Skip to main content
Log in

Overcoming Uncertainties in Electrogram-Based Atrial Fibrillation Mapping: A Review

  • Review
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

In clinical rhythmology, intracardiac bipolar electrograms (EGMs) play a critical role in investigating the triggers and substrates inducing and perpetuating atrial fibrillation (AF). However, the interpretation of bipolar EGMs is ambiguous due to several aspects of electrodes, mapping algorithms and wave propagation dynamics, so it requires several variables to describe the effects of these uncertainties on EGM analysis. In this narrative review, we critically evaluate the potential impact of such uncertainties on the design of cardiac mapping tools on AF-related substrate characterization. Literature suggest uncertainties are due to several variables, including the wave propagation vector, the wave’s incidence angle, inter-electrode spacing, electrode size and shape, and tissue contact. The preprocessing of the EGM signals and mapping density will impact the electro-anatomical representation and the features extracted from the local electrical activities. The superposition of multiple waves further complicates EGM interpretation. The inclusion of these uncertainties is a nontrivial problem but their consideration will yield a better interpretation of the intra-atrial dynamics in local activation patterns. From a translational perspective, this review provides a concise but complete overview of the critical variables for developing more precise cardiac mapping tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data are included in this manuscript.

Code Availability

Not applicable.

References

  1. Elliott, A. D., M. E. Middeldorp, I. C. Van Gelder, C. M. Albert, and P. Sanders. Epidemiology and modifiable risk factors for atrial fibrillation. Nat. Rev. Cardiol. 20(6):404–417, 2023.

    Article  PubMed  Google Scholar 

  2. Essien, U. R., J. Kornej, A. E. Johnson, L. B. Schulson, E. J. Benjamin, and J. W. Magnani. Social determinants of atrial fibrillation. Nat. Rev. Cardiol. 18(11):763–773, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schotten, U., S. Lee, S. Zeemering, and A. L. Waldo. Paradigm shifts in electrophysiological mechanisms of atrial fibrillation. EP Europace. 23(Suppl 2):9–13, 2021.

    Article  Google Scholar 

  4. Quah, J. X., D. Dharmaprani, K. Tiver, A. Lahiri, T. Hecker, R. Perry, J. B. Selvanayagam, M. X. Joseph, A. McGavigan, and A. Ganesan. Atrial fibrosis and substrate based characterization in atrial fibrillation: time to move forwards. J. Cardiovasc. Electrophysiol. 32(4):1147–1160, 2021.

    Article  PubMed  Google Scholar 

  5. Roney, C. H., A. L. Wit, and N. S. Peters. Challenges associated with interpreting mechanisms of AF. Arrhythm. Electrophysiol. Rev. 8(4):273, 2019.

    Article  PubMed Central  Google Scholar 

  6. Wijesurendra, R. S., and B. Casadei. Mechanisms of atrial fibrillation. Heart. 105(24):1860–1867, 2019.

    Article  CAS  PubMed  Google Scholar 

  7. Cheniti, G., K. Vlachos, T. Pambrun, D. Hooks, A. Frontera, M. Takigawa, F. Bourier, T. Kitamura, A. Lam, C. Martin, et al. Atrial fibrillation mechanisms and implications for catheter ablation. Front. Physiol. 9:1458, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Nattel, S., and D. Dobrev. Controversies about atrial fibrillation mechanisms: aiming for order in chaos and whether it matters. Circ. Res. 120(9):1396–1398, 2017.

    Article  CAS  PubMed  Google Scholar 

  9. Schotten, U., S. Verheule, P. Kirchhof, and A. Goette. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol. Rev. 91(1):265–325, 2011.

    Article  PubMed  Google Scholar 

  10. Karki, R., A. Raina, F. M. Ezzeddine, M. C. Bois, and S. J. Asirvatham. Anatomy and pathology of the cardiac conduction system. Cardiac Electrophysiol. Clin. 13(4):569–584, 2021.

    Article  Google Scholar 

  11. Padala, S. K., J.-A. Cabrera, and K. A. Ellenbogen. Anatomy of the cardiac conduction system. Pacing Clin. Electrophysiol. 44(1):15–25, 2021.

