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Abstract

Electromyography (EMG) is a diagnostic technique allowing for the detection of signals generated by changes in electrical
potentials of striated muscles. The application of this technology is becoming an increasingly popular subject of scientific
research. With the appearance of new devices retrieving EMG data, novel methods of its processing for various purposes
are being developed. One such device is the Myo movement controller, produced by Thalmic Labs (now North). The device
has been used for the analysis of muscle activation levels in patients with "tennis elbow" and "golfer’s elbow"—conditions
of upper limbs which usually result from occupational injuries. The process of their rehabilitation is complex and requires
a continuous monitoring of its progress. The data obtained by means of the Myo controller was used for pattern recognition
of an injured hand with relation to the healthy one. The study involved examining ten subjects, including five controls. The
results indicate that the muscle activation force is considerably lower in injured individuals. The arithmetic mean for the 6
analyzed motions in the injured group is 38.54% lower. The SmartEMG application (https://www.smartemg.com) enables
the implementation of procedures performed during an examination as well as those involved in the management of the
collected recordings. The study produced satisfactory results, which indicates the possibility of using the Myo controller in
the treatment of elbow enthesopathy.
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Introduction signal comes from. Apparatus consisting of cables con-

necting electrodes with the signal amplifier restricts the

Electromyography (EMG) is a concept related to electro-
physiology, an area encompassing the electrical activities
in the body. It is a method of signal detection based on the
changes in electrical potentials of striated muscles. Elec-
tromyographic readings are not easy to interpret, because
they are influenced by many factors. The quality of the used
equipment and the high complexity of muscles in the body
hinder unambiguous determination of where the registered
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freedom of movement, impeding the research [1]. Surface
electromyography, which is more commonly and more fre-
quently applied, is free of these defects. Electrodes placed
on the skin surface carry no risk of infection, do not cause
pain or unpleasant adverse effects, and do not require medi-
cal supervision [2]. However, they provide unspecific data
which is a sum total of signals from many sources, gener-
ated by different motoric units which are located within the
electrode sensitivity range. It is also difficult to determine
which muscle group sends which signal, which is a definite
drawback. To interpret such results more accurately, sets of
multiple surface electrodes are used together with advanced
algorithms of signal processing and pattern recognition.
There are many professional devices which were developed
for specific scientific studies, e.g. those concerning electro-
myographically controlled prostheses [3] or the development
of a system for classification of gestures with the use of a 3D
accelerometer [4]. Also, a small portable wireless prototype
of a system using EMG electrodes was developed for the
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electrostimulation therapy of patients with motor paraly-
sis [5]. Electromyographies are used in the case of paresis
following a stroke [1], for electrostimulation of muscles in
patients suffering from hemiplegia [5] and in many other
cases [6—13].

One of those advanced systems is Noraxon Myosystem
1400 L [6]. It is an example of a precision apparatus that is
fully wired, which limits the possibilities of research mainly
to static measurements. There are also some expensive wire-
less sensors which allow a greater freedom of movement
[14], and portable data recorders.

In 2014, Thalmic Labs (now North), a Canadian start-up,
launched the Myo movement controller. The Myo movement
controller [15] differs from the above-mentioned devices
mainly in that it is not medical equipment.

The Myo movement controller is an armband, 48 mm in
width and 11 mm in thickness (at its thickest point), which
weighs 93 g and is available in black and white colors. Myo
consists of eight elements: three larger parts and five smaller
ones. They are connected by a rubber frame which extends
while the whole device is attached to the forearm. The three
notably larger segments contain computing units and an
energy source. The device is powered by two lithium-ion
batteries with a capacity of 260 mAh each, which enables
continuous operation for a whole day. The device operates
with an ARM Cortex M4 processor. Each of the 8 elements
is an electromyographic signals sensor containing 3 metal
electrode contacts, and a signal amplifier. The device also
features a 9-axis IMU unit, which is a module measuring
spatial movements, containing a 3-axis gyroscope, 3-axis
accelerometer and 3-axis magnetometer. Thus, the controller
uses two sources of information: EMG sent with a frequency
of 200 Hz and IMU sent with a frequency of 50 Hz [15, 16].
Feedback is provided to the user by a vibration engine with
different levels of vibrations. The operation of the control-
ler is based on the interpretation of spatial hand gestures
and arm movements. Myo by default recognizes only 5 user
gestures (fist, fingers spread, wave in, wave out and double
tap). The device has been the subject of numerous works
[15, 17-20]. Its production and sale officially ended as of
Oct 12, 2018, although Myo customers are still supported.

