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Abstract
Covid-19 first occurred in Wuhan, China in December 2019. Subsequently, the virus spread throughout the world and as of 
June 2020 the total number of confirmed cases are above 4.7 million with over 315,000 deaths. Machine learning algorithms 
built on radiography images can be used as a decision support mechanism to aid radiologists to speed up the diagnostic pro-
cess. The aim of this work is to conduct a critical analysis to investigate the applicability of convolutional neural networks 
(CNNs) for the purpose of COVID-19 detection in chest X-ray images and highlight the issues of using CNN directly on the 
whole image. To accomplish this task, we use 12-off-the-shelf CNN architectures in transfer learning mode on 3 publicly 
available chest X-ray databases together with proposing a shallow CNN architecture in which we train it from scratch. Chest 
X-ray images are fed into CNN models without any preprocessing to replicate researches used chest X-rays in this manner. 
Then a qualitative investigation performed to inspect the decisions made by CNNs using a technique known as class activa-
tion maps (CAM). Using CAMs, one can map the activations contributed to the decision of CNNs back to the original image 
to visualize the most discriminating region(s) on the input image. We conclude that CNN decisions should not be taken into 
consideration, despite their high classification accuracy, until clinicians can visually inspect and approve the region(s) of 
the input image used by CNNs that lead to its prediction.
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Introduction

The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), the virus causing COVID-19, has become 
a pandemic since its emergence in Wuhan, China in Dec 
2019 [1]. The death toll from the infection escalated and 
many health systems around the world have struggled to 
cope. A critical step in the control of COVID-19 is effec-
tive and accurate screening of patients so that positive cases 
receive timely treatment and get appropriately isolated from 
the public; a measure deemed crucial in curbing the spread 
of the infection. Reverse-transcription polymerase chain 
reaction (RT-PCR) testing, which can detect SARS CoV-2 
RNA from respiratory specimens (such as nasopharyngeal 
or oropharyngeal swabs), is the golden screening method for 
detecting COVID-19 cases. The high sensitivity of RT-PCR 
testing is overshadowed by the limited availability of test kits 
and the amount of time required for the result to be available 
(few hours to a day or 2) [2]. Therefore, there is a grow-
ing need to use fast and reliable screening techniques that 
could be further confirmed by the RT-PCR testing. Some 

 * Aras Asaad 
 aras.asaad@oxforddrugdesign.com

 Taban Majeed 
 taban.majeed@su.edu.krd

 Rasber Rashid 
 rasber.rashid@koyauniversity.org

 Dashti Ali 
 dashti.a.ali@gmail.com

1 Department of Computer Science and Information 
Technology, College of Science, Salahaddin University, 
Erbil, Kurdistan Region, Iraq

2 Department of Software Engineering, Faculty 
of Engineering, Koya University, Koya KOY45, 
Kurdistan Region, Iraq

3 Independent Researcher, Toronto, ON, Canada
4 Oxford Drug Design, Oxford Centre for Innovation, New 

Road, Oxford OX1 1BY, UK

http://orcid.org/0000-0001-9578-8838
http://crossmark.crossref.org/dialog/?doi=10.1007/s13246-020-00934-8&domain=pdf


1290 Physical and Engineering Sciences in Medicine (2020) 43:1289–1303

1 3

studies have suggested the use of imaging techniques such 
as X-rays Computed Tomography (CT) scans of the chest to 
look for visual indicators associated with SARS-CoV-2 viral 
infection. It was found in early studies that patients display 
abnormalities in chest radiographs that are characteristic of 
COVID-19 infection, with some suggesting that radiography 
examination could be used as a primary tool for COVID-19 
screening in epidemic areas [3]. Facilities for chest imaging 
is readily available in modern healthcare systems making 
radiography examination a good complement to RT-PCR 
testing and, in some cases, showing even a higher sensitivity 
index. Given X-ray visual indicators could be subtle; radiol-
ogist will face a great challenge in being able to detect those 
subtle changes and interpreting them accurately. As such, 
it becomes highly desired and required to have computer-
aided diagnostic systems that can aid radiologists in making 
a more time-efficient and accurate interpretation of X-ray 
images that are characteristic of COVID-19 [4].

In recent months, much research came out addressing 
the problem of COVID-19 detection in chest X-rays using 
deep learning approaches in general, and convolutional neu-
ral networks (CNNs) in particular [3–10]. The majority of 
papers report high COVID-19 disease detection accuracy 
[2, 6, 10–14]. For a detailed survey of recent artificial intel-
ligence algorithms, the reader is directed to the review by 
Nguyen et al. [15]. However, deploying CNN architectures 
directly on chest radiography images may not produce relia-
ble COVID-19 detection results, especially when chest X-ray 
images feed into CNN models directly without any preproc-
essing steps such as region of interest segmentation, noise 
elimination and un-wanted object removal. We take this 
hypothesis onboard to prove that despite the high classifica-
tion accuracy of CNN models, we demonstrate that CNNs 
are ‘cheating’ by using artefacts in the images to build their 
prediction that has nothing to do with COVID-19 disease.

Since the start of COVID-19, researchers quickly divided 
their effort on combating it by focusing on developing a vac-
cine in one hand [16] and detecting COVID-19 using PCR 
and imaging systems on the other hand [3]. Here, we review 
studies devoted to the use of radiography images to aid and 
complement PCR in diagnosing COVID-19 cases. Ai et al. 
[3] built a deep convolutional neural network (CNN) based 
on ResNet50, InceptionV3 and Inception-ResNetV2 models 
for the classification of COVID-19 Chest X-ray images to 
normal and COVID-19 classes. They reported a good cor-
relation between CT image results and PCR approach. Chest 
X-ray images of 50 COVID-19 patients have been obtained 
from the open source GitHub repository shared by (Dr. 
Joseph Cohen [17]). Kumar et al. in [5] proposed a method 
to detect COVID-19 using X-ray images based on deep fea-
ture and support vector machines (SVM). They collected 
X-ray images from GitHub, Kaggle and Open-I repository. 
They extracted the deep feature maps of a number of CNN 

models and conclude that ResNet50 is performing better 
despite the small number of images used in their investiga-
tion. Maghdid et al. [6] proposed a simple CNN of 16 filters 
only to detect COVID-19 using both X-ray and CT scans and 
reported good performance but the dataset used is small. The 
work of Fei et al. [1] focused on segmenting COVID-19 CT 
scans using a deep learning approach known as VB-Net and 
reported dice similarity of 91% ± 10%.

