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Abstract
Background Optical scanning technologies are increasingly being utilised to supplement treatment workflows in radiation 
oncology, such as surface-guided radiotherapy or 3D printing custom bolus. One limitation of optical scanning devices is 
the absence of internal anatomical information of the patient being scanned. As a result, conventional radiation therapy 
treatment planning using this imaging modality is not feasible. Deep learning is useful for automating various manual tasks 
in radiation oncology, most notably, organ segmentation and treatment planning. Deep learning models have also been used 
to transform MRI datasets into synthetic CT datasets, facilitating the development of MRI-only radiation therapy planning.
Aims To train a pix2pix generative adversarial network to transform 3D optical scan data into estimated MRI datasets for a 
given patient to provide additional anatomical data for a select few radiation therapy treatment sites. The proposed network 
may provide useful anatomical information for treatment planning of surface mould brachytherapy, total body irradiation, 
and total skin electron therapy, for example, without delivering any imaging dose.
Methods A 2D pix2pix GAN was trained on 15,000 axial MRI slices of healthy adult brains paired with corresponding 
external mask slices. The model was validated on a further 5000 previously unseen external mask slices. The predictions 
were compared with the “ground-truth” MRI slices using the multi-scale structural similarity index (MSSI) metric. A certi-
fied neuro-radiologist was subsequently consulted to provide an independent review of the model’s performance in terms 
of anatomical accuracy and consistency. The network was then applied to a 3D photogrammetry scan of a test subject to 
demonstrate the feasibility of this novel technique.
Results The trained pix2pix network predicted MRI slices with a mean MSSI of 0.831 ± 0.057 for the 5000 validation 
images indicating that it is possible to estimate a significant proportion of a patient’s gross cranial anatomy from a patient’s 
exterior contour. When independently reviewed by a certified neuro-radiologist, the model’s performance was described as 
“quite amazing, but there are limitations in the regions where there is wide variation within the normal population.” When 
the trained network was applied to a 3D model of a human subject acquired using optical photogrammetry, the network 
could estimate the corresponding MRI volume for that subject with good qualitative accuracy. However, a ground-truth MRI 
baseline was not available for quantitative comparison.
Conclusions A deep learning model was developed, to transform 3D optical scan data of a patient into an estimated MRI 
volume, potentially increasing the usefulness of optical scanning in radiation therapy planning. This work has demonstrated 
that much of the human cranial anatomy can be predicted from the external shape of the head and may provide an additional 
source of valuable imaging data. Further research is required to investigate the feasibility of this approach for use in a clinical 
setting and further improve the model’s accuracy.

Keywords Deep learning · Photogrammetry · 3D scan · pix2pix · GAN · Synthetic · MRI · Radiation oncology · Treatment 
planning

Introduction

Three-dimensional (3D) optical and infrared surface scan-
ning in radiation oncology is increasingly being investi-
gated for determining the 3D exterior surface of a patient 
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without the need for a computed tomography (CT) scan. 
This technology is often utilised for surface-guided radiation 
therapy (SGRT) to assist with patient positioning and real-
time motion management [1–3]. While this approach most 
often utilises structured light scanning (SLS) to determine 
the patient’s external contour, other types of optical surface 
scanning such as photogrammetry or Lidar (light detection 
and ranging) have been investigated for applications in radia-
tion oncology [4].

Interest in these various technologies has generally been 
for the design of 3D printed customised medical devices 
such as bolus and surface mould applicators for brachy-
therapy [5–10]. Research into 3D printed beam modify-
ing devices using optical surface scanning has increased in 
recent years, with several studies demonstrating the feasibil-
ity of photogrammetry and SLS for producing brachytherapy 
surface applicators with similar dosimetric properties to con-
ventional CT derived applicators [8, 9, 11].

In 2019, Douglass and Santos demonstrated that photo-
grammetry could be used to define the surface of a patient 
using photogrammetry and 3D print a superficial bolus 
[12]. The same year, LeCompte et al. [10] used an Apple® 
iPhone X to produce a 3D model and superficial bolus of a 
nose. In 2021, Bridger et al. investigated the effect of camera 
type and settings on the reconstruction accuracy of photo-
grammetry for radiation therapy applications [13]. A paper 
published in 2022 by the same group demonstrated that the 
dosimetry of a 3D printed superficial brachytherapy applica-
tor achievable using photogrammetry was almost equivalent 
to that of a conventional CT-derived applicator [8].