The aim of this study was to compare the normalized
muscle activation force in patients with tennis elbow and
golfer’s elbow with the muscle activation force in healthy
individuals. The study involved an analysis of fist grip, palm
hyperextension with resistance, palm flexion with resistance,
pressing the hand against the occiput, pressing the hand
against the sternum, fingers spread with resistance.

The treatment of these injuries is a complex process
and requires a continuous monitoring of the rehabilita-
tion progress and the effects of invasive procedures. The
development of a tool to help determine the condition of
the patient by recording the results in a digital form may
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facilitate the process of supervision and assessment of the
effectiveness of the course of treatment.

Tennis elbow

“Tennis elbow” is one of the most common injuries of
the forearm [21]. It is diagnosed most often in persons
between 36 and 65 years of age, regardless of sex, and it
affects 1.3% of the general population [22]. It is estimated
that 40-50% of all recreational tennis players will suffer
from tennis elbow in their lives [23]. However, the prob-
lem is not restricted only to tennis players. The following
factors contribute directly to the injury: work with heavy
tools, activities such as the manual fixing of screws, mov-
ing heavy objects and movements involving elbow and
wrist extension [22]. The cost of surgical treatment of ten-
nis elbow (in the USA) is 9.8 times higher than the cost
of treatment without surgical procedures and amounts to
approximately 6000 USD [24].

Patients may complain about pain in the area of lat-
eral epicondyle of the humerus while holding objects,
or about a weakened grip strength. Hypersensitivity of
this region occurs along the wrist extensor. The results
include decreased strength, longer electromechanical reac-
tion time, and a decreased RFD index, which determines
the maximum body strength in a time unit, i.e. the pace of
strength development. In dynamometric testing, patients
with a diagnosed tennis elbow present notably lower free-
from-pain grip strength in the position of extended elbow
than those with no such injury [25]. The diagnosis is
based on tests involving the lifting of a chair, mug or bot-
tle in positions that engage the work of the wrist extensor
against assigned resistance, and also the extension of the
middle finger with resistance [23].

Depending on the degree of advancement of enthesop-
athy of the lateral epicondyle of the humerus, different
methods of treatment are applied. In 90% of all cases,
non-surgical treatment proves to be effective. It consists
of physiotherapy, administration of anti-inflammatory
medication, corticosteroid injections, or platelet-rich
plasma injections. Physiotherapy includes the stretching of
wrist extensors, the improvement of blood flow in tissues,
eccentric exercises therapy (exercises in which muscles
work more during extension than during flexion) [26, 27],
stabilizing the elbow part and wrist, and various methods
of physical therapy [23, 28]. Corticosteroid injections are a
solution that brings short-term relief. Surgical procedures
are used when no improvement occurs for 6-12 months
despite the application of different techniques of non-inva-
sive treatment or minimally invasive treatment.
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Golfer’s elbow

“Golfer’s elbow” causes pain where wrist flexors attach
to the medial epicondyle of the humerus. The pathogen-
esis of this injury is similar to enthesopathy in the case of
“tennis elbow,” but it concerns the wrist flexors and other
flexor muscles in the forearm. Inflammation and tissue
degeneration are also present. Pain occurs during resisted
wrist flexion, finger flexion, e.g. when shaking hands, or
forearm pronation.