    Article  PubMed  Google Scholar 

  12. Garcia, J. V., and D. K. Wan, The kit: access, catheter placement, transeptal puncture, ablation technology, 3d mapping. Decoding Cardiac Electrophysiology: understanding the Techniques and Defining the Jargon, pp. 21–39, 2020.

  13. Ladas, T. P., A. Sugrue, J. Nan, V. R. Vaidya, D. Padmanabhan, K. Venkatachalam, and S. J. Asirvatham. Fundamentals of cardiac mapping. Cardiac Electrophysiol. Clin. 11(3):433–48, 2019.

    Article  Google Scholar 

  14. Issa, Z. F., J. M. Miller, and D. P. Zipes. Chapter 3—mapping and navigation modalities. In: Clinical Arrhythmology and Electrophysiology, edited by Z. F. Issa, J. M. Miller, and D. P. Zipes. Philadelphia: W.B. Saunders, 2009, pp. 57–99. https://doi.org/10.1016/B978-1-4160-5998-1.00006-9.

    Chapter  Google Scholar 

  15. Ragot, D., S. Nayyar, S. Z. Massin, A. C. Ha, S. M. Singh, C. Labos, A. Suszko, R. Dalvi, and V. S. Chauhan. Unipolar electrogram-based voltage mapping with far-field cancellation to improve detection of abnormal atrial substrate during atrial fibrillation. J. Cardiovasc. Electrophysiol. 32(6):1572–1583, 2021.

    Article  PubMed  Google Scholar 

  16. de Groot, N., D. Shah, P. M. Boyle, E. Anter, G. D. Clifford, I. Deisenhofer, T. Deneke, P. van Dessel, O. Doessel, P. Dilaveris, et al. Critical appraisal of technologies to assess electrical activity during atrial fibrillation: a position paper from the european heart rhythm association and european society of cardiology working group on ecardiology in collaboration with the heart rhythm society, Asia pacific heart rhythm society, latin American heart rhythm society and computing in cardiology. EP Europace, 2021.

  17. Frisch, D., T. G. Oesterlein, L. A. Unger, G. Lenis, R. Wakili, C. Schmitt, A. Luik, O. Dössel, and A. Loewe. Mapping and removing the ventricular far field component in unipolar atrial electrograms. IEEE Trans. Biomed. Eng. 67(10):2905–2915, 2020.

    Article  PubMed  Google Scholar 

  18. Saha, S., D. Linz, P. Sanders, and M. Baumert, Beamforming-inspired spatial filtering technique for intracardiac electrograms. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 4254–4257. IEEE.

  19. Kim, Y.-H., S.-A. Chen, S. Ernst, C. E. Guzman, S. Han, Z. Kalarus, C. Labadet, Y.-J. Lin, L.-W. Lo, A. Nogami, et al. 2019 aphrs expert consensus statement on three-dimensional mapping systems for tachycardia developed in collaboration with hrs, ehra, and lahrs. J. Arrhythm. 36(2):215, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Abdi, B., M. S. van Schie, N. M. de Groot, and R. C. Hendriks. Analyzing the effect of electrode size on electrogram and activation map properties. Comput. Biol. Med.134:104467, 2021.

    Article  PubMed  Google Scholar 

  21. Lydiard, S., B. Pontré, B. S. Lowe, H. Ball, G. Sasso, and P. Keall. Cardiac radioablation for atrial fibrillation: target motion characterization and treatment delivery considerations. Med. Phys. 48(3):931–941, 2021.

    Article  PubMed  Google Scholar 

  22. Anter, E., and M. E. Josephson. Bipolar voltage amplitude: what does it really mean? Heart Rhythm. 13(1):326–327, 2016.

    Article  PubMed  Google Scholar 

  23. Klemm, H. U., D. Steven, C. Johnsen, R. Ventura, T. Rostock, B. Lutomsky, T. Risius, T. Meinertz, and S. Willems. Catheter motion during atrial ablation due to the beating heart and respiration: impact on accuracy and spatial referencing in three-dimensional mapping. Heart Rhythm. 4(5):587–592, 2007.

