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Abstract The presented paper describes a development

of original approach to the reconstruction problem using a

recurrent neural network. Particularly, the ‘‘grid-friendly’’

angles of performed projections are selected according to

the discrete Radon transform (DRT) concept to decrease

the number of projections required. The methodology of

our approach is consistent with analytical reconstruction

algorithms. Reconstruction problem is reformulated in our

approach to optimization problem. This problem is solved

in present concept using method based on the maximum

likelihood methodology. The reconstruction algorithm

proposed in this work is consequently adapted for more

practical discrete fan beam projections. Computer simula-

tion results show that the neural network reconstruction

algorithm designed to work in this way improves obtained

results and outperforms conventional methods in recon-

structed image quality.

Keywords Medical imaging � Computed tomography �
Image reconstruction from projections � Neural network

Introduction

X-ray computerized tomography (CT) remains the most

popular and the most widespread tomography method used

in medicine. The tomographic images are obtained by

applying a method of projection acquisition and an appro-

priate image reconstruction algorithm. The key problem

arising in computerized tomography is image reconstruc-

tion from projections which are received from an X-ray

scanner of a given geometry. There are several well-known

reconstruction methods to solve this problem. The most

popular reconstruction algorithms are methods using con-

volution and back-projection [1–3] and the algebraic

reconstruction technique (ART) [4–7]. Besides those

methods, there exist some alternative reconstruction tech-

niques. The most worthy of emphasis seem to be neural

network-based algorithms. Neural networks are used in

different implementations, for example, in image process-

ing [8–10], in particular in computerized tomography.

Reconstruction algorithms based on supervised neural net-

works have been presented in various papers, for example

[11–14]. Other structures representing the so-called alge-

braic approach to image reconstruction from projections

and based on recurrent neural networks have been studied

by several authors [15–17]. Their approach can be charac-

terized as a unidimensional signal reconstruction problem.

In this case, the main disadvantage is the extremely large

number of variables arising during calculations. The com-

putational complexity of the reconstruction process is pro-

portional in that approach to the square of the image size.

In this paper, an original approach to the reconstruction

problem will be developed, based on original transforma-

tion methodology [18, 19]. The most important improve-

ment of our reconstruction method, in comparison to the

previous publication, is an adaptation of the discrete Radon

transform (DRT) concept (see e.g. [20, 21]) in the fully

original way. This methodology provides the so-called

‘‘grid-friendly’’ angles at which the projections are per-

formed. Because this concept limits the number of the

performed during investigation projections, we develop our

approach and provide a new idea—the modified (extended)

‘‘grid-friendly’’ methodology which lifts that limitation. In
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this paper, we present a comparison of the equiangular

interval sampling procedure with the ‘‘grid-friendly’’ and

the modified ‘‘grid-friendly’’ methodologies for specifying

the projection angles. We can decrease in this way the

artifacts in reconstructed image without any cost: geometry

of tomographic scanner do not need to be changed and

reconstruction algorithm needs only some small reformu-

lations. It is worth to emphasise, that these reformulations

do not cause the algorithm to become more computation-

ally complex.

In our approach, a recurrent neural network [22] is

proposed to design the reconstruction algorithm. Owing to

the 2D methodology of the image processing in our

approach, we significantly decreased the complexity of the

tomographic reconstruction problem. The applied recurrent

neural network proposed to solve the reconstruction prob-

lem is designed in a fully analytical way. We show how all

parameters of this network can be obtained, in particular

the weights of the network, and what roles these parameters

play. The calculations of these weights will be carried out

only once before the principal part of the reconstruction

process is started. Additionally, because the number of

neurons in the network does not depend on the resolution

of the projections performed earlier, we can quite freely

modulate the number of projections carried out.

The reconstruction method presented in this paper,

originally formulated by the author, can consequently be

applied to the fan-beam scanner geometry of the tomog-

raphy device, as is described later in this work.

The paper is organized as follows. The reconstruction

method is presented in ‘‘Neural network reconstruction

algorithm’’ section. The acquisition of the fan-beam pro-

jections (‘‘Parallel beam collection’’ section), the rebinning

procedure (‘‘Back-projection operation’’ section) and the

neural network reconstruction algorithm (‘‘Reconstruction

using a recurrent neural network’’ section) will be depicted

in subsequent subsections. ‘‘Fan-beam reconstruction

algorithm’’ section describes the performance of the com-

puter simulations and presents the most important results.

‘‘Experimental results’’ section gives some conclusions.