Xu et al. [8], obtained an early prediction model to clas-
sify COVID-19 pneumonia from Influenza-A viral pneu-
monia and healthy cases using pulmonary CT images 
using Resnet18 model by feeding image patches focused 
on regions of interest. The highest accuracy for the CNN 
model was 86.7% CT images. In Wang et al. [9], authors use 
CT images to predict COVID-19 cases where they deployed 
Inception transfer-learning model to establish an accuracy of 
89.5% with specificity of 88.0% and sensitivity of 87.0%. In 
[4] a number of CNN architectures that are already used for 
other medical image classifications evaluated over a dataset 
of X-ray images to distinguish the coronavirus cases from 
pneumonia and normal cases. CNN’s adopted on a dataset 
of 224 images of COVID-19, 700 of non- COVID19 pneu-
monia, and 504 normal where they report overall accuracy 
of 97.82.

Wang and Wong [2] investigated a dataset that they called 
COVIDx and a neural network architecture called COVID-
Net designed for the detection of COVID- 19 cases from an 
open source chest X-ray radiography images. The dataset 
consists of chest radiography images belonging to 4 classes 
including Normal X-rays comprising cases without any 
infections, Bacterial, Viral pertaining to non-COVID-19 
pneumonia and COVID-19 X-rays. They reported an over-
all accuracy of 83.5% for these four classes. Their lowest 
reported positive predictive value was for non-COVID-19 
class (67.0%) and highest was for Normal class (95.1%). As 
required to improve the previous studies Farooq and Hafeez 
[7] deals with this need by presenting another CNN with 
fewer parameters but better performance. Authors used the 
same dataset as in [2] to build an open source and accurate 
COVID-ResNet for differentiating COVID-19 cases from 
the other four pneumonia cases and outperform COVID-
Net. In [10], Narin et al. experimented several CNN archi-
tectures classify normal with COVID-19 X-ray images and 
they report excellent classification accuracy, sensitivity 
and specificity. But the authors failed to discuss the clini-
cal importance of their approach as it may not be difficult 
to distinguish severe COVID-19 cases from normal chest 
X-rays, as we show in Table 2, and this is not the situa-
tion radiologists face in a regular basis or it may not be of 
importance in this current pandemic. Finally, they trained 
their CNNs based on 50 images from each of the normal and 
COVID-19 classes which may result in some sort of biasness 
in the training phase.
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There are many papers focused on issues related to CNN 
deployment, which are not all COVID19 related, where 
they demonstrated that CNN results can be misleading, not 
reproducible and need interpretation. Hu et al. [18] criti-
cized artificial intelligence based approaches to diagnose 
COVID19 from medical images as they lack the transpar-
ency when it comes to their predictive outcomes as well as 
the small number of control cases many studies based on. 
Darcema et al. [19] discussed the problems of reproducing 
results by CNN models for recommender systems and that 
many of the proposed CNN models can be outperformed by 
other conceptually simple methods. In [20], Wynants et al. 
reviewed 91 models, mostly deep learning based, and con-
cluded that all of the models are of high risk of bias due to 
non-representative selection of control patients. They also 
report high risk of model overfitting and vague reporting by 
not including any description of the study population and 
indented use of the models.

In all the works discussed here, to the best of our knowl-
edge, we did not encounter an explicit description of pre-
processing, segmentation nor noise reduction on chest 
X-rays. We address this problem by assessing the quality of 
the decisions made by 12 CNN models using class activation 
mapping introduced in [21]. Furthermore, there is no justifi-
cation why researchers favored a particular CNN model over 
others and did not compare their final results if one opt to 
choose another CNN architecture. This paper benchmarks 12 
popular CNN models and deploy them in a transfer learning 
mode on 3 public datasets popularized for the detection of 
COVID-19 infection. Finally, a qualitative analysis is per-
formed on these 12 CNN models to demonstrate the most 
discriminating regions in the input image used by each CNN 
and the need of such process to reveal the bias in current 
datasets as well as CNN weaknesses.

Methods

CNN architectures—brief overview

In recent years, the use of deep learning algorithms in gen-
eral and convolutional neural networks (CNNs) led to many 
breakthroughs in a variety of computer vision applications 
like segmentation, recognition and object detection [22]. 
Deep learning methods have been shown to be successful in 
automating the task of feature-representation learning and 
gradually attempts to eliminate the tedious task of hand-
crafted feature engineering. Deep learning, and convolu-
tional neural networks (CNNs), attempts to mimic the human 
visual cortex system in terms of structure and operation by 
adopting a hierarchical layer of feature representation. This 
approach of multi-layer feature representation made it possi-
ble to learn different image features automatically and hence 

enabled CNNs to outperform handcrafted-feature methods 
[23].

In 1960s, Hubel and Wiesel [24] studied monkey’s vis-
ual cortex system and found cells which are responsible for 
constructing image and detecting light signal in receptive 
filed. In the same vein, Hubel and Wiesel also showed that 
monkey’s visual field can be represented using a topographic 
mapping. In 1980s, Neocognitron proposed by Fukushima 
and Miyake [25] which is a self-organizing neural network 
and regarded as a predecessor of CNN. In [26], LeCun 
et  al.’s groundbreaking work introduced modern CNN 
models for the purpose of handwritten digit recognition 
in which the architecture later popularized and known as 
LeNet. After LeNet architecture, convolutional layers and 
backpropagation algorithm for training popularized and 
became a fundamental building block of most of the mod-
ern CNN architectures. In 2012, AlexNet architecture, pro-
posed by Krizhevsky et al. [27], won ImageNet Large Scale 
Visual Recognition Challenge (ILSVRC) [28] by outper-
forming other methods and reducing the top-5 error from 26 
to 15.3%. This was a turning point so that CNNs became an 
exceptionally popular tool to be deployed in many computer 
visions tasks. Roughly speaking, AlexNet is a similar ver-
sion of LeNet but deeper structure and trained on 1.2 million 
high resolution images. Complex architectures that has mil-
lions of parameters, and hyperparameters, to train and fine 
tune need a substantial amount of computational time and 
power but again AlexNet popularized the use of powerful 
computational resources such as graphical processing units 
(GPUs) to compensate the increase in trainable parameters.