Unlike conventional radiographic imaging modalities like 
CT and MRI, optical surface scanning can provide textural 
colour information about a patient, potentially enabling PTV 
surface delineation for superficial treatments without marker 
wires. Photogrammetry and Lidar [4] are cost-effective 
methods of generating 3D models of a patient’s anatomy 
and are now available on some consumer smartphones.

Maxwell et al. investigated various scanning technolo-
gies, including CT, photogrammetry, and 3D scanners, and 
found surface scanning technologies superior to CT and 
photogrammetry [9]. However, in a recent editorial, it was 
shown that photogrammetry might produce exterior patient 
contours of higher spatial accuracy than that of CT [4].

Crowe et al. proposed a method of generating synthetic 
homogeneous water equivalent CT datasets for planning 
radiotherapy treatments using SLS alone, which may be 
helpful for some treatment techniques such as TSET or TBI 
but is still limited because of a lack of internal anatomical 
information [11].

These recent works have demonstrated that optical sur-
face scanning may be helpful in combination with other 
imaging modalities, or alone in a superficial treatment work-
flow. However, the lack of internal anatomical information 

provided by optical surface scanning (OSS) technologies 
limits its adoption for all but a limited number of radio-
therapy techniques and sites.

The current study aimed to investigate whether OSS, 
combined with deep-learning (DL) techniques, could pro-
vide additional anatomical information, increasing the use-
fulness of OSS for other radiation therapy modalities and for 
additional sites. Deep learning is useful for automating vari-
ous tasks in radiation oncology, most notably organ segmen-
tation but has also been used for dose calculations and lin-
ear accelerator quality assurance [14–21]. Generative deep 
learning models such as generative adversarial networks 
have been used in other domains to perform image-to-image 
translation tasks such as: converting photographs taken dur-
ing the day to night, converting hand-drawn pictures into 
realistic photos, and converting satellite images into maps 
[22–27]. They have also been used in medical applications to 
perform tasks such as converting MRI datasets into synthetic 
CT datasets [28–34].

In the current work, we investigate whether optical sur-
face scanning technologies such as photogrammetry and 
Lidar from a typical smartphone combined with deep learn-
ing models could be used to estimate the probable anatomy 
of a patient from only their exterior contour. The deep learn-
ing model was designed to produce a synthetic MRI (sMRI) 
for a given patient, which could be used for planning some 
treatment sites or allow a preliminary plan to be optimised 
before the primary CT dataset is available.

The objectives of this project were to train a deep learn-
ing model to convert the external contour of a patient from 
photogrammetry and generate an estimated sMRI dataset. 
This model would then be validated to ensure the model’s 
predictions agreed with the validation dataset. The validated 
model would then be tested on an actual 3D optical scan of 
a patient to demonstrate the model’s usefulness.

Method

Data Preparation

581 T1 weighted MRI images of healthy adult subjects were 
used from the Information eXtraction from Images (IXI) 
database [35] comprising data obtained from three hospitals.

The MRI volumes, available in NIFTI format, were first 
resampled in Slicer [36] into a uniform voxel resolution 
of 1 mm × 1 mm × 1 mm from the original resolution of 
1 mm × 1 mm × 1.2 mm. The resampled volumes were then 
imported into MATLAB 2020b (The MathWorks, Inc., MA, 
USA).

For each MRI image slice, the imadjust function in 
MATLAB was applied, which, by default, saturates 
the bottom 1% and the top 1% of all pixel values. This 
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operation increases the contrast of the original image. A 
threshold operation was then applied to the image such 
that all pixels with an intensity greater than 20 out of a 
maximum of 256 (8-bit image) were considered part of 
the external mask. MATLAB’s imfill operation was then 
applied to fill holes in the binary mask for each slice. A 
morphological erosion operation was then applied to the 
mask using MATLAB’s imerode function with a radius of 
3 and decomposition of 0. These settings were obtained 
through an iterative process until a suitable mask of the 
patient’s external contour was obtained for each image 
slice.