This injury occurs much less frequently than tennis
elbow, with approximately 0.4% of the general population
being affected [21]. It occurs most commonly in men in
the dominant hand [29]. It is caused by excessive muscle
strain while performing activities against resistance, par-
ticularly when the activity is of a monotype nature, e.g.
working with a monkey wrench, screwdriver, hammer, or
weight lifting. While the activities are similar to those
that lead to tennis elbow, here the overload of the tendons
of the medial epicondyle is largely caused by the flex-
ion movements of the wrist against resistance. Both types
of enthesopathy of the humeral epicondyle are common
among meat cutters, chefs and machine industry workers.
Athletes who throw objects with particular force exploit
their flexor muscles while performing a throw. For base-
ball players it is the medial epicondyle itself that is most
prone to injury [23]. However, as with tennis elbow, the
etiology of the injury very often lies in recreational activi-
ties. The manner of diagnosing this injury is similar to that
of tennis elbow and so is the treatment.

Methods
Characteristics and processing of EMG signal

Muscles are mainly responsible for movement, posture
and heat generation. They can be divided into three types:
smooth muscles, which are involuntary and are responsi-
ble for actions such as bowel movements, cardiac muscle
(unique in its structure) and skeletal muscles. The latter
are striated muscles, responsible for the motility of the
skeleton, including posture and limb movements. Muscles
receive signals sent from the brain through the nervous
system. These signals are transmitted via the spinal cord
right to the executive unit. Each muscle is innervated by
a single motor neuron. A signal from a single motor neu-
ron causes the muscle fibers connected with it to contract,
forming a coherent, integrated motor structure [1, 19, 20].
This signal triggers a sequence of electrical and chemical
reactions leading to the polarization and depolarization of

muscle fibers. As a result, an electromagnetic field, or the
so-called action potential, is created in each fiber, which
can be detected using electromyographic equipment. A
surface EMG electrode receives an aggregated signal of
action potentials coming from many various muscles that
occur in the range of its sensitivity. The reading is then
a complex electromagnetic field in a given time unit [1,
20]. The frequency of the detected EMG signal is usually
within the range of several to several hundred Hertz and
before the amplification reaches the amplitude within the
range of zero volts to millivolts. This signal is then ampli-
fied even several hundred times, which is why it is essen-
tial to obtain good signal quality before amplification with
the least possible level of noise. The obtained EMG data
may be presented in the form of an amplitude graph [mV]
depending on time [s], which makes it possible to analyze
aggregated muscle activation values in time. It is also pos-
sible to present such data in the form of a graph show-
ing the interrelation between muscle activation impulses
and frequency [Hz]. This allows one to detect the number
of muscle activation impulses that occur for the respec-
tive signal frequencies. Consequently, we can determine
which muscle groups are working harder, knowing that
some muscles are activated at lower frequencies, while
others—at higher ones [20, 30].

SmartEMG

To recognize patterns characteristic of golfer’s and tennis
elbow, a web application—SmartEMG—was developed.
The application was written using open-source technologies
commonly referred to as “MEAN”, i.e. MongoDB, Express.
js, Angular]JS and Node.js. These technologies create an
environment in which JavaScript is the main application
language, both on the client and server side. MongoDB is
a NoSQL type database which stores documents in a JSON
type format. The graphic composition of the web applica-
tion SmartEMG together with its functionality is developed
in a user-friendly manner, in compliance with good practice
of UX Design and affordance, which allows the recipient to
understand the function of a given element with ease [31].
The dark theme of the portal is aimed at reducing eye strain,
which can be caused by the commonly used bright themes.
The structure of the whole portal is responsive, which
means it displays correctly on mobile devices. SmartEMG
(https://www.smartemg.com/) enables connection to Myo
Connect through WebSocket, as well as the recording and
management of data. The application supports the registra-
tion of multiple users, creation of patient database and the
development of patient health check history. The portal was
developed to create a physician-friendly tool. It has a sim-
ple and clear design and can be operated by those who are
not necessarily computer-savvy. Checks may be performed
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concurrently by many physicians on different patients, and
sensitive operations (such as the deletion of patients) can be
performed only with relevant authorizations. Upon logging
in to the SmartEMG system, the user can access data from
all the Myo controller sensors in real time and record them
while performing diagnostic movements. During the record-
ing process it is possible to mark the moment at which the
pain occurs. Movements and patients are added separately
in a separate system section. Recorded data may then be
viewed in a relevant system section or downloaded through
APL.

EMG data processing

Three methods of computing the maximum values of muscle
activation force were prepared. The first one consists in com-
putation the sums of waveform lengths [3]. This method is
expressed with the formula below (1), where x(k) indicates
a given sample, x(k— 1) is a previous sample and N is a
number of all samples in a given window:

N

EMGyy, = ) |x(k) = x(k — 1)|
k=2

ey

For the given wavelength window size, the script com-
putes the signal for each of the eight sensors in a given
movement. The obtained wavelength sum contains the
processed record of all eight sensors. The sliding window
moves with each sample and computes RMS over the data in
every iteration. The next method used is Root Mean Square
(RMS), expressed by the formula below (2), where x(k) is
a given sample and N is the number of samples in a given
window:

@

For the application of formula (2), the dsp.MovingRMS()
function available in Matlab was used. The step() function
processes raw EMG data with a set method and returns the

data with an approximation of muscle activation strength.
The third method of processing is a combination of the first
two methods described above. The raw signal is first pro-
cessed with the WL method (1), and then with the RMS
method (2). In this case the step function is activated on
wavelengthSum data processed earlier with the WL method.
Upon obtaining the results of all three methods, the sensor
with the highest strength value is determined, and its maxi-
mum value is established. The operation is repeated for each
of the methods.

Differences are computed based on all the gathered,
processed and structured data. The WavelengthSumMax
(WL) and wavelength SumRMSMax (WL and RMS) val-
ues exceed the scale of 0—128 for rawRMSMax. This is the
consequence of applying the WL method, which consists in
the summing up of samples in a given window. These values
are used for the computation of the ratio of one hand versus
the other, so the change of scale makes no difference here.
Based on such data structure, the difference between the
activation strength of both hands is calculated. The main and
final determinant of the analysis is the ratio of the dominant
hand values to the values of the non-dominant hand of the
patient.

Results

The research was carried out in a group of ten individuals
referred to as “patients” in the portal, five of whom suffer
from golfer’s elbow and/or tennis elbow, and the remain-
ing five constitute a control group with no injury (4 males
and 1 female). An orthopedist examined the patients with
a diagnosed enthesopathy of the elbow. Only the patients
with enthesopathy in one hand were selected. Table 1 pre-
sents information on the disease of the patients. Among five
patients there was one person (P3) whose injured hand is
non-dominant, which is a less frequent case [25, 27, 29].
The study consisted in recording a motor activity of
each patient using the Myo in SmartEMG portal. Each
examined person performed 6 motions with their left hand
and 6 motions of the same type with their right hand. The

Table 1 Patient data

Patient ID P1 P2 P3 P4 P5
Diagnosis Golfer’s elbow  Golfer’s Tennis elbow Tennis elbow  Tennis elbow
and tennis
elbow
Treatment None None During rehabilitation None After corti-
costeroid
injection
Sex Male Male Female Male Female
Pain in the hand  Right Right Left Right Left
Dominant hand  Right Right Right Right Left
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Table 2 Motions taken into consideration in research

Fist grip
Palm hyperextension with resistance

Movement of clenched fist in an intermediate position
Movement of palm hyperextension of the hand in intermediate position, without clenching fingers,

with resistance in the hand of the examiner

Palm flexion with resistance

Movement of palm extension of the hand in intermediate position, without clenching fingers, with

resistance in the hand of the examiner

Pressuring the hand onto the occiput
Pressuring the hand onto the sternum

Fingers spread with resistance

Pressuring with fingers of the extended hand to one’s occiput with elbow waved out to the side
Pressuring with fingers of the extended hand just over one’s sternum, with elbow waved out to the side
Extension of fingers with arranging them one to another, and with applied resistance

description of motions in question is presented in Table 2.
Each of the indicated motions was performed with a maxi-
mum strength, within the pain-free range. In the case of an
injured arm, the examined person performed the motions
with a gradually increasing intensity until reaching the pain
threshold. To facilitate the detection of this moment, the
examined person had performed a prior non-registered test-
ing motion. Between each motion, a minimum of 30 s break
was maintained to allow the muscles to regenerate.