AlexNet opened the door for researchers around the 
world to design novel CNN models which are deep but 
efficient at the same time especially after ILSVRC became 
an annual venue for the recognition of new CNN models. 
The participation of technology giants such as Google, 
Microsoft and Facebook also helped in pushing research 
in this direction especially the depth of CNN architectures 
increased dramatically from 8 layers in 2012 to 152 lay-
ers in 2015 which helped the recognition error rate to drop 
to 3.5%. Pre-trained CNN architectures on ImageNet have 
been open-sourced and immediately used by researcher to 
transfer the knowledge to other application domains and 
promising results achieved [29]. One of the many useful 
features of transfer learning (TL) is that in other domains, 
such as medical image analysis, millions of labeled medical 
images are not available therefore it is natural to consider the 
use of fine-tuned weights and biases of CNN architectures 
trained on ImageNet, and other large databases, to be used 
for medical image analysis. Hence, we opt to use 12 deep 
learning architectures in a TL mode and modify their final 
layers to adapt to the number of classes in our investigation. 
The deep learning architectures that we used for the pur-
pose of COVID19 detection from X-ray images are AlexNet, 
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VGG16, VGG19, ResNet18, ResNet50, ResNet101, Goog-
leNet, InceptionV3, SqueezeNet, Inception-ReseNet-v2, 
Xception and DenseNet201.

In what follows we are going to briefly describe each 
of the 12 CNN architectures used here and highlight their 
distinct properties. It is out of the scope of this work to give 
details of all of these 12 CNN models, hence we direct inter-
ested reader to consult many survey articles on deep learning 
and CNN architectures such as [30, 31].

AlexNet architecture is the winner of ILSVRC 2012, 
proposed by Krizhevsky et al. [27] outperformed the hand-
crafted features significantly. AlexNet constitutes of 5 con-
volutional layers and 2 fully connected layers together with 
rectified linear unit (ReLU) activation function which is 
used for the first time. It can be regarded as a scaled ver-
sion of LeNet except that it is a deeper architecture trained 
on a larger dataset of images (ImageNet) and benefitted 
from the GPU computational power. Hyperparameters 
of AlexNet fine-tuned and won 2013 ILSVRC [28] (later 
named ZF-Net). We use AlexNet in a transfer learning mode 
and modify the last layer of AlexNet according to the num-
ber of X-ray image classes, i.e. instead of 1000 classes that 
AlexNet trained on we change this to 4 classes because 4 
X-ray classes used here which are COVID19, Bacteria, Viral 
and Normal. The same approach of TL is used for the rest 
of CNN models.

VGG architectures proposed by Oxford University’s vis-
ual geometry group [32], hence the acronym VGG, whereby 
they demonstrated that using small filters of size 3-by-3 in 
all of the convolutional layers throughout the network leads 
to a better performance. The main intuition behind VGG 
architectures is that multiple small filters in a sequence can 
imitate the effect of larger filters. Due to its simplicity in 
design and generalization power, VGG architectures are 
widely used. We use VGG16 and VGG19 that constitute of 
16 and 19 convolutional layers, respectively.

GoogleNet architecture is the winner of ILSVRC 2014 
which is proposed by Szegedy et al. [33] from Google in 
2014. Novelty of GoogleNet is the innovation of inception 
module, which is a small network inside a bigger network. 
Furthermore, 1-by-1 convolutional layers/blocks used as a 
dimensionality reduction and feature aggregation. In total, 
GoogleNet is 22 layers deep with 9 inception modules. 
Inception V1 (GoogleNet), is later improved in terms of 
batch normalization, representational bottleneck and com-
putational complexity and resulted in Inception V2 and V3. 
Here we opt to use GoogleNet and InceptionV3 [34] in a 
transfer learning mode. In the same vein, we use Xception 
[35], which is another architecture proposed by F. Chollet 
from Google which uses the idea of extreme inception mod-
ule whereby depthwise convolutional layers used first then 
followed by pointwise convolutional layers. In other words, 
they replaced inception modules by depthwise separable 

convolutions in such a way that the total number of param-
eters is the same as inceptionV3 but the performance on 
large datasets (350 million images of 17,000 classes) are 
significantly higher.

ResNet architectures are proposed by He et al. [36] from 
Microsoft and won 2015 ILSVRC. Main innovation in 
ResNet architectures are the use of residual layers and skip 
connections to solve the problem of vanishing gradient that 
may result in stopping the weights in the network to further 
update/change. This is particularly a problem in deep net-
works because the value of gradient can vanish, i.e. shrink 
to zero, when several chain rules applied consecutively. 
Skipping connections will help gradians to flow backwards 
directly from end layers to initial layer filters enabling CNN 
models to deepen with 152 layers.

DenseNet can be regarded as a logical extension of 
ResNet which was first proposed in 2016 by Huang et al. 
from Facebook [37]. In DenseNet, each layer of CNN con-
nected to every other layer in the network in a feed-forward 
manner which helps in reducing the risk of gradient-vanish-
ing, fewer parameters to train, feature-map reuse and each 
layer takes all preceding layer features as inputs. The authors 
also point out that when datasets used without augmentation, 
DenseNet is less prone to overfitting. There are a number of 
DenseNet architectures, but we opt to use DenseNet201 for 
our analysis of COVID19 detection from X-ray images by 
using the weights trained on ImageNet dataset in TL mode.

SqueezeNet is a small architecture proposed by Iandola 
et al. [38] in 2016 that uses the idea of fire module which 
contain 3 filters of size 1-by-1 feed into an expanded layer 
(4 filters of size 1-by-1 and 4 filters of size 3-by-3). Even 
though the number of parameters of SqueezeNet is by 
50 × less than AlexNet but achieves the same accuracy of 
AlexNet on ImageNet.

Inception-ResNetV2 is a combined architecture proposed 
by Szegedy et al. [34] in 2016 that uses the idea of incep-
tion blocks and residual layers together. The aim of using 
residual connections is to avoid the problem of degrada-
tion causes by deep networks and reduce the training time. 
The inception-resnetV2 architecture used here contains 20 
inception-resnet blocks that empower the network to become 
164 layers deep, and we use the pre-trained weights in these 
layers to assist our mission of detecting COVID19 in X-Ray 
images.