    Article  PubMed  Google Scholar 

  24. Del Corso, G., R. Verzicco, and F. Viola. A fast computational model for the electrophysiology of the whole human heart. J. Comput. Phys.457:111084, 2022.

    Article  MathSciNet  Google Scholar 

  25. Arshad, A., and A. J. Atkinson. A 21st century view of the anaotmy of the cardiac conduction system. Transl. Res. Anatomy.28:100204, 2022.

    Article  Google Scholar 

  26. Anderson, R. H., D. Sánchez-Quintana, D. E. Spicer, J. Farré, and E. B. Sternick. How does the cardiac impulse pass from the sinus to the atrioventricular node? Heart Rhythm. 19(10):1738–1746, 2022.

    Article  PubMed  Google Scholar 

  27. Prabhu, S., and A. Sohaib, The basic language of cardiac electrophysiology—an introduction to intracardiac electrograms and electrophysiology studies. Decoding Cardiac Electrophysiology: Understanding the Techniques and Defining the Jargon, pp. 3–19 (2020)

  28. Zhang, Y., L. Sun, L. Xuan, Z. Pan, X. Hu, H. Liu, Y. Bai, L. Jiao, Z. Li, L. Cui, et al. Long non-coding RNA CCRR controls cardiac conduction via regulating intercellular coupling. Nat. Commun. 9(1):1–14, 2018.

    ADS  Google Scholar 

  29. Pfeiffer, E. R., J. R. Tangney, J. H. Omens, and A. D. McCulloch. Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback. J. Biomech. Eng.136(2):021007, 2014.

    Article  PubMed  Google Scholar 

  30. Anderson, R. H., J. Yanni, M. R. Boyett, N. J. Chandler, and H. Dobrzynski. The anatomy of the cardiac conduction system. Clin. Anatomy. 22(1):99–113, 2009.

    Article  Google Scholar 

  31. Ramirez, F. D., V. Y. Reddy, R. Viswanathan, M. Hocini, and P. Jaïs. Emerging technologies for pulmonary vein isolation. Circ. Res. 127(1):170–183, 2020.

    Article  CAS  PubMed  Google Scholar 

  32. Haissaguerre, M., P. Jaïs, D. C. Shah, A. Takahashi, M. Hocini, G. Quiniou, S. Garrigue, A. Le Mouroux, P. Le Métayer, and J. Clémenty. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339(10):659–666, 1998.

    Article  CAS  PubMed  Google Scholar 

  33. Aksu, T., J. R. Skeete, and H. H. Huang. Ganglionic plexus ablation: a step-by-step guide for electrophysiologists and review of modalities for neuromodulation for the management of atrial fibrillation. Arrhythm. Electrophysiol. Rev.12:e02, 2023.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Chen, P.-S., L. S. Chen, M. C. Fishbein, S.-F. Lin, and S. Nattel. Role of the autonomic nervous system in atrial fibrillation: pathophysiology and therapy. Circ. Res. 114(9):1500–1515, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coyle, C., S. Koutsoftidis, M.-Y. Kim, B. Porter, D. Keene, V. Luther, B. Handa, J. Kay, E. Lim, L. Malcolme-Lawes, et al. Feasibility of mapping and ablating ectopy-triggering ganglionated plexus reproducibly in persistent atrial fibrillation. J. Interventional Cardiac Electrophysiol., 1–8, 2023.

  36. Narayan, S. M., D. E. Krummen, K. Shivkumar, P. Clopton, W.-J. Rappel, and J. M. Miller. Treatment of atrial fibrillation by the ablation of localized sources: confirm (conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation) trial. J. Am. Coll. Cardiol. 60(7):628–636, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Narayan, S. M., D. E. Krummen, and W.-J. Rappel. Clinical mapping approach to diagnose electrical rotors and focal impulse sources for human atrial fibrillation. J. Cardiovasc. Electrophysiol. 23(5):447–454, 2012.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Nattel, S. New ideas about atrial fibrillation 50 years on. Nature. 415(6868):219–226, 2002.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Nairn, D., C. Nagel, B. Mueller-Edenborn, H. Lehrmann, A. Jadidi, and A. Loewe. Spatial and quantitative assessment of the correlation between sinus rhythm and atrial fibrillation voltage mapping to identify low voltage substrate in persistent atrial fibrillation. EP Europace. 23(Suppl 3):116–163, 2021.