Neural network reconstruction algorithm

The image processing procedure in our reconstruction

method resembles one of the transformation algorithms—

the q-filtered layergram method [2]. In our approach,

instead of 2D filtering, we implemented a recurrent neural

network. This network performs the function of an ‘‘energy

pump’’, which carries out the reconstruction process from

the blurred image obtained after the back-projection

operation. The principal idea of the presented reconstruc-

tion method using the recurrent neural network is shown in

Fig. 1, where the rather theoretical parallel beam geometry

of the scanner is taken into consideration.

Parallel beam collection

Only a limited number of parallel projection values pp s; apð Þ
are chosen for further processing. Firstly, we determine the

values of the angles ap. Let p̂p l;wð Þ denote discrete values

of parallel projections taken at angles indexed by the vari-

able w. In our approach, according to the concept of the

discrete Radon transform (DRT) [20, 21], we propose only

grid ‘‘friendly’’ angles of parallel projections. The motiva-

tion for this approach is the better adjustment of the rays in

the parallel beam crossing the discrete image to the grid of

pixels in this image, if at every angle of projection every ray

crosses at least one pixel. In this case, we propose wgf ¼
� I� 1ð Þ=2; . . .; 0; . . .; 3 I� 1ð Þ=2ð Þ � 1 where 2 I� 1ð Þ is

the number of projections. Considering the above condition,

the discrete values of parameter ap are as follows:

ap
wgf
¼

arctan
2wgf

I�1

� �
� p

2
for wgf ¼�64; . . .;64

arcctan
2 I�1�wgfð Þ

I�1

� �
� p

2
for wgf ¼ 65; . . .;191

8><
>:

:

ð1Þ

The proposed distribution of the projection angles is

approximately equiangular in the range of

ap 2 �3p=4;p=4½ Þ, as is depicted clearly in Fig. 2 for the

case of I¼ 129.

The number of ‘‘grid-friendly’’ projection angles is

strictly limited and is equal to 256 for a half rotation around

the investigated object and 512 for the full rotation. One can

introduce a certain modification of the above approach to

avoid this limitation, by multiplying the value 256 (512) by

k. We evolve Eq. 1 into the following expanded form

( )ji,~̂μ

( )ji,μ̂

( ) 12/3,...,0,...,2/ −−= IIψ

L/2L/2 ,...,0,...,1+−=l( )ψ,ˆ lp p

ijh

I,...,1=i J,...,1=j

Reconstruction using
recurrent neural network

Back-projection
(interpolation)

Monitor

Calculation
of the coefficients

Reconstruction algorithm
for parallel beams

Fig. 1 Neural network image reconstruction algorithm using parallel

beams
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ap
wmgf
¼

arctan
2wmgf

k� I�1ð Þ

� �
� p

2
for wmgf ¼ �k � 64; . . .; k � 64

arcctan
2 I�1�wmgf

k

� �
I�1

� �
� p

2
for wmgf ¼ k � 64þ 1; . . .; k � 192� 1

8>>><
>>>:

:

ð2Þ

Alternatively, as a comparative case, we can choose the

equiangular set of parallel projections taken at angles

indexed by variable we, where we ¼ 0; 1; . . .;We � 1,

where We is the number of projections. In this simplified

case, the discrete angles of projections are given by the

following relationship

ap
we
¼ weDa; ð3Þ

where Da ¼ p=We is the angle, given in radians, by which

the tube-screen pair is rotated after each projection.

The topological differences between both concepts of

projection angle determination are depicted in Fig. 3 for

the case of a reconstructed image having a resolution 5 9 5

(only the rays lying on the symmetry lines of given pro-

jections are depicted).

Now we determine a uniform sampling on the screen at

points l ¼ � L� 1ð Þ=2; . . .; 0; . . .; L� 1ð Þ=2, where L is an

odd number of virtual detectors, from the projection

obtained at angle aw
p . It is easy to calculate the distance

between each parallel ray from the origin in the (x,y) space

if these detectors are symmetrically placed on the screen.

The distance is given by

s i; jð Þ ¼ l � Ds; ð4Þ

where Ds is the sample interval of the virtual projections on

the screen. Taking into consideration the sample of

parameters s and ap of the parallel projections, we can

write

p̂p l;wð Þ ¼̂ pp l � Ds; a
p
w

� �
: ð5Þ

In this way, we obtained all the imaginary parallel

projections p̂p l;wð Þ given on the grid l ¼ � L� 1ð Þ=2þ
1; . . .; 0; . . .; L� 1ð Þ=2; wgf ¼ �I=2; . . .; 0; . . .; 3I=2ð Þ � 1

(or alternatively we ¼ 0; 1; . . .;We � 1), which will be

used in the following steps of the reconstruction procedure.