In the current work, a 2D deep learning model was 
implemented, which lacked spatial awareness of neigh-
bouring axial slices. To overcome this limitation, the 
external mask slices were encoded with relative slice posi-
tion information by adjusting the pixel intensity value of 
the binary mask slices with values from 1 to 256, indicat-
ing the relative position of the slice (Fig. 1) in each MRI 
volume in the axial direction (inferior most slice binary 
pixel intensity was one and superior most slice had a 
binary value of 256). This approach enabled the 2D deep 
learning model to “know” approximately where the exter-
nal contour slice was in the patient’s head without using a 
3D deep learning model.

The MRI and mask volumes were separated into indi-
vidual axial slices producing a total of 15,000 slices for 
the training set and a further 5,000 slices for the validation 
set. Each patient’s MRI volume was sliced into 256 axial 
slices for training and testing, equating to approximately 
60 unique patients in the training set. The MRI and exter-
nal mask slices were resized to 256 × 256 pixels to match 
the input and output resolution of the deep learning model. 
The mask and MRI slices were then converted to single 
channel 8-bit greyscale images to train the model.

Deep learning model training

A 2D pix2pix generative adversarial network (GAN) deep 
learning model was implemented in MATLAB version 
2020b based on the work of Isola et al., [37] by adapting 
the code from MATLAB’s deep learning GitHub reposi-
tory [38].

This deep learning model uses a conditional generative 
adversarial network to convert an image from one domain 
to another by learning the transformations between a set of 
paired image data, in our case, external masks of a patient 
and their corresponding MRI slices. The model developed 
in the current work takes axial external mask slices of 
patients with a resolution of 256 × 256 as an input and 
produces a corresponding, axial MRI slice of the same 
dimensions.

The deep learning model was trained for 20 epochs on 
an Nvidia® (Santa Clara, CA) Quadro RTX 4000 GPU. 
The training of the generator model was evaluated in terms 
of a combined mean absolute error and cross-entropy loss 
functions using the Adam optimiser as described in the 
original pix2pix GAN paper [37, 38].

Model validation

The model was validated using 5000 ground-truth MRI 
and binary mask slices, which the model had not previ-
ously seen. The predictions of the trained model were 
compared with the ground-truth MRI scans. The ground-
truth and predicted MRI slices were compared visually 
using the imfuse function in MATLAB, which highlights 
differences in image intensities as two separate colour 
channels.

To quantify the similarity between the predicted and 
ground-truth MRI slices, the Multi-Scale Structural Simi-
larity Index (MSSI) in MATLAB was used for each pair of 
predicted and ground-truth slices in the validation set. A 
value of one indicates perfect structural similarity and is 
only possible if the test and reference images are identical. 
This metric was chosen because, unlike other metrics such as 
mean squared error (MS), which only considers differences 
in pixel intensities, the MSSI compares structural similari-
ties and has been shown to correlate well with human per-
ceived similarities and is therefore well suited for comparing 
two MRI scans [39].

A certified neuro-radiologist was also consulted to inde-
pendently review a subset of the predicted MRI images from 
the validation set and comment on the anatomical accuracy 
and consistency of the predictions. The neuro-radiologist 
had no prior knowledge or input in developing or testing the 
deep learning model and, therefore, could provide an objec-
tive critique of the model’s performance.

Fig. 1  Proposed workflow. Left: The 3D scan of the patient acquired 
using optical scanning is converted into an external mask (middle) 
with grayscale values to indicate the relative slice position in the 
superior-inferior axis. This data is then used as an input to the GAN 
model to predict the internal cranial anatomy’s synthetic MRI (sMRI)
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Evaluation of Model on Photogrammetry Data

To demonstrate this proposed workflow on a human sub-
ject, a photogrammetry scan of one of the authors was taken 
using an iPhone 13 Pro and the Metascan© photogrammetry 
app. The photogrammetry scan was produced by taking 192 
photos from approximately equal equatorial angles and three 
azimuthal angles. The 3D scan was reconstructed in high-
quality mode and exported from Metascan© in OBJ format 
(a standard 3D model format). The model containing 695 k 
triangular faces was imported into the 3D modelling tool 
Blender [40]. Since the GAN model was trained on MRI 
data which contained no information about the patient’s hair, 
the hair from the photogrammetry scan needed to be artifi-
cially removed to ensure the model did not interpret the hair 
volume as part of the external mask. The sculpting tools in 
Blender were used to estimate and correct the geometry of 
the subject’s scalp to approximate a shaved head.