    Google Scholar 

  40. Linz, D., S. Saha, R. Kutieleh, K. Kadhim, D. Lau, M. Baumert, and P. Sanders. Impact of bipolar vector orientation and inter-electrode spacing on electrograms during human atrial fibrillation. Eur. Heart J. 40(Suppl 1):748–1153, 2019.

    Google Scholar 

  41. Yamaguchi, T., T. Tsuchiya, S. Nakahara, A. Fukui, Y. Nagamoto, K. Murotani, K. Eshima, and N. Takahashi. Efficacy of left atrial voltage-based catheter ablation of persistent atrial fibrillation. J. Cardiovasc. Electrophysiol. 27(9):1055–1063, 2016.

    Article  PubMed  Google Scholar 

  42. Harrison, J. L., H. K. Jensen, S. A. Peel, A. Chiribiri, A. K. Grøndal, L. Ø. Bloch, S. F. Pedersen, J. F. Bentzon, C. Kolbitsch, R. Karim, et al. Cardiac magnetic resonance and electroanatomical mapping of acute and chronic atrial ablation injury: a histological validation study. Eur. Heart J. 35(22):1486–1495, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Badger, T. J., M. Daccarett, N. W. Akoum, Y. A. Adjei-Poku, N. S. Burgon, T. S. Haslam, S. Kalvaitis, S. Kuppahally, G. Vergara, L. McMullen, et al. Evaluation of left atrial lesions after initial and repeat atrial fibrillation ablation: lessons learned from delayed-enhancement MRI in repeat ablation procedures. Circulation. 3(3):249–259, 2010.

    PubMed  Google Scholar 

  44. Baher, A., B. Buck, M. Fanarjian, J. Paul Mounsey, A. Gehi, E. Chung, F. G. Akar, C. L. Webber Jr., J. G. Akar, and J. P. Hummel. Recurrence quantification analysis of complex-fractionated electrograms differentiates active and passive sites during atrial fibrillation. J. Cardiovasc. Electrophysiol. 30(11):2229–2238, 2019.

    Article  PubMed  Google Scholar 

  45. van der Does, L. J., and N. M. de Groot. Inhomogeneity and complexity in defining fractionated electrograms. Heart Rhythm. 14(4):616–624, 2017.

    Article  PubMed  Google Scholar 

  46. Nademanee, K., J. McKenzie, E. Kosar, M. Schwab, B. Sunsaneewitayakul, T. Vasavakul, C. Khunnawat, and T. Ngarmukos. A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate. J. Am. Coll. Cardiol. 43(11):2044–2053, 2004.

    Article  PubMed  Google Scholar 

  47. Almeida, T. P., D. C. Soriano, M. Mase, F. Ravelli, A. S. Bezerra, X. Li, G. S. Chu, J. Salinet, P. J. Stafford, G. A. Ng, et al. Unsupervised classification of atrial electrograms for electroanatomic mapping of human persistent atrial fibrillation. IEEE Trans. Biomed. Eng. 68(4):1131–1141, 2020.

    Article  Google Scholar 

  48. Roney, C. H., J. Whitaker, I. Sim, L. O’Neill, R. K. Mukherjee, O. Razeghi, E. J. Vigmond, M. Wright, M. D. O’Neill, S. E. Williams, et al. A technique for measuring anisotropy in atrial conduction to estimate conduction velocity and atrial fibre direction. Comput. Biol. Med. 104:278–290, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Coveney, S., C. Corrado, C. H. Roney, D. O’Hare, S. E. Williams, M. D. O’Neill, S. A. Niederer, R. H. Clayton, J. E. Oakley, and R. D. Wilkinson. Gaussian process manifold interpolation for probabilistic atrial activation maps and uncertain conduction velocity. Philos. Trans. R. Soc. A. 378(2173):20190345, 2020.