Discussion

The EMG signal from the Myo controller consists of sam-
ples measured with a frequency of 200 Hz and reaching the
values within the range from — 128 to 127. The raw EMG
data was processed with the help of three methods: the RMS,
the sum of wavelength (WL), and a method that combines
the first two (WL-RMS). Then, the ratio of the activation
strength of the dominant limb muscle was assessed in

Fig. 1 RMS approximation of
60 .

relation to the non-dominant one. This helps to determine
the proportion of the strength of both hands in healthy peo-
ple and those with enthesopathy of the lateral and/or medial
epicondyle.

Figure 1 presents EMG data processed with the RMS
method for each sensor. As we can see, some of the sen-
sors show significantly higher activity than the others. This
results from a stronger operation of muscles in a given part
of the forearm. Thus, it is possible to locate the part of the
forearm with the biggest activation strength. In this study,
the sensor with the strongest signal for each movement of
both hands is selected.

The correlations between the described methods are
shown in Fig. 2. The different window sizes (100 and 200
samples) were tested. The bigger the size of the window, the
smoother the function, though that at the cost of losing the
particulars of local extremes. A too big window also sup-
presses the global extreme when it is located at the begin-
ning or at the end of the recording, when the movement
has not yet been performed but the recording is already on.

RMS values from all 8 sensors

activation strength for each of
eight sensors
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Activation strength of both hands: fist grip
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Fig.2 Overview of all P1 patient movements, WL-RMS method

All three methods clearly display the outline of the mus-
cle activation force. The RMS method with a 200-sample
window presents an accurate level of detail and approxima-
tion. A stronger emphasis on abrupt changes characterizes
the WL method with a 100-sample window. The WL-RMS
method, with 100-sample windows, seems to combine some
of the advantages of the other two methods. It also gives the
smoothest graph while still clearly reflecting the variability
of the signal. However, just like in WL, the scale without
amplitude unit values changes.

By grouping the movements into left-right pairs, it is
possible to observe their activation force. Figure 2 shows
the results for patient P1 (Table 1) processed by the WL-
RMS method. This patient’s injury is located in his dominant
right hand. It is visibly weaker than his non-dominant left
hand. It can also be seen that some of the movements are
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Activation strength of both hands: palm flexion with resistance
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significantly different from others. In these movements the
wrist flexors are more active and the injured hand produces
worse results. It can then be concluded that the patient suf-
fers from golfer’s elbow, which is compliant with the rel-
evant medical diagnosis.

Comparison of the strength of both hands

What poses a significant problem in the processing of EMG
data is the normalization of signals. The solution to this
problem consists in comparing the results of the patient’s
injured hand to his healthy hand, which serves as a reference
point. To determine whether the ratio of both hands deviates
from the standard, it was checked what proportions occur
in healthy people. For this purpose, a control group was
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Table 3 Comparison of

Movements of healthy subjects
methods based on average

RMS (%) WL (%) WL RMS (%) Arithm. mean (%)

results for the control group Fist grip

examined, their results being presented in Table 3. These are

100.35 92.29 92.50 95.05
Palm hyperextension with resistance 104.41 109.27 109.10 107.59
Palm flexion with resistance 117.07 116.17 117.31 116.85
Pressuring the hand onto the occiput 109.91 107.19 106.64 107.91
Pressuring the hand onto the sternum 112.69 114.71 115.43 114.27
Fingers spread with resistance 105.24 101.59 102.41 103.08
Arithm.mean 108.28 106.87 107.23 107.46

i &
Ps (©)

percentage values expressing the dominant to non-dominant
hand ratio. The values in this table are arithmetic means of
the results from all three methods. The arithmetic mean of
the strength of all movements for WL RMS equals 107.23%,
which means that on average the dominant hand in healthy
people is stronger than the non-dominant hand, and this is
the percentage of its activation force. The average for all
methods equals 107.46%.