The modified 3D model was then imported into Slicer 
to generate a voxelised external mask from the 3D model. 
The mask was resampled to a uniform voxel size of 
1 mm × 1 mm × 1 mm and then cropped to slices of resolu-
tion 256 × 256 pixels. The masked slices were then sliced 
axially, and the binary labels for the external mask were 
encoded with greyscale information to represent the relative 
axial position of each slice in the head. The mask slices were 
then evaluated by the trained GAN model one at a time to 
produce a sequence of predicted MRI slices.

Since no reference MRI scan was available for the author 
used as the test subject, a quantitative or qualitative com-
parison was not possible.

Results

Model training and validation

The deep learning model was trained for 20 epochs requiring 
approximately 48 h on an Nvidia® Quadro RTX 4000 GPU. 

The relative improvement in the model's predictions with 
time during training is shown in Fig. 2. A visual compari-
son of a subset of the validation images is shown in Fig. 3 
and shows a high degree of visual similarity in terms of the 
anatomical structure between the ground-truth and predicted 
MRI slices. In many cases, much of the perceived difference 
between the images is due to a relative difference in pixel 
intensity rather than a structural difference.

Each of the 5000 predicted MRI and ground truth MRI 
pairs were compared using the MSSI. The mean, median, 
and standard deviation of the MSSI scores were calculated 
and displayed as a histogram. MRI slices correspond-
ing to regions outside the external contour of the patient 
were excluded from the analysis leaving 4255 image pairs. 
This was due to the high number of images with an MSSI 
of approximately 1.0. These images correspond to each 
patient’s superior and inferior slices, which contain no ana-
tomical structure and are structurally very similar.

The mean and standard deviation for the MSSI was 0.831 
and 0.057, respectively, and the median value was 0.832. A 
histogram showing MSSI values for all validation images, 
excluding those outside the patient volumes, can be seen in 
Fig. 4.

A certified neuro-radiologist with no prior contribution 
to the development of the model reviewed a subset of the 
predicted MRI images and compared them with the ground-
truth images to check for anatomical accuracy and consist-
ency. The following observations were made about the mod-
el’s performance and accuracy of the predictions.

The cranial vault is quite accurately predicted postero-
superiorly. There is a limitation in predicting the cra-
nial vault anteriorly and antero-inferiorly in the frontal 
sinus region. There is significant variation in the size of 
pneumatizedtized frontal sinus in the normal popula-
tion. Hyperostosis of the inner table (increased thickness) 
can occur within the population and is more common in 
females. The posterior skull base is difficult to accurately 
predict due to the considerable variation in the size of 
the temporal bones and shape of the lower occipital bone 

Fig. 2  Example of the training process performed in MATLAB 
2020b. The images on the left shows the external masks for two 
example axial slices. The subsequent images on each row show the 

prediction for each external mask after several iterations of training. 
The right most images show the predictions after two epochs
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(which is related to cerebellar size). The misregistration 
is most pronounced inferiorly at the level of the foramen 
magnum. The central skull base is moderately well done, 
except that prediction of the sphenoid sinus pneumatiza-
tionation and shape of the sphenoid wings is difficult due 
to considerable variation in the population. The anterior 

skull base is again difficult due to variability in the size 
(including width) of the ethmoid sinuses, and the size of 
the lower frontal sinuses/orbital roof position. The orbital 
contents, including the globes, are quite well predicted. 
There will be some variation in the size and shape of the 
orbits between races. Cortical brain position in relation 
to the inner skull table is reasonably well done except for 
anterior frontal and sub-frontal regions as discussed above 
(dependent on frontal sinuses etc.) There will be some 
variation in cortex position relative to the inner table with 
age due to expected brain volume loss. The brainstem is 
reasonably well done. Cerebellar size and shape are dif-
ficult (vermis to cisterna magna relationship) as they vary 
within the population. Lateral ventricular size is difficult 
to predict due to large variations within the population. 
Third ventricular size also varies. The fourth ventricle is 
predicted reasonably well. It would be difficult to predict 
the gyral folding pattern of the brain due to the large vari-
ation within the normal population.