    Article  ADS  MathSciNet  Google Scholar 

  50. Wong, K. C., P. P. Sadarmin, J. De Bono, N. Qureshi, M. Jones, K. Rajappan, Y. Bashir, and T. R. Betts. Local activation times at the high posterior wall of the left atrium during left atrial appendage pacing predict roof line block with high specificity and sensitivity. Europace. 13(9):1243–1249, 2011.

    Article  PubMed  Google Scholar 

  51. Zaatari, G., R. Mitrani, J. Bohorquez, J. Ng, J. Ng, H. Rivner, A. Velasquez, L. Lambrakos, R. Arora, and J. J. Goldberger. Electrogram morphology recurrence for mapping persistent atrial fibrillation: initial vs redo catheter ablation. Clin. Electrophysiol. 9(4):526–540, 2023.

    Article  Google Scholar 

  52. Ravelli, F., M. Mase, A. Cristoforetti, M. Marini, and M. Disertori. The logical operator map identifies novel candidate markers for critical sites in patients with atrial fibrillation. Prog. Biophys. Mol. Biol. 115(2–3):186–197, 2014.

    Article  PubMed  Google Scholar 

  53. Honarbakhsh, S., R. J. Schilling, R. Providencia, E. Keating, A. Chow, S. Sporton, M. Lowe, M. J. Earley, P. D. Lambiase, and R. J. Hunter. Characterization of drivers maintaining atrial fibrillation: correlation with markers of rapidity and organization on spectral analysis. Heart Rhythm. 15(9):1296–1303, 2018.

    Article  PubMed  Google Scholar 

  54. Li, X., G. S. Chu, T. P. Almeida, F. J. Vanheusden, J. Salinet, N. Dastagir, A. R. Mistry, Z. Vali, B. Sidhu, P. J. Stafford, et al. Automatic extraction of recurrent patterns of high dominant frequency mapping during human persistent atrial fibrillation. Front. Physiol.12:649486, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hwang, M., J.-S. Song, Y.-S. Lee, C. Li, E. B. Shim, and H.-N. Pak. Electrophysiological rotor ablation in in-silico modeling of atrial fibrillation: comparisons with dominant frequency, shannon entropy, and phase singularity. PLoS ONE. 11(2):0149695, 2016.

    Article  Google Scholar 

  56. Ganesan, A. N., P. Kuklik, D. H. Lau, A. G. Brooks, M. Baumert, W. W. Lim, S. Thanigaimani, S. Nayyar, R. Mahajan, J. M. Kalman, et al. Bipolar electrogram shannon entropy at sites of rotational activation: implications for ablation of atrial fibrillation. Circulation. 6(1):48–57, 2013.

    PubMed  Google Scholar 

  57. Bianca J. J. M. Brundel, M.T.H.M.F.K.G.Y.H.L. Xun Ai, N.M.S. de Groot, Atrial fibrillation. Nat. Rev. Dis. Primers 8(21):2056–676, 2022.

  58. Andersen, J. H., L. Andreasen, and M. S. Olesen. Atrial fibrillation-a complex polygenetic disease. Eur. J. Hum. Genet. 29(7):1051–1060, 2021.

    Article  PubMed  Google Scholar 

  59. Andrade, J., P. Khairy, D. Dobrev, and S. Nattel. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. Circ. Res. 114(9):1453–1468, 2014.

    Article  CAS  PubMed  Google Scholar 

  60. Frangogiannis, N. G. The extracellular matrix in ischemic and nonischemic heart failure. Circ. Res. 125(1):117–146, 2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Reese-Petersen, A. L., M. S. Olesen, M. A. Karsdal, J. H. Svendsen, and F. Genovese. Atrial fibrillation and cardiac fibrosis: a review on the potential of extracellular matrix proteins as biomarkers. Matrix Biol. 91:188–203, 2020.

    Article  PubMed  Google Scholar 

  62. Nguyen, T. P., Z. Qu, and J. N. Weiss. Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils. J. Mol. Cell. Cardiol. 70:83–91, 2014.