Proposed CNN

In this study, we designed a CNN model for COVID-19 
detection from chest radiography images guided by the fact 
that in order to properly classify and detect COVID-19, radi-
ologists need to discriminate COVID-19 X-rays from nor-
mal chest X-ray first, and then from other viral and bacterial 
infections in order to isolate and treat the patient properly. 
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Therefore, we opt to choose the design of CNN to make one 
of the following predictions: (a) Normal (i.e. no infection) 
(b) COVID-19, (c) Viral infection (none-COVID-19) and 
(d) Bacterial infection. The rationale behind using these 4 
cases is to aid radiologists to prioritize COVID-19 patients 
for PCR testing and employ treatments according to infec-
tion-specific causes. Having these requirements in mind, we 
designed our simple CNN architecture, named CNN-X, that 
constitutes of 4 parallel layers where we have 16 filters in 
each layer in 3 different sizes (3-by-3, 5-by-5 and 9-by-9). 
Batch normalization and rectified linear unit (ReLU) is then 
applied to the convolved images and two different types of 
pooling operation applied next which are average pooling 
and maximum pooling. The rationale behind using differ-
ent filter sizes is to detect local-features using filters of size 
3-by-3 and rather global features by filters of size 9-by-9 
while 5-by-5 filter size is to detect what is missed by the 
other two filters.

Different pooling operations utilized to further reduce the 
dimensionality of feature maps. A stride of size 3 is adopted 
here, with pooling operations, to further reduce the dimen-
sion of the resulting feature maps taking into consideration 
the fact that there is redundant information in images and 
neglecting a row and a column after each pooling window is 
not causing a massive information loss. See Fig. 1 where we 
visually depict the difference between pooling of size 3-by-3 
with stride 2 versus pooling of size 2-by-2 with stride 3 
and conclude that we are not losing much information while 
reducing the size of the image/feature map further. Proposed 
architecture design is not deep, hence the feature map (i.e. 
convolved image) is not a very abstract representation of 
the input image yet and as such there are still redundant 
information.

Feature maps from the four parallel layers are then con-
catenated before fully connected layer. Weights are gener-
ated using Glorot method [39] with Adam optimizer [40] 
and 0.0003 initial learning rate. Training conducted using 
20 epochs and 15 mini batch size. We visualize the structure 
of proposed CNN model in Fig. 2.

Dataset description

To investigate and test the CNN architectures explained in 
section III and IV, we used X-ray images collected from 3 

publicly available sources. First dataset is a collection of 
111 COVID-19 chest X-ray images collected by Cohen [17]. 
Second dataset is a collection of 5840 chest X-ray images 
of confirmed normal, bacterial and other non-COVID-19 
viral infections from Kermany et al. [41]. The third dataset 
contains 73 confirmed COVID-19 chest X-rays collected 
from the following websites; Radiological Society of North 
America (RSNA), Radiopedia, and Italian Society of Medi-
cal and Interventional Radiology (SIRM). This dataset is 
also available publicly in [42]. In total, 6024 chest X-ray 
images used from the 3 datasets in which we divide them 
into four classes as follows; the total number of normal 
chest X-rays are 1575, confirmed bacterial infection cases 
are 2771, viral (Non-COVID-19) are 1494 and COVID19 
images are 184. In Fig. 3 examples of all four radiographic 
X-ray classes are shown.

To shed more light on the number of artifacts and the 
nature of the artifacts present in the 3 datasets used in this 
work, we inspected every single image to check whether 
there is an artifact or not and the type of artifacts present 
in the images. In Table 1 we demonstrate the percentage of 
images that contain some form of artifact and in Fig. 4 we 

Fig. 1  Effect of stride and pooling on image resolution

Fig. 2  Proposed CNN Architecture design

Fig. 3  Sample of the X-ray images used in our experiments
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highlight different types of artifacts such as text and medi-
cal devices.

Each database contains different images with different 
sizes (i.e. the images are in different pixels resolutions). In 
Table 1, we showed the variety of image resolutions in the 
databases by presenting the minimum and maximum pixel 
resolution that every database contains.

As it can be seen from the percentages in Table 1, there 
is a high number of images that contain some form of arti-
facts that may affect the diagnostic results produced by CNN 
models. Swinging the results of any machine learning clas-
sifier by artifacts is not good and we are going to show the 
effect of these artifacts on diagnostic decisions made by 
CNN models in the rest of this paper, especially in part A 
of section III.

Figure  4 depicts different types of text and medical 
device traces present in the 3 datasets used in our experi-
ments. Some of the artefacts can be removed by cropping 
or automatic segmentation such as those at the corners of 
the images but the artefacts like the one in the middle image 
in Fig. 4 is harder to remove automatically or manually. It 
should also be noted that despite the small amount of back-
ground present in the chest X-ray images, it does still affect 
the decisions of CNN models and we are going to demon-
strate this in the next section.

Details of distributing the images to train set, validation 
set, and test set will be discussed and explained in the next 
section.

Experimental setup and results

We adopted transfer learning (TL) approach to investigate 
the performance of the CNN architectures discussed here 
and compare it with proposed CNN-X architecture. TL is 
the process of utilizing gained knowledge (learned weights) 

from solving one problem to a different but related problem. 
Weights optimized from training the 12 CNN models on 
ImageNet dataset used in TL mode such that weights in all 
layers are retrained on our X-ray images. All images from 
training and testing sets are resized to the suitable dimen-
sions that each of the architectures designed for. No preproc-
essing applied to input images because none of the methods 
in the literature (so far) mentioned it and hence we followed 
the same norm. Training parameters in TL for all 12 CNN 
architectures are as follows: number of epochs = 20, mini-
batch size = 15, initial learning rate = 0.0003. All experi-
ments conducted using MATLAB version 2019b on a Core 
i5 CPU machine with 16 GB of RAM and 3.30 GHz. To 
measure CNN classification performance, four metrics were 
recorded which are sensitivity, specificity, F1-score and clas-
sification confidence. To be able to calculate the aforemen-
tioned metrics the following measures of test classification 
computed:

True positive (TP): number of correctly identified disease 
X-ray images.
False Negative (FN): number of incorrectly classified 
disease X-ray images.
True Negative (TN): number of correctly identified 
healthy X-ray cases.
False Positive (FP): incorrectly identified healthy X-ray 
cases.