The same calculations were performed on the group of
injured patients. Table 4 presents the average dominant to
non-dominant hand ratio for each patient. In Table 4, the
case of patient P3 is distinctive, because its values signifi-
cantly exceed 100%. Patient P3 suffers from enthesopathy in
his left hand, but his right hand is the dominant one, which
is a less frequent case.

This means that the dominant to non-dominant hand ratio
increases. Thus the result confirms the medical diagnosis of
P3 patient. In the remaining patients the results also match
the expectations. For P3 patient it is possible to calculate the
value proportionate to the other patients.

In this case the method of calculation is expressed in
formula (3), where x means the percentage determinant for
the patient with a non-dominant hand injury, a means the
average percentage value of the dominant-non-dominant
hand ratio in healthy people (Table 3), and p; is the already
computed ratio of the dominant healthy hand to the non-
dominant injured hand:

The x value then describes ratio in which the injured
hand is weaker with reference to the average, healthy hand
strength ratio.

Table 4 contains results for patients and a column for
patient P3 computed according to the formula given above.
PS5 patient has the best results. This patient was examined
two weeks after being administered a corticosteroid injec-
tion, which might have influenced these measurements.

C3 patient (marked) is a particular case of an injury in
the non-dominant hand. A/P3 means the average of the ratio
of healthy dominant to healthy non-dominant divided by
P3 value.

Table 5 presents the results for patients and is analogous
to Table 3 for the control group. The average activation
strength amounts to 68.33%, which is compliant with the
relevant medical diagnosis. The values significantly deviate
from the previously set determinant 107.46% for a healthy
pair of hands. At this stage, we can also see which motions
in particular make the differences between the injured and
the healthy hand most pronounced. The “pressing the hand
against the occiput” motion as well as the “pressing the
hand against the sternum” motion are clearly at the patients’
pain threshold. The advantage of these motions is the fact
that when exerting resistance, the patient does not require
the examiner’s assistance. In these motions, the examined

Table 4 Results for injured
patients, the WL-RMS method

Patient movements

P1 (%) P2(%) P3(%) P4(%) P5(%) Movement
arithm. means

(%)

Fist grip

Palm hyperextension with resistance
Palm flexion with resistance
Pressuring the hand onto the sternum
Pressuring the hand onto the sternum
Fingers spread with resistance

Average patient result

66.71 92.29 96.64 101.88  88.94 89.29
63.72 85.22 85.51 47.09 77.82 71.87
92.98 48.08 61.63 39.95 87.87 66.10
28.68 61.96 44.06 61.38  86.35 56.48
47.03 37.05 67.37 4278  79.59 54.76
9342  45.99 71.86 67.70 78.42 71.48
65.42 61.77 71.18 60.13  83.16

Arithm. mean of the activation strength of the dominant hand 68.33% versus non-dominant
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Table 5 Results for all three
methods, the WL-RMS method

Patient movements RMS (%) WL (%) WL RMS (%) Arithm.mean (%)
Fist grip 85.97 90.70 89.29 88.66
Palm hyperextension with resistance 74.81 72.50 71.87 73.06
Palm flexion with resistance 68.14 68.21 66.10 67.49
Pressuring the hand onto the occiput 60.11 56.85 56.48 57.81
Pressuring the hand onto the sternum 53.50 54.78 54.76 54.35
Fingers spread with resistance 72.38 72.59 71.48 72.15
Arithm. mean 69.15 69.27 68.33 68.92

person exerts resistance against his/her hand himself/herself
with their own body.