    Article  CAS  PubMed  Google Scholar 

  63. Pellman, J., R. C. Lyon, and F. Sheikh. Extracellular matrix remodeling in atrial fibrosis: mechanisms and implications in atrial fibrillation. J. Mol. Cell. Cardiol. 48(3):461–467, 2010.

    Article  CAS  PubMed  Google Scholar 

  64. Burstein, B., and S. Nattel. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation. J. Am. Coll. Cardiol. 51(8):802–809, 2008.

    Article  CAS  PubMed  Google Scholar 

  65. Pelouch, V., I. Dixon, L. Golfman, R. E. Beamish, and N. S. Dhalla. Role of extracellular matrix proteins in heart function. Mol. Cell. Biochem. 129(2):101–120, 1993.

    Article  CAS  PubMed  Google Scholar 

  66. van der Does, L., C. Kik, M. Allessie, and N. de Groot. Endo-epicardial dissociation in conduction. Eur. Heart J. 38(22):1775–1775, 2017.

    PubMed  Google Scholar 

  67. de Groot, N., L. Van Der Does, A. Yaksh, E. Lanters, C. Teuwen, P. Knops, P. van de Woestijne, J. Bekkers, C. Kik, A. Bogers, et al. Direct proof of endo-epicardial asynchrony of the atrial wall during atrial fibrillation in humans. Circulation.9(5):003648, 2016.

    Google Scholar 

  68. Verheule, S., J. Eckstein, D. Linz, B. Maesen, E. Bidar, A. Gharaviri, and U. Schotten. Role of endo-epicardial dissociation of electrical activity and transmural conduction in the development of persistent atrial fibrillation. Prog. Biophys. Mol. Biol. 115(2–3):173–185, 2014.

    Article  PubMed  Google Scholar 

  69. de Groot, N. M., R. P. Houben, J. L. Smeets, E. Boersma, U. Schotten, M. J. Schalij, H. Crijns, and M. A. Allessie. Electropathological substrate of longstanding persistent atrial fibrillation in patients with structural heart disease: epicardial breakthrough. Circulation. 122(17):1674–1682, 2010.

    Article  PubMed  Google Scholar 

  70. Ravelli, F., M. Masè, A. Cristoforetti, L. Avogaro, E. D’Amato, F. Tessarolo, F. Piccoli, and A. Graffigna. Quantitative assessment of transmural fibrosis profile in the human atrium: evidence for a three-dimensional arrhythmic substrate by slice-to-slice histology. Europace. 25(2):739–747, 2023.

    Article  PubMed  Google Scholar 

  71. Pagani, S., L. Dede’, A. Frontera, M. Salvador, L. Limite, A. Manzoni, F. Lipartiti, G. Tsitsinakis, A. Hadjis, P. Della Bella, et al. A computational study of the electrophysiological substrate in patients suffering from atrial fibrillation. Front. Physiol.12:673612, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takahashi, Y., T. Yamaguchi, T. Otsubo, K. Nakashima, K. Shinzato, R. Osako, S. Shichida, Y. Kawano, A. Fukui, A. Kawaguchi, et al. Histological validation of atrial structural remodelling in patients with atrial fibrillation. Eur. Heart J. 396, 2023.

  73. Baumert, M., P. Sanders, and A. Ganesan. Quantitative-electrogram-based methods for guiding catheter ablation in atrial fibrillation. Proc. IEEE. 104(2):416–431, 2016.

    Article  Google Scholar 

  74. Tedrow, U. B., and W. G. Stevenson. Recording and interpreting unipolar electrograms to guide catheter ablation. Heart Rhythm. 8(5):791–796, 2011.

    Article  PubMed  Google Scholar 

  75. Gaeta, S., T. D. Bahnson, and C. Henriquez. Mechanism and magnitude of bipolar electrogram directional sensitivity: characterizing underlying determinants of bipolar amplitude. Heart Rhythm. 17(5):777–785, 2020.

