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I recently attended the 33rd European Society for

Radiotherapy and Oncology (ESTRO) conference in

Vienna, Austria (along with approximately 5,000 others).

While watching the scientific talks, which included an

excellent Emmanuel van der Schueren Award Lecture from

Prof. David Thwaites (University of Sydney), I was struck

by the number of opportunities for medical image analysis

in this field. In this editorial I’d like to briefly describe and

highlight some of these opportunities.

Medical image analysis is an exciting field that com-

bines aspects of computer science, physics, biology, and

mathematics for diagnosis, staging, treatment planning, and

research. Image modalities have a variety of dimensional-

ities (generally 2D, 3D and 4D) and involve analysis of

x-rays, digitally reconstructed radiographs (DRRs), elec-

tronic portal imaging (EPID), computed tomography (CT),

cone beam CT (CBCT), magnetic resonance imaging

(MRI) and positron emission tomography (PET). Different

image modalities are often combined. Some example

medical image analysis projects from our Biomedical

Imaging Group at the Commonwealth Scientific and

Industrial Research Organisation (CSIRO), located at the

Royal Brisbane and Women’s Hospital, range from auto-

matic knee cartilage thickness estimation from MRI [1];

early detection of Alzheimer’s disease using imaging bio-

markers [2]; early prediction of treatment response in

advanced gliomas using PET [3], quantitative analysis of

brain white matter using diffusion MRI [4]; automatic

prostate segmentation [5], and automatic quantification of

spine intervertebral disc degeneration from MRI [6].

The three main components of medical image analysis

are image registration, segmentation (or auto-contouring)

and image reconstruction. Reconstructed images may also

require pre-processing, such as noise reduction, artefact

removal (such as metal in CT, or correcting intensity

inhomogeneity in MRI), or correcting CBCT intensities to

enable CBCT-based dose calculations (by segmentation of

tissues, or deformable registration). The DICOM-RT

standard enables the transfer of contours between com-

mercial treatment planning systems and external software

for registration and segmentation.

Image registration involves finding an optimal trans-

formation between two images. This transformation can be

optimised using either the similarity metric between image

intensity (using normalised mutual information, correla-

tion, or mean squared difference) or features (distance

between points or surfaces). The image transformation can

be either global (rigid or affine, allowing translation,

rotation, scaling and shearing); or non-rigid (often called

deformable or non-linear) where the change in position of

each voxel in the moving image is defined by a
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deformation vector. Two of the most frequently used non-

rigid registration algorithms are free form deformation [7]

and the non-parametric demons algorithm [8]. The most

accurate type of registration algorithm (and parameters) to

use depends on the application. Different methods may be

required for mono-modal (e.g. between CT scans) or multi-

modality registration (e.g. MRI to CT). When contours are

available on both the moving and target images, it is pos-

sible to improve registration results using structure-guided

registration methods [9].

One area of active research is to validate the accuracy of

these algorithms, particularly in commercial software.

Spatial accuracy can be assessed with physical phantoms

(one talk from ESTRO described the use of ex vivo porcine

bladders), contour propagation between registered images,

and registration errors between known landmark points.

Work presented at ESTRO included CT-MR registration

for prostate treatment planning, ex vivo pathology to

in vivo registration (for cervical and prostate cancer

treatment), and calculating dose accumulation (dose can be

treated as an image and deformed using previously calcu-

lated deformation fields between images acquired at dif-

ferent fractions). Image registration is also important in

voxel-wise predictive models of toxicity [10].

Automatic image segmentation (or auto-contouring) is

also an active research area which involves separating an

image into regions. Types of algorithms range from simple

thresholding, classification (e.g. for tumour or scarring

delineation), region and edge based algorithms to model

based methods. In radiation therapy, segmentation is typi-

cally applied to identify target structures and organs at risk.

Segmentation is a difficult problem due to non-isotropic

voxel spacing, partial volume effects, poor contrast, noise,

artefacts, and missing boundaries.

Atlas based segmentation involves the use of one or

more contoured scans in an atlas training database. In atlas

based segmentation these atlases (and contour labels) are

registered to a new target image. Depending on the atlas

scheme used, one or more registered labels are selected and

fused to generate automatic contours. Determining how to

select and combine the most similar atlases from a training

database is an active research area. The number of atlases

in the training dataset has an impact on segmentation

results, and there is a need for these atlases to adequately

represent anatomical variability in the target population.