Furthermore, TP refers to disease (COVID-19, bacterial 
or viral) X-ray images correctly identified as a disease X-ray 
image while FP is normal or other pneumonia cases incor-
rectly identified as COVID-19 disease. Sensitivity measures 
the proportion of diseased cases correctly detected by CNNs 
while specificity measure the proportion of healthy cases 
correctly identified as healthy by CNN models. The equa-
tion of sensitivity and specificity calculation is provided in 
appendix, which also contain the F1-score calculation and 
equation. Because the number of COVID-19 chest X-ray 
images is small in comparison with the other 3 classes, it is 
sometimes misleading to rely on sensitivity and specificity 
of CNN models alone. Therefore, we also report the com-
putation of the estimate of 95% confidence interval (see the 
appendix) of classification errors of each of the CNN models 
utilised here where we assume that the CNN classification 

Table 1  Percentage of artifacts 
in images from the 3 datasets

Dataset No. of Images Resolution Range Artifact (%) Type

Cohen [17] 111 437 × 424 (min)
3480 × 12,744 (max)

83 100% COVID-19

Kermany et al. [41] 5840 127 × 1152 (min)
2583 × 2916 (max)

95 100% Non-COVID-19

RSNA, Radiopedia 
and SIRM [42]

73 376 × 1128 (min)
4095 × 3342 (max)

86 100% COVID-19

Fig. 4  Highlights of different type of artifacts in deployed datasets
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output distributed normally, i.e. follows a gaussian distribu-
tion. The smaller the confidence interval, more reliable the 
predictive model is and hence one expects its CNN model 
more likely to work on other datasets.

Three different scenarios deployed to test the perfor-
mance of 12 off-the-shelf CNN architectures as well as our 
proposed CNN-X model which will be discussed next.

Scenario 1: normal vs COVID‑19 classification (all 
data).

In this scheme, CNN architectures trained on 1341 normal 
X-ray images with 111 COVID-19 cases while 234 cases 
of normal with 73 cases of COVID-19 are used for test-
ing. Table 2 below shows obtained results from all 13 CNN 
architectures. The aim of testing this hypothesis is to see 
the effect of differentiating COVID-19 from normal chest 
X-rays.

It can be seen from the table above that all of the CNN 
models (except Vgg19 and Vgg19), can be deployed success-
fully to detect COVID-19 X-rays with sensitivity of above 
90%. However, the specificity of some of the techniques are 
below 90% in which we can avoid using it in practice. In this 
vein, one can opt to rely on the highest performing archi-
tectures such as Xception, Desnsenet201, SqueezeNet and 
inceptionresnetv2 as their specificity is > 99%. It should be 
noted that our proposed CNN architecture’s performance is 
comparable to other state-of-the-art CNN models whereby 
it achieves 93% sensitivity and specificity of 97%, which 
is better than AlexNet, GoogleNet, VGG19 and VGG16. 
Albeit excellent results in Table 2, this is not a realistic 
scenario to build machine learning algorithms for the pur-
pose of COVID-19 detection in the present time because 
there is no guarantee that the system is not classifying other 
pneumonia infections as COVID-19 and vice versa. Further-
more, it may not be of a clinical significance to differentiate 
extreme COVID-19 cases from normal chest X-rays but it’s 
the diagnostics and discrimination of COVID-19 from other 
pneumonia is of a particular interest. Hence, we designed 
the second scenario to address the task of discriminating 
COVID-19 cases from other viral, bacterial and normal 
X-rays images.

Scenario 2: normal vs COVID‑19 vs viral 
(non‑COVID‑19) vs bacteria

In this scenario we aim to classify X-ray images into the 4 
respective classes of normal, COVID-19, Bacteria and Viral 
(non-COVID-19). This scenario addresses the limitation in 
the first scenario whereby any machine learning algorithm 
needs to, ultimately, discriminate not only COVID-19 chest 
X-ray from normal X-ray but it also needs to discriminate 
COVID-19 chest X-rays from other viral and bacterial 

infections. This is a necessary condition to stop the spread 
of the virus and prepare COVID-19 patients for special 
treatments.

A total of 1341 normal X-rays, 2529 Bacteria cases, 1346 
Viral X-rays and 111 COVID-19 X-rays used for training. 
For testing, 234, 242, 148 and 73 X-rays of normal, Bacteria, 
Viral and COVID-19 used respectively. It is worth to notice 
that we train the model on 111 COVID chest X-rays from 
COVIDx dataset but we test the CNN models on 73 chest 
X-rays from a different source. This is critical to examine the 
effectiveness of feature maps learnt by CNN on one source 
and testing it on images coming from a different source. 
Table 3 below demonstrates classification performance 
obtained by adopting this scenario.

Scenario 3: normal vs COVID‑19 vs viral vs bacteria 
(training on part of the data)

In this scenario we used part of the dataset to train CNN 
models to see the effect of each architecture with the smaller 
number of image samples. The rationale behind this scenario 
is the fact that most of the time the challenge in medical 
image analysis is limitation of available data for investiga-
tion and to reduce bias in having unbalanced number of 
images in training phase. Hence, the design of this scenario 
is to get more insight of how these CNN models perform in 
the case of limited availability of image samples.

In this scenario, four classes used with 350 X-ray images 
of normal, Bacteria, viral and 111 X-rays of COVID-19 for 
training whereas the same number of testing images used for 
the four classes are as scenario 2.

Table 3 shows experimental results obtained from sce-
nario 2 and scenario 3, where  Sn and  Sp stand for sen-
sitivity and specificity respectively in Table 3. It clearly 
depicts that none of the CNN architectures perform well 

Table 2  Testing result for all architectures used in scenario 1

CNN Architectures Sensitivity Specificity

AlexNet 90.41 88.03
GoogleNet 93.15 96.15
Vgg16 84.93 97.86
Vgg19 0 100
ResNet18 95.89 98.72
ResNet50 95.89 97.01
ResNet101 91.78 97.86
InceptionV3 97.26 92.74
InceptionResNetv2 95.89 99.57
SqueezeNet 93.15 99.57
Densenet201 90.41 100
Xception 93.15 100
CNN-X (Ours) 93.15 97.86
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on differentiating X-rays to all four classes. Perhaps the 
only exception is Inception-ResnetV2 that performs better 
in comparison with the rest of the architectures especially 
on normal X-rays with sensitivity of > 76% using all image 
samples. The good performance of Inception-ResnetV2 
is due to the idea of combining residual learning with 
inception blocks which makes the performance to be bet-
ter than using ResNet or Google/Inception architectures 
alone. Furthermore, we notice that all CNN models work 
well on detecting two of the classes, namely Bacteria and 
COVID-19, but not performing well on classifying normal 
and viral X-rays to their respective classes. This suggests 
that deployed CNN models learn features of bacterial and 
COVID-19 better than normal and non-COVID19 viral 
infections.

In other words, there is more similarity between features 
of X-ray images of viral infection and normal cases with each 
other and with other classes that cannot be distinguished eas-
ily. The second-best performing architecture, using all image 
samples, is Xception architecture with sensitivity of 97%, 
94%, 66% and 82% for bacteria, COVID-19, normal and 
viral chest infections respectively. When it comes to scenario 
3, where only 350 images used from normal, bacterial and 
viral chest X-rays, again Inception-ResnetV2 outperform all 
other CNN architectures including CNN-X. This confirms 
the effectiveness of Inception-ResnetV2 in terms of design 
and learning power. Nonetheless, we want to remind the 
reader that input images have not been segmented and they 
contain artefact that may contribute to CNN prediction but 
has no relation to COVID-19 infection. We confirm this 
point in the next section, see Figs. 5 and 6, where we dem-
onstrate the region(s) in the image used by CNNs and some, 
if not all, of these regions are artifacts.

Direct comparison of best results obtained here, which 
is by Inception-ResnetV2, is not possible with other works 
in the literature because the COVID-19 images used for 
testing here is different and more importantly the number 
of testing images is 73 which is higher than the number of 
test images used in [2] and [7] whereby they tested their 
CNNs based on 8 COVID-19 images only. Nonetheless, 
our results are outperforming COVID-Net [2] in terms of 
sensitivity for viral and normal X-ray classification. The 

Table 3  Testing result for scenario 2 and scenario 3 for all Models

Class Scenario 2 Scenario 3

Sn Sp Sn Sp

AlexNet Bacteria 92.98 95.48 73.55 84.08
Covid-19 93.15 99.20 90.41 98.89
Normal 42.74 77.33 34.19 74.84
Viral 69.59 90.98 43.24 81.29

Google-Net Bacteria 90.50 94.74 89.26 92.40
Covid-19 76.71 97.35 93.15 99.20
Normal 44.44 78.04 59.40 82.21
Viral 83.11 94.06 8.78 77.12

Vgg16 Bacteria 95.45 96.89 80.58 86.46
Covid-19 82.19 97.95 89.04 98.72
Normal 37.61 75.75 49.15 78.98
Viral 77.03 93.20 12.16 76.58

Vgg19 Bacteria 92.15 96.89 80.58 87.73
Covid-19 80.82 97.80 90.41 98.89
Normal 43.16 77.53 74.79 87.55
Viral 69.59 90.76 12.84 78.68

ResNet-18 Bacteria 94.63 96.45 75.62 83.70
Covid-19 93.15 99.20 93.15 99.21
Normal 59.40 82.85 44.02 77.72
Viral 58.78 88.85 20.27 76.95

ResNet-50 Bacteria 92.56 95.45 82.23 90.14
Covid-19 94.52 99.36 94.52 99.36
Normal 46.15 78.50 71.37 86.84
Viral 75.68 92.52 59.46 88.55

ResNet-101 Bacteria 95.87 97.20 88.84 92.86
Covid-19 91.78 99.04 95.89 99.50
Normal 44.44 77.89 29.91 73.63
Viral 65.54 90.17 44.59 83.16

Inception V3 Bacteria 96.69 98.01 90.50 93.52
Covid-19 94.52 99.36 95.89 99.52
Normal 59.83 82.97 65.38 84.97
Viral 76.35 93.12 29.05 8158

InceptionResNetv2 Bacteria 81.40 90.63 93.39 95.42
Covid-19 95.89 99.52 94.52 99.35
Normal 76.07 88.82 64.53 84.69
Viral 83.11 94.85 37.84 84.19

Squeeze Net Bacteria 98.35 98.73 54.55 76.94
Covid-19 93.15 99.20 94.52 99.35
Normal 38.03 76.03 51.71 79.89
Viral 51.35 86.76 43.24 80.69

Dense-Net 201 Bacteria 94.21 96.50 72.31 82.18
Covid-19 93.15 99.21 97.26 99.69
Normal 54.70 81.21 38.78 74.20
Viral 66.22 89.96 13.91 75.93

Xception Bacteria 97.11 98.34 95.87 97.38
Covid-19 94.52 99.36 94.52 99.39
Normal 66.67 85.45 24.71 70.05
Viral 82.43 94.85 38.41 80.82

Table 3  (continued)

Class Scenario 2 Scenario 3

Sn Sp Sn Sp

CNN-X (Our) Bacteria 94.21 95.78 83.47 89.25

Covid-19 91.78 99.05 94.52 99.35

Normal 33.33 74.43 44.44 77.70

Viral 58.11 88.08 39.86 82.89
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sensitivity of Inception-ResNet-V2 is again outperforms 
COVID-Net for bacterial, COVID-19, and viral infection 
classification.

In scenario 2, proposed CNN-X architecture is not per-
forming better than any of the 12 CNN models used if we 
take the overall classification error obtained from each CNN 
architecture into consideration, see 4th column of Table 5 
from the appendix. Nonetheless, CNN-X’s overall clas-
sification error is 0.341 which is comparable and close to 
Squeeze-Net and VGG19 with classification errors of 0.324 
and 0.303 respectively. In scenario 3, CNN-X with a clas-
sification error of 0.377 outperforms 7 CNN models which 
are ResNet101, Xception, VGG16, AlexNet, SqueezeNet, 
ResNet18 and DenseNet201 with classification errors of 
0.396, 0.418, 0.436, 0.443, o.446, 0.449, and 0.494 respec-
tively. Classification errors of scenario 2 and scenario 3 can 
be seen in Table 5 and Table 6 in appendix together with 
classification confidence and F1-score of each class. Table 4 

contain the elapsed time of training each of the 13 CNN 
models used here.

Next, we analyse qualitatively the performance of all 
CNN models used here to visually inspect the most discrimi-
nating regions on X-ray images used by CNNs. This step is 
critical so that radiologists can visualize the regions used by 
CNNs to predict pneumonia presence in input X-ray images.

CNN interpretability

There are many ways one can visualize the region(s) used by 
CNNs to predict the class label of an input image such as gra-
dient descent class activation mappings or global average pool-
ing class activation mappings and others [21, 43, 44].To inter-
pret the output decision made by any of the CNN architectures 
investigated in this study, heatmaps of the most discriminating 
regions generated and visualized for the input images in testing 
using the method introduced in [21] which is known as class 

Fig. 5  Visualization of X-rays images classified correctly by CNNs. a Original X-ray, b AlexNet, c GoogleNet, d VGG16, e VGG19, f 
ResNet18, g ResNet50, h ResNet101, i Inception V3, j InceptionResNet, k DenseNet201, l SqueezeNet, m Xception, and n CNN-X (ours)
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activation mappings (CAM). Using CAMs, one can highlight 
class specific distinctive regions used by CNNs that lead to its 
prediction. After fully training a CNN model, a testing image 
will be fed into the network and feature maps extracted from 
final convolutional layer. In what follows we briefly introduce 
the procedure of generating CAMs. Let Au(x, y) be activation 
of unit u of the last convolutional layer at a spatial position of 
(x, y) . Let

be average pooling operation and the input by the SoftMax 
layer is then can be defined as follows:

where l is the class label, wl
u
 is the weight of class l of the 

unit u . Here, wl
u
 highlights important of the activation Au for 

(1)Gu =
∑

x,y

Au(x, y)

(2)Sl =
∑

u

wl
u
Au

Fig. 6  Visualization of X-rays images classified incorrectly by CNNs. a Original X-ray, b AlexNet, c GoogleNet, d VGG16, e VGG19, f 
ResNet18, g ResNet50, h ResNet101, i Inception V3, j InceptionResNet, k DenseNet, l SqueezeNet, m Xception. And n CNN-X (ours)

Table 4  Elapsed Training time (in minutes) for all CNN models

CNN Architectures Scenario 1 Scenario 2 Scenario 3

AlexNet 41 486 56
Google-Net 82 1455 108
Vgg16 377 5295 378
Vgg19 407 6971 446
ResNet-18 80 1426 110
ResNet-50 195 2839 287
ResNet-101 312 5148 462
Inception V3 296 3866 387
InceptionResNetv2 451 13,589 818
Squeeze Net 41 641 59
Dense-Net 201 491 9301 603
Xception 467 6744 803
CNN-X (Our) 69 1642 96
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a given class l . Probability score output by SoftMax for a 
given class l can then be defined as follows:

Substituting Eq. (1) into Eq. (2) we obtain the following:

Then each class l activation maps can be defined at each 
spatial position (x, y) as follows:

Finally, substituting activation maps for each class label 
in Eq. (5) into Eq. (4) we obtain the activation output by 
SoftMax for each class label l as follows:

Hence, Ml(x, y) indicates the discriminative power of acti-
vation maps at the spatial grid (x, y) that leads to the decision 
made the CNN to classify the input image into class l . To 
allow comparison to the input image, bilinear up-sampling 
is then applied to resize activation map to the size of input 
images accepted by each CNN model.

In Fig. 5 we demonstrate the image regions used by CNN 
models that lead to a successful class prediction. It can be 
observed that in very few occasions the CNN algorithms are 
focusing on the frontal region of the chest (i.e. lung region) 
where we search for signs/features of COVID-19 and other 
infections. Rather, they are using either regions outside the 
frontal view of chest area, see 1st column of row (b) and 3rd 
and 4th column of row (e) of Fig. 5. Direct overlaps of hot 
spots of CAMs with texts can be seen in Fig. 5 especially 
in 1st column of row(b), 1st-3rd-4th column of row (e), 1st 
column of row (g) and 1st–4th columns of row (j). Medical 
device traces, on the other hand, can also be used by CNNs 
on medical images to derive their decision as it can be seen 
in Fig. 5, 1st column of rows (b, c, g–j).

Furthermore, ranking the 13 CNN architectures deployed 
in this study according to CAMs will provide a new 
approach of using CNN architectures that are not solely 
based on classification results obtained. According to the 
intersection (overlap) between the lung region and CAMs 
hot spot distribution, we ranked the 13 CNN models into 7 
categories (R1 being good and R7 being worst) as follows:

R1: ResNet50.
R2: InceptionV3.
R3: ResNet18 and InceptionResNet.

(3)Pl = exp

(

∑

u

wl
u
Au

)

×

(

∑

u

exp

(

∑

u

wl
u
Au

))−1

(4)Sl =
∑

u

wl
u

∑

x,y

Au(x, y) =
∑

u

∑

x,y

wl
u
Au(x, y)

(5)Ml(x, y) =
∑

u

wl
u
Au(x, y)

(6)Sl =
∑

x,y

Ml(x, y).

R4: ResNet101 and Xception.
R5: GoogleNet and CNN-X.
R6: DenseNet201, SqueezeNet and AlexNet.
R7: VGG16 and VGG19.
In the same vein, incorrect classification may be caused 

by these artifacts, see Fig. 6 where we show examples of 
mis-classified images by CNNs and their corresponding 
CAMs to highlight the most discriminating regions lead to 
CNN decisions. For example, 4th column of most of the 
rows in Fig. 6 is an X-ray image where texts on medical 
images lead to an incorrect classification decision by CNNs. 
Specifically, there is a letter R in the top left corner and small 
texts in top-right corner of a viral X-ray image whereby most 
of the CNN architectures cheated by using features of these 
texts to obtain their final prediction.