Back-projection operation

After the next step of our reconstruction algorithm for

parallel beams, namely the back-projection operation

[1, 2], we obtain a blurred image which can be expressed

by the following formula

-64 64 192128

4

π−

2

π−

4

3π−

4

π

)
21I

1I2
arcctan

πψ
−
−− gf

ψ

gfψ

21I

2
arctan

πψ
−

−

−
gf

p

g fψα

)

Fig. 2 The choice of ‘‘grid-friendly’’ parallel projection angles

(a)

i

j

5
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-5
-5

(b)

i

j

5
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-5

Fig. 3 Topology of ‘‘grid-friendly’’ parallel projection angles (a) and

equiangular positioning of the parallel beam scanner (b)
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~l x; yð Þ ¼
Zp

0

pp s; apð Þ dap: ð6Þ

Because we have only a limited number of the virtual

parallel projection values, it is necessary to apply

interpolation. In this case, a projection value mapped to a

certain point (x,y) of the reconstructed image is given by

the equation

�pp sxy; a
p

� �
¼
Z1

�1

pp s; apð Þ � I _s� sð Þ ds; ð7Þ

where I Dsð Þ is an interpolation function and

sxy ¼ xcosap þ ysinap.

In the presented method, we consider the discrete forms

of the images l x; yð Þ and ~l x; yð Þ. That means these con-

tinuous functions of the images will be substituted by their

discrete equivalents l̂ i; jð Þ and ~̂l i; jð Þ, respectively, where

i ¼ 1; 2; . . .; I; j ¼ 1; 2; . . .; J; I and J are the numbers of

pixels in the horizontal and vertical directions. Thus, the

discrete approximation of Eq. 7 is given by the expression

�̂pp iDp
s coswDp

a þ jDp
s sinwDp

a;w
� �

ffi Dp
s

X
l

p̂p l;wð Þ � I iDp
s coswDp

a þ jDp
s sinwDp

a � lDp
s

� �
;

ð8Þ

which is convenient from a computational point of view. In

(8), I Dsð Þ is an interpolation function, Ds ¼ iDscosaþ
jDssina� lDs. If we use the linear interpolation function

[2]

IL Dsð Þ ¼
1
Ds

1� Dsj j
Ds

� �
for Dsj j �Ds

0 for Dsj j[ Ds

(
; ð9Þ

Eq. 8 has only two terms and can be reformulated as [1]

�̂pp sij;w
� �

ffi p̂p l#;w
� �

þ sij

Dp
s

� l#
� �

p̂p l";w
� �

� p̂p l#;w
� �� �

;

ð10Þ

where sij ¼ iDicoswDp
w þ jDjsinwDp

w; l#is the highest inte-

ger value less than the value of variable sij, l" ¼ l# þ 1.

In practice only a limited number of projections are

performed. In particular, if we use ‘‘grid-friendly’’ meth-

odology, at angles ap
w, where w ¼ � I� 1ð Þ=2; . . .; 0; . . .;

3 I� 1ð Þ=2ð Þ � 1 (I—size of the processed image), then we

can approximate the integration over the angle ap by a

finite sum. In consequence, Eq. 6 takes the following form

~̂l i; jð Þ ¼
X
wgf

Dp
ap

wgf

� �̂pp sij; a
p
wgf

� �
; ð11Þ

where sij ¼ iDp
s cosap

wgf
þ jDp

s sinap
wgf

, Dp
ap

wgf

¼ ap
wgf
� ap

wgf�1.

It is a very similar case if we use the modified ‘‘grid-

friendly’’ set of projection angles specified by Eq. 2, that is

~̂l i; jð Þ ¼
X
wmgf

Dp
ap

wmgf

� �̂pp sij; a
p
wmgf

� �
: ð12Þ

Alternatively, in the case of the equiangular approach,

we perform projections at angles ap
we

, where we ¼
0; 1; . . .;W� 1 and we can approximate the integration in

Eq. 6 over the angle ap as follows

~̂l i; jð Þ ¼ Dp
a

XW�1

we¼0

�̂pp sij; a
p
we

� �
: ð13Þ

The discrete image obtained after the back-projection

operation ~̂l i; jð Þ includes information about the original

image l̂ i; jð Þ blurred by a geometrical term. Our task is to

reconstruct the original image from the given form of

~̂l i; jð Þ using a recurrent neural network [22]. Before we

start the design process of this network, it is necessary to

formulate the discrete reconstruction problem, and in

particular to calculate the coefficients representing the

geometrical term distorting the original image. In our

approach, we take into consideration the interpolation

function used during the back-projection operation.