With such data we can compare both studied groups.
Table 6 presents the difference between the ratios obtained
before. Muscle activation strength in injured individu-
als is clearly lower than in those without injury. The fist
grip movement showed less visible differentiation between
healthy and injured individuals in relation to the other
motions.

Conclusions

SmartEMG enables the implementation of procedures per-
formed during an examination as well as those involved
in the management of the collected recordings. All of the
users operated the portal efficiently, which means that the
intended level of intuitiveness of the graphical interface
was achieved. The Myo controller performed well with ref-
erence to its mobility. The ease with which the device can
be carried, attached and taken off as well as its wireless
Bluetooth connection are a great advantage, particularly
in relation to other available devices that collect EMG
surface data. The combination of Myo’s mobility with the
multi-platform SmartEMG web-application significantly
facilitated the research conducted in various locations.
This also gives grounds to consider further development of
this system with respect to telemedicine. Myo’s drawback
is its lack of units of EMG signal amplitude. This may
be a consequence of the complex data processing inside
the controller itself. However, the data is characterized by

surprising accuracy, considering the price of the device, its
dimensions and the fact that no conducting gel is required.

The data processing functions in Matlab proved conven-
ient and scalable in use. They enable an automatic down-
load of EMG recordings of patients from the SmartEMG
portal. The results are processed and returned in the form
of.xls sheets. Scripts offer a display of data in graphs and
the program’s console. Three methods of data processing
were used, and each of them brought similar, anticipated
results.

The analysis of processing results confirms that the Myo
controller and the developed tools, constitute a system capa-
ble of giving correct information with regard to the con-
dition of patients with tennis elbow and/or golfer’s elbow.
The analysis results are satisfying because they reflect the
presence of injury in a studied group of patients and also
confirm that the same methodology did not show injury in
a control group. There are grounds to consider the use of
Myo to diagnose conditions related to enthesopathy in the
humero-ulnar joint, as it is possible to determine which mus-
cle groups are weakened.

It has been proven that the developed solutions effectively
identify patients with injuries and that they record the status
of their muscle activation force. It would then seem appro-
priate to consider using the system to monitor the rehabilita-
tion of the described injuries over a longer period of time.
This type of digital representation of the patients’ forearms
condition offers more possibilities of processing and evalu-
ation of their present and former condition than traditional
methods which make use of the analog dynamometer or sub-
jective assessment of the pain threshold.

Table 6 Difference between

Movements Control group (%) Patients (%) Difference

the results of control group and

patients Fist grip 95.05 88.66 6.39% points
Palm hyperextension with resistance 107.59 73.06 34.53% points
Palm flexion with resistance 116.85 67.49 49.36% points
Pressuring the hand onto the occiput 107.91 57.81 50.10% points
Pressuring the hand onto the sternum 114.27 54.35 59.92% points
Fingers spread with resistance 103.08 72.15 30.93% points
Arithm. mean 107.46 68.92 38.54% points
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Also, a group of six motions used in the study was deter-
mined. The “fist grip”, popular in literature, proved to be a
less significant in differentiating between healthy and injured
individuals. The other motions show those differences
effectively. The proposed motions of pressing against the
occiput and the sternum differentiated between the healthy
and injured individuals at the level of index of 50.10% and
59.92% respectively. This is a good result, which confirms
the applicability of these motions. Potentially, they could
find their application in telemedicine, as they do not require
assistance in exerting resistance during movement.

Relevant literature shows a growing interest in the Myo
controller, especially in the areas of pattern classification
and robotics [32-35]. Articles on the subject are concerned,
among others, with the controlling of a robotic arm via the
wearable Myo armband using a muscle gesture system [34].
Also, an EMG pattern classification control for an exoten-
don device has been proposed [35]. A paper has been writ-
ten on addressing the development of a testing algorithm
for pattern-recognition based strategies to control a myoe-
lectric prosthesis [36]. At the time of writing this article,
the authors had not encountered any studies regarding the
application of the Myo controller in the treatment of elbow
enthesopathy.
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