Outer head-to-brain angulation is quite good. Spatial 
resolution is quite good. Images are not too noisy, allow-
ing for some expected misregistration—no significant 
artefacts.

In summary, the machine learning model predicts the 
regions that exhibit mild variation in humans quite well. 
It would be impossible to accurately predict regions that 

Fig. 3  Examples of the 
validation results showing the 
performance of the pix2pix 
GAN model compared with 
the ground-truth MRI data. A 
greyscale region in the differ-
ence figure highlights regions 
of similarity between the two 
images. In contrast, a pink or 
green colour indicates higher 
pixel intensity in the ground 
truth and predicted MRI slices, 
respectively

Multi-Scale Structural Similarity Index (MSSI) for each MRI pair in the validation data
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exhibit significant variation in humans, such as the size of 
the paranasal sinuses, temporal bones, and lateral ventri-
cles, from just an external contour.

Model evaluation on photogrammetry data

A photogrammetry model of the author was processed 
slice-by-slice in the axial direction through the pix2pix 
GAN to produce MRI predictions for each slice. Some 
examples of the masks and corresponding MRI predictions 
as well as some volumetric data are shown in Fig. 5. Since 
a reference MRI dataset was not available for comparison, 
a quantitative analysis of the predictions was not possible, 
however, visually, the predicted MRI volume showed a 
surprisingly high degree of continuity between axial slices 
despite being generated using a 2D model. Major anatomi-
cal features of the brain were present in the correct loca-
tions and appeared convincing to an untrained observer.

Discussion

A deep learning model was trained in the current work 
to transform 3D optical scan data of a patient into an 
estimated MRI volume, potentially increasing the useful-
ness of optical scanning and SGRT in radiation therapy. 
While this preliminary model produces predictions of 

good quantitative accuracy, the approach is not without 
its limitations.

The model was trained on a healthy adult brain MRI data-
set and will not generalise to other sites without additional 
data and training. This dataset was trained on an open-source 
dataset of healthy adults, which is generally difficult to find 
for other sites and would require a more extensive study to 
acquire the necessary data. Data of healthy patients is lim-
ited, and data containing tumours and other diseases results 
in the GAN network trying to generate these volumes in the 
synthetic image slices. This could, in theory, be overcome by 
manually removing slices containing tumours from the train-
ing data to ensure the model does not learn these features. 
However, since the model cannot localise tumours from a 
patient’s external volume, the model’s usefulness may be 
limited to a few select treatment techniques and sites with-
out additional complimentary imaging data for each patient.

The MRI-style output of the model limits its application 
in radiation therapy treatment planning due to the lack of 
electron density information necessary for dose calcula-
tions. Ideally, future models should be trained on CT data 
to expand the usefulness of such a model.

Using a 2D pix2pix GAN resulted in diminished conti-
nuity of anatomical features between predicted MRI slices 
because of the limited spatial awareness of neighbouring 
slices provided by the greyscale encoding system. A 3D 
model implementation would likely improve slice conti-
nuity and provide better spatial awareness for the model. 
However, a 3D model would likely take longer to train and 
require additional training data to achieve this improved 
performance.

Exterior contours obtained from Lidar or photogram-
metry measurements would, in most cases, contain facial 
hair compared to a CT measurement. As a result, the GAN 
model attempts to fill the slices containing hair with nor-
mal brain tissue. In the current work, the 2D model was 
trained so that the model would not use information about 
the slices containing hair and influencing neighbouring 
slices. The axial slices containing the hair could simply 
be excluded as unreliable predictions. It is unclear without 
further investigation whether a 3D implementation of this 
model would account for the hair volume more robustly. 
Dedicated training data consisting of photogrammetry-
derived external contours and matched/aligned MRI/CT 
volumes would likely partially overcome this issue.

The external mask generated from the MRI training data 
to define the patient’s skin was based on an arbitrary pixel 
intensity value and subject to uncertainty. As a result, the 
external mask from MRI may differ from that generated 
using Lidar or photogrammetry, resulting in uncertainties 
in the predicted output. While the validation results indicate 
this model performs accurately and has the potential to pro-
vide practical estimates of the internal anatomy of patients, 

Fig. 5  Examples of the external mask slices and corresponding pre-
dicted MRI data obtained using photogrammetry of a human subject. 
Some volumetric renders are shown on the right with cutaways at 
three different axial levels
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further work is required to determine if the same model can 
be used to estimate cranial anatomy from photogrammetry, 
Lidar, or structured light scanning without additional curated 
data. Ideally, a more extensive study involving the collec-
tion of MRI and matched photogrammetry data would be 
required to verify the model’s accuracy for this intended 
use case.