Deformable models are also frequently used for image

segmentation. A common approach uses contours from

different patients which are converted to surface meshes

(with the same number of landmark points) and aligned.

Principal component analysis can be used on these points

to identify the main modes of shape variation. In the active

shape model approach intensity profiles at each point are

also included. To segment a new image, the model is

initialised, often automatically with an atlas based method,

and allowed to deform to find the best matching set of

intensities for each point. The main advantage of the

method is that segmentation is constrained to anatomically

realistic shapes. Statistical shape models can also be used

for population based models of non-rigid anatomical

deformation (for example to quantify and predict inter-

fraction geometric uncertainty) and for predictive models

for adaptive planning. Combined with an atlas/registration

approach these models can be applied in dose accumulation

and construction of plan libraries (generating a variety of

plans to account for predicted organ variations, for example

in the bladder).

There are also research opportunities in comparing the

accuracy of both manual (inter- and intra-observer vari-

ability) and automatic contouring approaches. Common

metrics for evaluating contours include centroid or point

distances; voxel-wise overlap measure such as the Dice

similarity coefficient, Concordance and Jaccard Indexes;

and surface distance measures such as mean absolute sur-

face distance and the Hausdorff distance. Inter-observer

contouring differences are still the major source of sys-

tematic error in radiotherapy treatment [11] and there are

research opportunities in quantifying and reducing these

differences. Inter- and intrafractional organ differences

including shrinkage and motion can also be evaluated in

the same manner (for example by generating CTV surfaces

and calculating surface distance measures).

Intra-fraction tracking and motion management are

research areas which may involve medical image analysis.

Sample include automatic gating, motion compensated

CBCT to reduce blurring from breathing motion, and 3D

motion estimation from MRI for abdominal tumour treat-

ment. These often require fast registration, segmentation

and tracking.

MRI-alone treatment workflows and MRI-linac systems

provide a range of exciting research opportunities.

Viewray presented results from their commercial MRI-

linac system at ESTRO. Research topics include MRI

simulator setups, the generation and validation of pseudo-

CT (also known as substitute-CT) scans from MRI, the

use of new MRI sequences for more accurate tissue

classification and the quantification and correction of MRI

geometric distortion.

Advances in molecular imaging modalities, PET in

particular, enable exciting opportunities including mea-

suring treatment response to provide guidance for adaptive

treatment, localization of recurrence enabling focal salvage

treatment, dose painting and spatially measuring biological

and metabolic processes (such as hypoxia). PET can be

further enhanced through kinetic analysis of dynamic list

mode or serial acquisitions, in addition to multi-tracer or

multimodality imaging [12].
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The combination of MRI and PET in the same machine

will enable high quality motion registration and compen-

sation (motion is a major factor in degrading image quality

in PET, as PET images are usually averaged during ses-

sions in excess of 30 min). Attenuation correction

requirements for PET/MR are similar to pseudo-CT gen-

eration in MR-alone treatment planning.

Other research areas impacting on medical image ana-

lysis include the use of GPU computation, health eco-

nomics, radiomics (using structured data to generate

descriptive and predictive models which can identify

relationships between image features to phenotypes or

gene–protein signatures [13]), and rapid learning (applying

semantic interoperability of data to enable data comparison

from different trials/centres for decision support [14]).

Finally, there are a large number of free, open source,

tools available for medical image analysis. The Insight

Segmentation and Registration Toolkit (http://www.itk.org/)

is a mature and extensive library providing a wide range of

algorithms. Cross platform tools built using ITK include:

itkSnap, Mevislab, Elastix, milxView, Slicer and Plasti-

match. The excellent Visualisation Toolkit (http://www.

vtk.org/) also maintained by Kitware has been used in a

range of medical image viewers including Paraview, VV,

MilxView and Osirix. There is increasing availability of

public domain medical image data and contours listed on

http://grand-challenge.org/All_Challenges/. These datasets

enable onsite challenges, the objective comparison of new

methods and reproducibility of published results (e.g.

PROMISE [15]).

In summary, this editorial has presented a very brief

(ESTRO-inspired) overview of some exciting research

opportunities available in the application of medical image

analysis to radiation oncology. This research promises to

provide benefits in three main areas: the improvement of

radiation treatment dose delivery; a reduction in treatment

toxicity and improvements in clinical productivity.
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