Reconstruction using a recurrent neural network

Due to relationships (6), (7) and the definition of the Radon

transform it is possible to define the image, obtained after

the back-projection operation, in the following way

~l x; yð Þ ¼
Zp

0

Z1

�1

Z1

�1

Z1

�1

l €x; €yð Þ � d €xcosapðð

0
@

0
@

þ€ysinap � _sÞ d€xd€yÞ � I sxy � _s
� �

1
A d _s

1
A dap: ð14Þ

where sxy ¼ xcosap þ ysinap. After some reformulations of

the Eq. 14, approximation of the integrations by a finite

sums, we obtain relationship the following relation (see e.g.

[18, 19]),

~̂l i; jð Þ ffi
X

€i

X
€j

l̂ €i; €j
� �

� hij€i€j ; ð15Þ

where

hij€i€j ffi Dsð Þ2
X
wfg

Dp
wfg
� Î €iDscosap

wfg
þ €j Dssinap

wfg

�

�iDscosap
wfg
� jDssinap

wfg

�
: ð16Þ

Since the interpolation function Î Dsð Þ is even, we can

write
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h€i€j ij ¼ hij€i€j

ffi Dsð Þ2
X
wfg

Dp
wfg
� Î i� €i
�� ��Dscosap

wfg
þ j� €j
�� ��Dssinap

wfg

� �
:

ð17Þ

Therefore, we are able to formulate a very convenient

relationship between the original image and the image

obtained after the back-projection operation, in the form of

~̂l i; jð Þ ffi
X

€i

X
€j

l̂ €i; €j
� �

� hDi;Dj; ð18Þ

where

hDi;Dj ffi Dsð Þ2
X
wfg

Dp
wfg
� Î Dij j � Dscosap

wfg
þ Djj j � Dssinap

wfg

� �

ð19Þ

for the ‘‘grid-friendly’’ choice of projection angles (see

Eq. 1) or

hDi;Dj ffi Dsð Þ2
X
wmfg

Dp
wmfg

� Î Dij j � Dscosap
wmfg
þ Djj j � Dssinap

wmfg

� � ð20Þ

for the modified ‘‘grid-friendly’’ projection angles (see

Eq. 2).

Alternatively, in the case of the equiangular approach to

determining the projection angles, we obtain the following

equivalent of Eq. 19

hDi;Dj ffi Dsð Þ2Dp
a

XW�1

we¼0

Î Dij j � Dscosap
we
þ Djj j � Dssinap

we

� �
:

ð21Þ

As one can see from Eq. 18, the original image of a given

cross-section of the object, obtained in the way described

above, is equal to the amalgamation of this image with a

geometrical distortion element expressed by formulas (19),

(20) or (21). The number of hDi;Dj coefficients is greatly

reduced and the values of these coefficients are easily

calculated. The hDi,Dj coefficients are used to determine the

weights in the recurrent neural network.

The recursive neural network structure for 1D signal

reconstruction was proposed for the first time in [23] and

later in [15, 24]. The network realizes the image recon-

struction from projections by the deconvolution of rela-

tionship (22). The problem of deconvolution can be

reformulated to the following optimisation problem, basing

on the maximum likelihood (ML) methodology:

l̂� ¼ arg min
l

XI

i¼1

XJ

j¼1

f eij l̂ð Þ
� �

 !
; ð22Þ

where l̂�—the optimal image (reconstructed image),

l̂ ¼ l̂ i; jð Þ½ �—the matrix with elements from image being

reconstructed, f �ð Þ—the activation function, and

eij l̂ð Þ ¼
XI

€i¼1

XJ

€j ¼1

hDi;Djl̂ €i; €j
� �

� ~̂l i; jð Þ: ð23Þ

If the value of the coefficient v tends to infinity or is

suitably large, then the solution of the optimisation

problem (22) tends to the optimal one. Our research has

shown that the following activation function yields the

always stable reconstruction process (other possible forms

of this function are presented in [24]):

f eij

� �
¼ m � k � lncosh

eij

k

� �
; k [ 0 ð24Þ

where k is a slope coefficient, v is a suitable large positive

acceleration coefficient.