The model was trained on 8-bit image data to reduce 
training time, limiting the maximum grey scale values in 
the predicted output to 256. Future models could be trained 
on 12 or 16-bit MRI or CT data to be more consistent with 
conventional DICOM images and enable this image data to 
be used in a treatment planning workflow.

Suggested use cases

The rationale for the current work was to expand upon our 
previous works [4, 8, 12, 13] and the work of S. Crowe et al. 
[9, 11], who suggested a homogeneous water equivalent CT 
dataset from a structured light scanner for planning some 
radiotherapy treatments. The apparent limitation of this 
approach is that it produces no anatomical information for 
planning, limiting its usefulness. The approach demonstrated 
in the current work increases the usefulness of photogram-
metry and other optical scanning techniques in radiation 
therapy as it provides an estimate of this anatomy.

Some proposed use cases for this technique include pre-
liminary planning of radiation therapy treatments before 
the primary planning CT is available and re-optimised once 
available. This may be particularly useful for patients living 
in rural areas with long commute times to the treatment cen-
tre. This approach may also be helpful for adaptive planning 
workflows. Many centres are already using SGRT technolo-
gies that could be combined with this model to predict ana-
tomical changes after weight loss or patient movement. This 
approach could also enable estimates of a patient’s internal 
anatomy for real-time motion management.

Some centres are currently investigating upright seated 
patient treatments for proton therapy using fixed beamlines. 
Cone-beam CT imaging in this position is technically and 
logistically complex; the approach suggested in the cur-
rent work could be a valuable part of the solution to such a 
problem.

Sites where this technique could conceivably be used for 
treatment planning without additional imaging data include 
total body irradiation, total skin electron therapy, surface 
mould brachytherapy, and whole brain or palliative radio-
therapy for non-malignant disease.

In addition to the clinical applications, this approach 
could enable realistic synthetic imaging datasets to be cre-
ated for research or training by simply manipulating the 
external contour of the geometry.

Suggestions for future work

Based on our experiences in developing the model of the 
current work, we would suggest the following approaches be 
applied when developing future models of this type.

The brain is a complex anatomical site with significant 
variation amongst the general population. This site was not 
ideal for this preliminary model, and this site was only cho-
sen because of the availability of training data consisting of 
healthy patients without disease. This model may perform 
more accurately for sites such as thorax or extremities where 
there is reduced inter-patient variability in the underlying 
anatomy.

Most importantly, to produce a model of sufficient accu-
racy to be considered clinically useful, a more extensive 
clinical study involving the collection of optically scanned 
3D models of patients and their corresponding registered 
MRI or CT data to translate directly between these imaging 
domains is required.

Since optical scanning techniques generally include tex-
tural information in addition to the geometric data, an inves-
tigation could also be performed to see if this information 
can be used to augment the model’s performance.

As more accurate models are developed, an investiga-
tion should be performed to compare relevant organs at risk 
contours between the sMRI and MRI ground truths to see if 
the changes in predicted contours are clinically significant. 
These differences could be assessed using metrics such as 
the dice coefficient, for example. A side-by-side comparison 
of existing treatment planning techniques for treatments such 
as TSET, TBI, and surface mould brachytherapy with this 
proposed technique would also provide valuable insight.

Conclusion

It has been demonstrated that optical surface scans of the 
exterior contour of a patient can, in principle, be used to esti-
mate the interior anatomy of a patient with some degree of 
confidence. The mean multi-scale structural similarity index 
on the validation dataset was approximately 0.83 indicating a 
good agreement between the ground-truth MRI images and 
predictions by the pix2pix GAN network.

While further research is required to improve the model's 
performance to a point where it could be clinically useful, 
this study has demonstrated that, in principle, this approach 
is feasible. Various optical surface scanning technologies are 
already used clinically for SGRT techniques which could be 
utilised in our proposed workflow. Low-cost smartphone-
based optical scanning technologies such as photogramme-
try and Lidar enable further possibilities for this approach.
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