In row (j) of Fig. 6, column number 3, we can see clearly 
that InceptionResNet used the small amount of the back-
ground in the image to derive its incorrect decision. This 
conclusion is mainly because there is a direct overlap 
between CAMs and the background region present in this 
image. First Column of row (e) and row (m) in Fig. 6 is a 
good example where regions outside ROI have been used to 
obtain final classification prediction by VGG19 and Xcep-
tion architectures.

Therefore, we conclude that using X-ray images as it is, 
without preprocessing to segment the region of interest and 
remove some hidden noise, is not a good practice and result 
in a biased and misleading classification prediction.

In other words, we want to have a CNN model that learn 
the symptoms (i.e. features) of COVID-19 disease and its 
classification prediction is solely based on these features.

Discussion and conclusion

This paper presented a critical analysis for 12 off-the-shelf CNN 
architectures, proposed originally for natural image analysis, for 
the purpose of aiding radiologists to discriminate COVID-19 
disease based on chest X-ray images. We also proposed a sim-
ple CNN architecture, with fewer parameters than many of the 
well-established CNN architectures, that can outperform 7 CNN 
architectures such as Xception, ResNet10, VGG16, AlexNet, 
SqueezeNet, ResNet18 and DenseNet201 when trained on a 
small dataset of images. Overall classification error for each of 
the 13 CNN architectures deployed in our investigation to help 
radiologists to diagnose COVID19 can be seen in Tables 5 and 
6 for scenario 2 and 3 respectively.

Furthermore, beside quantitative analysis of CNNs, we 
qualitatively assessed CNN methods investigated in this 
paper using class activation mappings where we visualize 
the regions on X-ray images utilised by CNNs to derive their 
final prediction scores. We demonstrated that deep learning 
predictions of COVID-19 disease are not reliable when clear 
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artefacts such as texts and medical device traces are present 
on the input X-ray image. In the same vein, we demonstrated 
that CNNs will use regions/features in the input image which 
are outside the ROI and have no relation with COVID-19 
pneumonia, see Figs. 5 and 6 for more than one example as 
evidence.

Therefore, positive or negative class predictions by 
CNN model must be treated cautiously unless qualitatively 
inspected and approved by radiologists. Whenever CNN 
models used/learnt features inside ROI and these features 
lead to the final decision by CNN algorithms, then and only 
then radiologists can rely on such diagnostic decisions by 
CNNs.

Figures 5 and 6 contain multiple examples where texts, 
medical device traces and irrelevant X-rays image regions 
(i.e. backgrounds) used by CNNs to build their prediction 
results. It is important to note that, one needs to design 
machine learning algorithms based on radiologist opinions 
and not fully depend on data-driven mechanisms.

One limitation of current study is the lack of using mul-
tiple quality assessment tools to analyse CNN models deci-
sions beside class activation mappings. To address this issue, 
we need to expand the list of methods to qualitatively ana-
lyse CNN predictions to include gradient CAMs and sali-
ency maps.

Future research directions, and in progress work, contain 
segmenting the lung region from chest X-rays and removing 
other artefact such as text and medical device traces on chest 
X-rays. We have not encountered any study that segmented 
the lung region in X-ray images and then feed it to CNN 
models, while this is considered as one of the important 
areas that needs to be further researched. The reliability of 
lung segmentation approaches is another problem that needs 
to be addressed and further researched by machine learning 
community. We have also not encountered, to the best of 
our knowledge, any study incorporated clinical and cardiac 
features with deep learning models or used cardiac features 
alone to prognosticate COVID-19 pneumonia. Data from 
other sources need to be incorporated to build CNN models 
that can be generalized and not biased towards a specific 
country, such as China or Italy, or a targeted population.
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Appendix 1

For Multi-Classes:

where

Confidence Interval of Classifier’s performance is equal to

where

See Appendix Tables 5 and 6.

Sensitivity = TP∕(TP + FN)

Specificity = TN∕(TN + FP)

F − measure (F1) =
2 × Precision × Recall

Precision + Recall

Precision = Sensitivity

Recall =
Sumof all True Positive (TP)

Sumof all True Positive + Sumof all False Negative (FN)
.

Error ± const × sqrt

(

error × (1 − error)

n

)

Error =
Number of incorrect predictions

Total predictions
,

Constant = 1.96 (for%95 confidence)

and n = number of observation used to evaluate themodel.
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Table 5  F1-Score and Classification confidence interval for scenario 
2

Class F1-Score Error Confidence 
Interval

Min C Max C

AlexNet Bacteria 79.93 0.288 0.262 0.331
Covid-19 93.79
Normal 58.82
Viral 59.54

Google-Net Bacteria 87.25 0.280 0.239 0.306
Covid-19 86.82
Normal 61.36
Viral 58.02

Vgg16 Bacteria 78.97 0.293 0.256 0.325
Covid-19 88.89
Normal 53.50
Viral 66.09

Vgg19 Bacteria 79.36 0.303 0.298 0.370
Covid-19 87.41
Normal 59.59
Viral 57.54

ResNet-18 Bacteria 79.93 0.250 0.221 0.287
Covid-19 93.15
Normal 73.74
Viral 58.39

ResNet-50 Bacteria 82.50 0.264 0.239 0.306
Covid-19 97.18
Normal 62.61
Viral 61.54

ResNet-101 Bacteria 79.73 0.283 0.252 0.320
Covid-19 93.71
Normal 60.64
Viral 59.51

Inception V3 Bacteria 87.15 0.202 0.176 0.237
Covid-19 97.18
Normal 73.88
Viral 67.26

InceptionResNetv2 Bacteria 85.84 0.185 0.160 0.220
Covid-19 96.55
Normal 82.79
Viral 68.33

Squeeze Net Bacteria 76.16 0.324 0.298 0.370
Covid-19 95.77
Normal 54.60
Viral 50.50

Dense-Net 201 Bacteria 84.60 0.251 0.236 0.303
Covid-19 96.45
Normal 69.75
Viral 56.48

Table 5  (continued)

Class F1-Score Error Confidence 
Interval

Min C Max C

Xception Bacteria 90.91 0.165 0.138 0.194

Covid-19 97.18

Normal 78.99

Viral 71.76
CNN-X (Our) Bacteria 75.12 0.341 0.317 0.390

Covid-19 95.04
Normal 48.60
Viral 52.92
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