In our experiments we have never observed any diver-

gent iterative reconstruction process using activation

function (24) (at suitably chosen in experimental way

parameters v and k). That means the iterative realisation of

the neural reconstruction algorithm is robust even if we

change the reconstructed image. The main motivation to

use this form of activation function was a property of its

derivation used in reconstruction process. This derivation

takes the following form:

f 0 eij

� �
¼

of eij

� �
oeij

¼ m � tanh
eij

k

� �
¼ m �

1� exp �2eij=k
� �

1þ exp �2eij=k
� � :

ð25Þ

Thanks to the saturation effect of the function (25)

outside the range eij 2 ð�k; kÞ, it is possible to avoid

instabilities in the reconstruction process when there is a

drastic increase in the value of any of the variables used in

the calculations.

Now we will formulate the energy function which will

be minimized by the constructed neural network. Simul-

taneously, we will realise the task of deconvolution (see

Eq. 18). The energy function is given by

Et ¼
XI

i¼1

XJ

j¼1

f eij ltð Þ
� �

: ð26Þ

In order to find the minimum of function (26) we

determine the derivative

dEt

dt
¼
XI

i¼1

XJ

j¼1

XI

€i¼1

XJ

€j ¼1

of eij ltð Þ
� �
oeij ltð Þ

oeij ltð Þ
ol̂t €i; €j
� � ol̂t €i; €j

� �
dt

; ð27Þ

If we let (see [18, 19])
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dl̂t €i; €j
� �
dt

¼ �
XI

i¼1

XJ

j¼1

of eij ltð Þ
� �
oeij ltð Þ

oeij ltð Þ
ol̂t €i; €j
� �

¼ �
XI

i¼1

XJ

j¼1

f 0 eij ltð Þ
� �

� hDi;Dj ð28Þ

then Eq. 27 takes the form of

dEt

dt
¼ �

XI

€i¼1

XJ

€j ¼1

dl̂t €i; €j
� �
dt

 !2

: ð29Þ

One can see that the values of Eq. 29 are always less

than or equal to zero, that is dEt

dt
� 0. Therefore, if dEt

dt
¼ 0

then it means that
dl̂t i;jð Þ

dt
¼ 0 and the minimum of E is

obtained. Our calculation tends to this state and when
dl̂t i;jð Þ

dt
ffi 0 we can stop the reconstruction process.

The neural network performing the minimization task

consists of two layers with the same topology of neurons.

The structure is shown in Fig. 4.

Fan-beam reconstruction algorithm

The principal idea of the presented reconstruction method

using the recurrent neural network is shown in Fig. 5,

where the target fan-beam geometry of the collected pro-

jections is taken into consideration.

The first step in the reconstruction procedure described

is the collection of all the fan-beam projections using a

scanner, as depicted in Fig. 6.

A given ray from a fan-beam is involved in obtaining a

particular projection value pf b; af
� �

, where the projection

value is obtained at angle af and b is the angle of diver-

gence of the ray from the symmetry-line of the fan-beam.

In real scanners, only samples pf bg; a
f
c

� �
of the projections

are measured, where usually bg ¼ g � Db are equiangular

rays, g ¼ � H� 1ð Þ=2; . . .; 0; . . .; H� 1ð Þ=2are indexes of

these rays, ac
f = c � Da

f are particular angles of the X-ray

source at which the projections are obtained, andc ¼
0; 1; . . .;C� 1 are the indexes of these angles. For sim-

plicity, we can define the discrete values of the projections

as p̂f g; cð Þ ¼ pf g � Db; c � Df
a

� �
.

In the next step of our reconstruction algorithm, we

perform the rebinning operation, which re-sorts the fan-

beam projection values p̂f g; cð Þ obtained in the previous

step into equivalent parallel projection data [1]. Referring

to Fig. 7, we can find the relationships between the

parameters in both of the scanner geometries considered,

as

pp s; apð Þ ¼ pf b; af
� �

¼ pf arc sin
s

Rf

� �
; ap � arc sin

s

Rf

� �� �
: ð30Þ

After defining the parameters of the virtual parallel

projections (see Eqs. 1, 4) we can start the rebinning

operation. Unfortunately, in a lot of cases there is a lack of

equivalences for parallel rays in the set of fan-beam pro-

jections. As a remedy we use an interpolation, in the

simplest way—bilinear interpolation. In this case an esti-

mation of the parallel projection p̂p l;wð Þ can begin by

identifying the neighbourhood of the fan-beam projection

given by

pf arc sin
l � Ds

Rf

� �
; ap

wgf
� arc sin

l � Ds

Rf

� �� �
¼ p̂p l;wgf

� �
:

ð31Þ

The neighbourhood is determined based on four real

measures from a whole set of fan-beam projections:

p̂f g"; c"
� �

p̂f g"; c#
� �

; p̂f g#; c"
� �

; p̂f g#; c#
� �

;where g# is the

highest integer value less than

gp ¼ b
Db
¼

arcsin l�Ds

Rf

� �

Db
; ð32Þ

g" ¼ g# þ 1; c# is the highest integer value less than

cp ¼ af

Df
a

¼
ap

wgf
� arcsin l�Ds

Rf

� �

Df
a

; ð33Þ

c: = c; ? 1. In order to calculate a linear interpolated

value p̂p l;wgf

� �
the following expression is used

p̂p l;wgf

� �
¼ c" � cp
� �

½ g" � gp
� �

p̂f g#; c#
� �

þ gp � g#
� �

p̂f g"; c#
� �

� þ cp � c#
� �

g" � gp
� �

p̂f g#; c"
� �

þ gp � g#
� �

p̂f g"; c"
� �	 


ð34Þ

Having all the required parallel projection values, we

can then perform the reconstruction procedure for parallel

beams. In our case, this is a method using a recurrent neural

network, as was explained in ‘‘Neural network

reconstruction algorithm’’ section.

Experimental results

It is very useful, for various reasons, to simulate projection

data. Idealized projection measurements obtained in this

way allow us to develop and evaluate the reconstruction

algorithms we have designed. One of the most widespread

of this kind of simulation method is the use of a head

phantom model, the so-called Shepp–Logan mathematical
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phantom [6, 1]. In our experiments, we used the Shepp–

Logan model extended in an original way to 3D space,

similar to the approach presented in [25]. Our 3D phantom

consists of ellipsoids, whose parameters are described in

Table 1.

A view of the mathematical model of a skull phantom is

depicted in Fig. 7—the size of the processed image was

fixed at I	 J ¼ 129	 129 pixels. Such a resolution of the

image seems to be a good choice, taking into account

the balance between the reconstructed image quality and the

real time of calculation during the computer simulations.

Figure 8b, c show two cross-sections of the 3D mathe-

matical phantom. These images will be used in our

experiments to evaluate the designed neural reconstruction

algorithm both for parallel projections and for fan-beam

projections.

It is quite easy to reformulate the above model for fan-

beam projections using the following relationship

pf b; af
� �

¼ pp s; apð Þ ¼ pp Rfsinb; af þ b
� �

: ð35Þ

During the simulations, we established 170 measurement

points (detectors) on the screen as virtual parallel

projections. We chose the number of these projections to

be 512 rotation angles because this number is suitable for

the approach with ‘‘grid-friendly’’ projection angles. In

other experiments, the number of projections was modified.

Before we start the reconstruction process, it is neces-

sary to evaluate the coefficients hDi;Dj. This is only done

once, for all the possible further processing approaches:

with equiangular rotation, with only ‘‘grid-friendly’’ pro-

jection angles and the expanded ‘‘grid-friendly’’ technique.

Using the linear interpolation functions from Eqs. 19, 20

and 21, the values of these coefficients are presented in

Fig. 9. Because of the very fine differences between the

three approaches analysed, we only present one chart

showing a general view of the coefficients hDi,Dj and an

enlargement showing details of the chart around the origin.

In the cases of the equiangular sample and the modified

approach with ‘‘grid-friendly’’ methodology, we used 7200

projection angles to calculate the coefficients hDi,Dj and in

Fig. 4 Structure of the

recurrent neural network:

a topology of the neurons in the

net; b scheme of connections in

the net
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the case of the ‘‘grid-friendly’’ approach only 512 angles. A

more in-depth discussion of the number of necessary pro-

jections performed during calculation of the coefficients

hDi,Dj is presented below.

Having obtained the coefficients hDi,Dj, we can start the

next step of the reconstruction procedure and perform the

back-projection operation using relationships (11), (12) or

(13) to get a blurred image of the X-ray attenuation

coefficient distribution in a given cross-section of the

investigated object (see Fig. 10). (We must use the same

interpolation function as in the calculation of the coeffi-

cients hDi,Dj, for example, the linear interpolation given by

Eq. 9).

The image obtained in this way was next subjected to a

process of reconstruction using a neural network, whose

structure was explained in the previous section. To do this

we adopted the discrete Eq. 23 taking into consideration

( )
1−Γ,0=γ

−Η(.−Η−=η

( −−=ψ
+−=

1−γ

μ

γη,ˆ fp

Γ,0,1,= ...

,1,...