    Article  PubMed  Google Scholar 

  76. Sroubek, J., M. Rottmann, M. Barkagan, E. Leshem, A. Shapira-Daniels, E. Brem, C. Fuentes-Ortega, J. Malinaric, S. Basu, M. Bar-Tal, et al. A novel octaray multielectrode catheter for high-resolution atrial mapping: electrogram characterization and utility for mapping ablation gaps. J. Cardiovasc. Electrophysiol. 30(5):749–757, 2019.

    Article  PubMed  Google Scholar 

  77. Saha, S., S. Hartmann, D. Linz, P. Sanders, and M. Baumert, A ventricular far-field artefact filtering technique for atrial electrograms. In: 2019 Computing in Cardiology (CinC), p. 1, 2019. IEEE.

  78. Dalvi, R., S. Nayyar, A. Suszko, and V. S. Chauhan, A least squares approach to estimation of far-field voltage in unipolar electrograms in atrial fibrillation. In: 2018 52nd Asilomar Conference on Signals, Systems, and Computers, pp. 1230–1233, 2018. IEEE.

  79. Stinnett-Donnelly, J. M., N. Thompson, N. Habel, V. Petrov-Kondratov, D. D. C. de Sa, J. H. Bates, and P. S. Spector. Effects of electrode size and spacing on the resolution of intracardiac electrograms. Coron. Artery Dis. 23(2):126–132, 2012.

    Article  PubMed  Google Scholar 

  80. Takigawa, M., T. Kitamura, S. Basu, M. Bartal, C. A. Martin, R. Martin, G. Cheniti, K. Vlachos, X. Pillois, A. Frontera, et al. Effect of electrode size and spacing on electrograms: optimized electrode configuration for near-field electrogram characterization. Heart Rhythm. 19(1):102–112, 2021.

    Article  PubMed  Google Scholar 

  81. Takigawa, M., J. Relan, R. Martin, S. Kim, T. Kitamura, G. Cheniti, K. Vlachos, X. Pillois, A. Frontera, G. Massoullié, et al. Detailed analysis of the relation between bipolar electrode spacing and far-and near-field electrograms. Clin. Electrophysiol. 5(1):66–77, 2019.

    Article  Google Scholar 

  82. Beheshti, M., K. Magtibay, S. Massé, A. Porta-Sanchez, S. Haldar, A. Bhaskaran, S. Nayyar, B. Glover, D. C. Deno, E. J. Vigmond, et al. Determinants of atrial bipolar voltage: Inter electrode distance and wavefront angle. Comput. Biol. Med. 102:449–457, 2018.

    Article  PubMed  Google Scholar 

  83. Kuo, M.-J., L.-W. Lo, Y.-J. Lin, S.-L. Chang, Y.-F. Hu, F.-P. Chung, T.-C. Tuan, T.-F. Chao, J.-N. Liao, T.-Y. Chang, et al. Low voltage zones detected by omnipolar vmax map accurately identifies the potential atrial substrate and predicts the af ablation outcome after pv isolation. Int. J. Cardiol. 351:42–47, 2022.

    Article  PubMed  Google Scholar 

  84. Yavin, H. D., J. Sroubek, J. Yarnitsky, Z. P. Bubar, K. Higuchi, I. Zilberman, S. Basu, and E. Anter. Direction-aware mapping algorithms have minimal impact on bipolar voltage maps created using high-resolution multielectrode catheters. J. Cardiovasc. Electrophysiol. 33(1):73–80, 2022.

    Article  PubMed  Google Scholar 

  85. Deno, D. C., R. Balachandran, D. Morgan, F. Ahmad, S. Massé, and K. Nanthakumar. Orientation-independent catheter-based characterization of myocardial activation. IEEE Trans. Biomed. Eng. 64(5):1067–1077, 2016.

    Article  PubMed  Google Scholar 

  86. Massé, S., K. Magtibay, N. Jackson, J. Asta, M. Kusha, B. Zhang, R. Balachandran, M. Radisic, D. C. Deno, and K. Nanthakumar. Resolving myocardial activation with novel omnipolar electrograms. Circulation.9(7):004107, 2016.

    Google Scholar 

  87. Castells, F., S. