstrated in Fig. 8B. Manual contouring of larger 
cardiac structures (e.g. chambers, great vessels) is relatively 
consistent (low inter-observer variability). Visualisation of 
automatic segmentations on orthogonal slices of CT imag-
ing is shown in Fig. 9. The time required for automatic seg-
mentation, given as mean ± standard deviation (range), was 
761 ± 109 (563–1378)s. WH segmentation using the low 
resolution 3D DL model required approximately 2–5 min-
utes, while the full-resolution model took 2–3 × longer. The 
second module, multi-atlas mapping, required 5–10 min to 
execute and the geometric models used to delineate smaller 
cardiac substructures took 1–2 min. Although the DL WH 
segmentation model executes faster on GPU architecture 
(and required approximately 4 GB of memory) the entire 
process can also be performed on systems with only a CPU.

Discussion

This study has designed and implemented a hybrid segmen-
tation method, where deep learning, WH-guided multi-atlas 
mapping, and geometric model segmentation processes were 
combined to provide accurate, robust, and anatomically-
consistent delineation of cardiac substructures on RT CT 



385Physical and Engineering Sciences in Medicine (2023) 46:377–393 

1 3

scans. This novel approach will facilitate analysis of large, 
retrospective studies to develop better risk models of radia-
tion-related cardiotoxicities, and provides a comprehensive 
cardiac model comprising 18 structures.

The hybrid method leverages the strengths of different 
approaches to image segmentation. The WH is routinely 

contoured for thoracic RT patients, and the large amount of 
available clinical data represents a wide range of variations 
in patient anatomy, patient set-up, and imaging artefacts. 
For this reason, a DL model capable of learning from the 
large amount of training data is an ideal approach. To delin-
eate larger cardiac structures (cardiac chambers and great 

Fig. 5  The results of the deep learning-based whole heart segmenta-
tion are summarised on the left (5A), using the Dice (DSC), mean 
distance to agreement (MDA), maximum Hausdorff distance (HD) 
and volume ratio (Vol. Ratio). Two example patients are shown on 
the right (5B-C), demonstrating cases where the 2D nnU-Net model 
failed to provide an accurate segmentation. In Figure  5A the boxes 

represent the first and third quartiles, the middle bars represent the 
medians, and the whiskers represent the range excluding any outliers 
which are defined as any points greater than 1.5 × the inter-quartile 
range above or below the first or third quartile, respectively (outliers 
are shown as empty circles)
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vessels), the WH-guided multi-atlas mapping process was 
developed. Initialisation using the WH overcomes limita-
tions in typical atlas-based methods which often fail when 
the target image is not represented in the atlas set. A disad-
vantage of using the WH to guide this process is that when 
the WH segmentation does not match the definition used in 
the atlas cases the performance is poor. This can be seen in 
the worst performing case in this study cohort, as visualised 
in Fig. 9), where the superior border of the DL-based WH 
delineation does not match the manual WH definition (which 
is the same as that used to produce the atlas set), and as a 

result the automatically segmented structures in the superior 
region do not match the manual definitions. A systematically 
smaller DL-based WH volume was observed in this study, 
consistent with published work [41–43], and in this case may 
reflect contouring variation in the training dataset.

The third module in the hybrid method contributes novel 
geometric modelling tools for automatic segmentation of 
the heart valves, conduction nodes, and coronary arteries. 
This overcomes challenges in manually contouring these 
structures due to imaging factors (e.g. lack of soft tissue 
contrast, motion blurring, insufficient spatial resolution), 

Fig. 6  Results of comparisons between manual contours and auto-
matic segmentations of the cardiac substructures included in this 
quantitative analysis, for the Dice Similarity Coefficient (DSC, 6A), 
the mean distance to agreement (MDA, 6B), the (maximum) Haus-
dorff distance (HD, 6C), and volume ratio (computed as automatic/
manual, 6D). These grouped results combine both the breast and lung 
datasets. The measures of inter-observer contouring variability are 
derived from the three sets of manual contours on the breast dataset. 
Acronyms: H - (whole) heart, LV - left ventricle, RV - right ventri-
cle, LA - left atrium, RA - right atrium, AA - ascending aorta, PA 
- pulmonary artery, SVC - superior vena cava, AV - aortic valve, PV 

- pulmonic valve, MV - mitral valve, TV - tricuspid valve, LAD - left 
anterior descending coronary artery, LCX - left circumflex artery, 
RCA - right coronary artery, LMCA - left main coronary artery, AVN 
- atrioventricular node, SAN - sinoatrial node. The boxes represent 
the first and third quartiles, the middle bars represent the medians, 
and the whiskers represent the range excluding any outliers which are 
defined as any points greater than 1.5 × the inter-quartile range above 
or below the first or third quartile, respectively (outliers are shown as 
empty circles). The printed text presents the mean ± standard devia-
tion of results for each metric and substructure
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patient factors (e.g. artefacts from implants, atypical anat-
omy), and the oblique structure orientation relative to imag-
ing planes. Defining conduction nodes is an important part 
of the development of cardiotoxicity models, as radiation-
induced arrhythmias and conduction disorders are known 
complications following thoracic RT [44].

The evaluation of segmentation performance should be 
considered in the context of the imaging data used, the reli-
ability of manual contouring, and the relevance of consist-
ent definitions for specific structures. Multiple studies have 
presented quantitative data for inter-observer contouring 
variability for the heart and cardiac substructures [45–48]. 
Although direct comparison is difficult due to differences in 
study cohorts, image acquisition parameters, observer expe-
rience, and the specific substructures being contoured, the 
inter-observer variation for data used in this study [21] is in 
good agreement with other studies. For the CT imaging used 
in radiotherapy planning, a number of factors contribute to 
difficulty in the visualisation of smaller cardiac structures, 
including lack of cardiac/respiratory gating causing motion 
blurring, no/variable CT contrast agent use, image artefacts, 
atypical anatomy, and image resolution on a similar scale as 
the structures (e.g. slice thicknesses ranging 2–5 mm). For 
many patient images, this results in a high uncertainty in 
manual contouring, which must be considered when com-
parisons between automatic and manual delineations are 

made. Patients selected for this study were specifically cho-
sen in order to provide challenging and variable conditions, 
and we expect the patient-specific uncertainties in manual 
contouring to be high in this cohort.

Performance of the hybrid method compares well to exist-
ing segmentation models. Recently, Jin et al. [49] demon-
strated the potential of DL cardiac substructure segmenta-
tion, using a training set of non-contrast CT imaging from 
60 breast cancer patients to achieve a mean DSC/MDA of 
0.79/2.7 mm for cardiac chambers and 0.39/4.1 mm for 
smaller substructures (valves and LAD) in an independ-
ent testing dataset. This geometric accuracy is similar to 
our approach, with mean DSC/MDA of 0.82/2.4 mm for 
the chambers and 0.32/4.44 mm for the same smaller struc-
tures, while the method of Jin et al. was faster (2.1 s vs. 
761 s). Using magnetic resonance imaging (MRI) alongside 
contrast-enhanced CT, Morris et al. developed a DL model 
for cardiac substructure segmentation [13] which achieved a 
mean DSC of 0.88 for cardiac chambers, 0.85 for great ves-
sels and pulmonary veins, and 0.50 for the coronary arter-
ies. Van Velzen et al (2022) [17] developed a DL model 
using contrast-enhanced CT scans acquired on a dual-layer 
CT scanner, thereby enabling the transfer of ground-truth 
substructure segmentations to virtual non-contrast images 
for applicability to RT planning scans. For larger cardiac 
substructures, the mean DSC/MDA was 0.76–0.88/1.7–2.7 
mm, similar to our approach (0.56–0.88/1.95–3.2 mm). 
While these studies demonstrate the possibility of precise 
delineation of cardiac substructures using a DL model, both 
required far more than 10 labelled atlas cases used in this 
work to achieve similar performance. Further, the additional 
imaging modalities are not routinely available for the major-
ity of radiotherapy patients.

Compared to many other studies presenting models for 
automatic segmentation of cardiac substructures, this work 
uses far less training data to achieve similar results, requir-
ing only 10 images with manually contoured cardiac sub-
structures compared to other approaches which used 41 [19], 
127 [50], and 217 [14] cases for training. An overview of 
published tools for cardiac substructure segmentation can be 
found in a recent publication by Walls et al (Supplementary 
Table 11) [18]. The model proposed in this work provides 
automatic definitions of 18 independent structures, more 
than any other method currently available. A large num-
ber of cardiac substructures were included in an atlas-based 
automatic segmentation model developed by Maffei et al 
[41], however many of these are subvolumes defined geo-
metrically, for example proximal, mid, and distal segments 
of the coronary arteries. Haq et al. [14] used a training set 
of 217 thoracic CT scans to develop a model for the heart, 
cardiac chambers, and great vessels (including the inferior 
vena cava and complete aorta extending down to the most 
inferior slice of the heart), and achieved better accuracy 

Fig. 7  Comparison of volume ratio with and without using the prob-
ability threshold optimisation method described in Finnegan et  al. 
[21]. The volume ratio was compared with and without using this 
optimisation, using the Wilcoxon signed-rank test. This optimisa-
tion process was not applied to the heart valves, but as their defini-
tion depends on structures to which optimisation was applied they 
are included here. The boxes represent the first and third quartiles, 
the middle bars represent the medians, and the whiskers represent the 
range excluding any outliers which are defined as any points greater 
than 1.5 × the inter-quartile range above or below the first or third 
quartile, respectively (outliers are shown as empty circles). Legend: 
**** = p < 10−4 , Wilcoxon signed-rank test
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Fig. 8  A Surface renderings of 
manual contours and automatic 
segmentations for a representa-
tive case (median segmenta-
tion accuracy). B Axial slices 
of radiotherapy planning CT 
scans shown with automatic 
segmentations for a number of 
cases with variations in imaging 
and patient anatomy. Acronyms: 
LV - left ventricle, RV - right 
ventricle, LA - left atrium, RA 
- right atrium, AA - ascending 
aorta, PA - pulmonary artery, 
SVC - superior vena cava, AV 
- aortic valve, PV - pulmonic 
valve, MV - mitral valve, TV 
- tricuspid valve, LAD - left 
anterior descending coronary 
artery, LCX - left circumflex 
artery, RCA - right coronary 
artery, LMCA - left main coro-
nary artery
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when measured with the DSC and 95th percentile of the 
Hausdorff distance. This method has also been validated on 
an independent dataset [18], with results suggesting reduced 
accuracy when applied to new data as well as systematic 
variations. A DL model developed by Garrett Fernandes 
et al. [50] to delineate these same cardiac substructures from 
a training dataset 127 CT scans was validated on an inde-
pendent dataset and also achieved higher DSC values, how-
ever a substantial reduction in performance was observed 
on CT imaging acquired without contrast enhancement. A 
cascading deep learning model was recently proposed by 
van den Oever [19] which automatically segments the heart 
and chambers accurately, although this method was only 
tested on 6 patient CT scans. Increased volumes of training 
data also provide the opportunity to develop more advanced 
deep learning models. The recent development of a region-
based fully convolutional network for cardiac substructure 
segmentation by Harms et al. [16], and the mutual enhanc-
ing learning-based method proposed by Momin et al. [20] 
deliver excellent accuracy, although it is apparent that for 
the coronary arteries these models do not always produce 
realistic segmentations.

The challenge of developing approaches for automatic 
segmentation of coronary arteries has led to a number of 
alternative approaches. Van den Bogaard et al. [51] pro-
posed a novel geometric technique to delineate the LAD 
using anatomical landmarks, achieving a mean DSC of 0.15 
and median average slice-wise centroid distance of 3.9 mm, 
similar to our work (median DSC = 0.18, median MDA = 
3.2 mm). Loap et al. [52] defined a high-risk cardiac zone 
(HRCZ) as a surrogate volume for the LAD, which has been 
implemented alongside definitions of the conduction nodes 
in an atlas-based method [43]. While this HRCZ is an inter-
esting and useful idea for the proposed application in breast 
cancer RT, it may be less effective as a surrogate for the 
LAD in cases where this artery is positioned in regions of 
steep dose gradients, such as RT for central lung tumours.

Our proposed method and study design provide a number 
of additional advantages. The hybrid method approach does 
not require any pre-processing, and can be used directly on 
any CT scan. Development and testing used both breast and 
lung cancer patients, including cases with variations in anat-
omy and imaging, which provides confidence in the robust 
performance achieved. The range of similarity metrics pro-
vides a holistic presentation of performance and offers a 
useful benchmark for future studies. Importantly, the open 
source code makes it possible for other research groups to 
implement, test, and validate our results.

We identified several limitations of this work. Segmentation 
performance was evaluated using data from a single centre, 
placing inherent restrictions on the generalisation to patient 
imaging from other institutes. A single (and different) observer 
contoured the 10 lung cancer patient images. Therefore, 

measures of inter-observer variability (computed from the 
20 breast cancer patients, contoured by three observers) can 
only be used as a guide, although it is expected that contour-
ing would be more variable in the lung cancer patients. The 
impact of blurring due to respiratory motion could contribute 
to the observation of lower segmentation accuracy in the lung 
cohort, and further investigation could simulate this effect to 
characterise and quantify the detriment to segmentation accu-
racy from this effect. Additionally, although all observers 
followed the same contouring guidelines, differences in how 
these were interpreted might have an impact on the contours. 
The parameters controlling the physical size of cardiac valves 
were identical for all patients, however future research may 
provide methods to individualise geometric valve definitions 
based on observable quantities (e.g. cardiac sizes/shapes). The 
conduction nodes were not manually contoured in this study 
and therefore results may not reflect the geometric similarity if 
these were defined by a manual observer. The potential impact 
of anatomical differences between males and females was 
investigated (see Supplementary Fig. S2), and although these 
results suggest lower geometric accuracy for images of male 
patients, there are only two differences across all structures 
and metrics that are statistically significant (DSC and MDA 
for the pulmonary artery). This is likely due to low numbers 
of patients (3 females vs. 7 males), which makes statistical 
assessment challenging, however it might suggest additional 
investigation of this effect and potential development of sex-
specific segmentation models should be considered.

Future work will validate the segmentation model for use 
with RT data, namely to ensure consistency of dose metrics 
obtained from manual contours. Further research will expand 
our current model with additional cardiac sub-volumes, for 
which automatic segmentation would enable assessment 
of the risks of localised radiation-induced damage. These 
include segments of the left ventricle myocardium [53] and 
segments of the coronary arteries [54]. Additionally, inclu-
sion of cardiac substructures as OARs has previously been 
shown to improve cardiac sparing [55], and there are plans 
to incorporate our automatic segmentation tool with exist-
ing RT planning software for this purpose. Finally, while 
improved cardiac risk models are an important step to fur-
ther understanding and mitigating negative side-effects of 
radiotherapy, these should be considered alongside methods 
to limit heart dose [56, 57], and therefore additional research 
on the emerging radiotherapy and planning techniques with 
consideration of cardiac substructures is warranted.

Conclusion

Accurate, reliable, and anatomically consistent cardiac sub-
structure segmentation has been achieved using a hybrid 
approach that combines the strengths of deep learning, 
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WH-guided multi-atlas mapping, and geometric defini-
tions of small structures where necessary. The open-source 
software developed in this project will allow for analysis of 
large, retrospective datasets and enable improved cardiac 
risk modelling for radiotherapy patients.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s13246- 023- 01231-w.
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