)/2..,)/2,...,0,( 11

) 12/3,...,0,...,2/ II
L/2L/2 ,...,0,...,1l( )ψ,ˆ lp p

( )ji,ˆ

Projections

Rebinning
(interpolation)

Reconstruction algorithm
for parallel beams

Monitor

Fig. 5 Neural network image

reconstruction algorithm using

fan-beams
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the time-varying values of the pixels in the reconstructed

image. Thus

eij ltð Þ :¼
XI

€i¼1

XJ

€j ¼1

hDi;Dj � l̂t €i; €j
� �� �

� ~̂l i; jð Þ: ð36Þ

Euler’s method was used to approximate linear Eq. 27

in the following form [17]

l̂tþ1 i; jð Þ :¼ l̂t i; jð Þ þ Dt �
XI

i¼1

XJ

j¼1

f 0 eij ltð Þ
� �

� hDi;Dj

 !
;

ð37Þ

where Dt is an appropriate small time step.

It is very subjective to evaluate a reconstruction proce-

dure based only on a view of the reconstructed image. That

is why the quality of the reconstructed image has been

evaluated by an error measure defined as follows

MSE ¼ 1

I � J
XI

i¼1

XJ

j¼1

l i; jð Þ � l̂ i; jð Þ½ �2; ð38Þ

where l i; jð Þ is the original image of the Shepp–Logan

mathematical phantom.

Additionally, during the experiments, we used the fol-

lowing error measure [17], which is more relevant to

subjective observation of reconstructed image

Error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PI
i¼1

PJ
j¼1

lw i; jð Þ � l̂w i; jð Þð Þ2

PI
i¼1

PJ
j¼1

lw i; jð Þ � lw
mean i; jð Þ

� �2

vuuuuuut ; ð39Þ

where lw i; jð Þ; l̂w i; jð Þ and lw
mean i; jð Þ are the original image

of the mathematical phantom, the reconstructed image and

the mean value of the original image, respectively. All

images are transformed by the so-called window

determined by parameters C (centre) and W (width):

lw i; jð Þ ¼
0 for l i; jð Þ�C � W

2

255 for l i; jð Þ
C þ W
2

l i; jð Þ � C þ W
2

� �
� 255

W

� �
div 1 for C � W

2
� l i; jð Þ�C þ W

2

8><
>:

:

ð40Þ

The measure described by Eq. 39 allows us to evaluate

the subjective impression of an observer viewing the

reconstructed image on a real screen.

As was mentioned earlier, we evaluate the coefficients

hDi,Dj in the first step of the reconstruction procedure. It is

Table 1 Parameters of the ellipsoids used to construct our mathematical phantom

No. Coordinates of the centre a (semi-axis x) b (semi-axis y) c (semi-axis z) Inclination a0
�	 


Density lconst

x0 y0 z0

I 0.000 0.000 0.000 0.6900 0.9200 0.9000 0.0 2.000

II 0.000 0.000 0.000 0.6624 0.8740 0.8800 0.0 -0.980

III -0.220 0.000 -0.250 0.4100 0.1600 0.2100 108.0 -0.020

IV 0.220 0.000 -0.250 0.3100 0.1100 0.2200 72.0 -0.020

V 0.000 0.330 -0.250 0.2200 0.2200 0.3700 0.0 0.010

VI 0.000 0.100 -0.250 0.0460 0.0460 0.0460 0.0 0.020

VII -0.060 -0.650 -0.250 0.0460 0.0230 0.0200 0.0 0.010

VIII 0.060 -0.650 -0.250 0.0460 0.0230 0.0200 90.0 0.010

IX 0.060 -0.105 0.625 0.0560 0.0400 0.1000 90.0 0.020

X 0.000 0.100 0.625 0.0560 0.0560 0.1000 0.0 -0.020

(a)
x

z

A B

(b) (c)

Fig. 8 Mathematical model of the phantom given in Table 1: a a

view in the x–z plane; b cross-section in the plane A; c cross-section in

the plane B
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crucial to choose the minimum number of projections

necessary to calculate these parameters objectively. In this

experiment, we use the most intuitive approach with

equiangular projections and the extended ‘‘grid-friendly’’

methodology, in both cases fixing the number of projec-

tions during the initial acquisition process starting the

actual reconstruction algorithm at 256 (the ‘‘grid-friendly’’

methodology is a special case with 512 projection angles).

In the experiment, the value of coefficient v was selected at

v = 2.5 9 1010, and the slope coefficient at k ¼ 1010. The

objective results of these investigations are depicted in

Fig. 11 and views of the reconstructed images of the

mathematical phantom in the cross-section in plane A after

30,000 iterations are presented in Fig. 12.

Based on the plots in Fig. 11 and the views in Fig. 12,

we can say that using the ‘‘grid-friendly’’ and the extended

‘‘grid-friendly’’ methodologies of projection performance,

we obtain a reconstructed image more quickly and with

better quality.

In the next step of our investigations, we carried out

some experiments incorporating the fan-beam reconstruc-

tion method described in ‘‘Parallel beam collection’’ sec-

tion. At this stage, we used the neural network

reconstruction algorithm for parallel projections as depic-

ted in Fig. 5 with the extended ‘‘grid-friendly’’ method of

calculating the hDi,Dj coefficients (the number of projec-

tions was fixed at 7200). Projection acquisition for the

Fig. 9 Values of coefficients

hDi;Dj: a the general view;

b values around origin, where

Dj = 0

Fig. 10 Distorted image of the mathematical model obtained after

the back-projection operation
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fan-beam reconstruction algorithm can be performed at

angles (exactly 512 measurement samples) specified by

pure ‘‘grid-friendly’’ methodology without any loss of

reconstruction image quality. However, for the extended

‘‘grid-friendly’’ approach, the experiments were carried out

with different numbers of performed projections. Results of

these simulations are shown in Fig. 13 for cross-sections in

planes A and B after 100,000 iterations of the neural net-

work algorithm. For comparison, the standard convolution/

back-projection method with rebinning and the Shepp–

Logan kernel is also considered. In all cases, we used the

following geometrical parameters of the fan-beam scanner:

W ¼ C; Rf ¼ 110; Df
a ¼ Dp

a; Df
b ¼ arcsin Ds=Rfð Þ, where

Ds ¼ 1.

Conclusions

In this paper, we propose an original neural network image

reconstruction from a projection algorithm based on the

‘‘grid-friendly’’ methodology of projection acquisition. Our

experiments showed objectively that the ‘‘grid-friendly’’

method of specifying the projection angles gave better

results than the more intuitive equiangular scheme of

projection angle sampling, for parallel beam scanner

geometry. This phenomenon may follow from the fact that

the parallel rays used for projection acquisition in the

‘‘grid-friendly’’ approach are closer to the pixels in the

reconstructed image, which is assumed to be a discrete

function in our method (see the discrete reconstruction

Fig. 11 Results of the

reconstruction process,

dependent on the number of

projections during the

calculation of the hDi;Dj

coefficients, evaluated by: a the

MSE measure (see Eq. 38);

b the Error measure (see

Eq. 39)
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problem formulation considered in ‘‘Reconstruction using a

recurrent neural network’’ section, Eq. 22).

Based on the results obtained for parallel beams, we

extended the above conclusion to the problem of recon-

struction from fan-beam projections, using in these further

simulations only the ‘‘grid-friendly’’ methodology both for

the calculation of the hDi,Dj coefficients and in the projection

acquisition used for the actual reconstruction process. The

simulations showed the superb quality of the reconstructed

image of the cross-section of the investigated mathematical

model, with respect to quality measures (38) and (39), when

compared to the standard reconstruction method, in the case

of fan-beam scanner geometry. Therefore, we are entitled to

state that our method outperforms algorithms used recently

in commercial CT scanners and it can be in easy way

extended to helical geometry of scanner. The simulations

also show that sequential realization of the proposed

reconstruction algorithm is very time consuming. On the

other hand, parallel hardware implementation of our neural

network structure, for example, by effective implementa-

tion of VLSI or nanotechnologies, e.g. core–shell systems,

could give incomparably better results than the previous

methods of image reconstruction from projections, as far as

the time to process the reconstruction is concerned. In this

case, the time complexity of our neural algorithm is pro-

portional to the number of iterations this algorithm performs

(for a parallel geometry of scanner). For comparison, in the

case of the standard convolution/back-projection method,

the computational time depends on 2I2W additions and

multiplications, where I is a dimension of the processed

image and W is the number of projections. The rebinning

operation and back-projection (interpolation) are identical

in both cases.

Open Access This article is distributed under the terms of the

Creative Commons Attribution Noncommercial License which

permits any noncommercial use, distribution, and reproduction in

any medium, provided the original author(s) and source are

credited.

Fig. 11 continued
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Number 
of 
projections 

Equiangular approach Extended „grid-friendly” methodology 

Ψ=512 

Ψ=612 

Ψ=712 

Ψ=812 

Ψ=912 

Ψ=7200 

Fig. 12 View of the

reconstructed image, dependent

on the number of projections

during the calculation of the

hDi;DjN coefficients (window:

C = 1.0, W = 0.1—see Eq. 40)
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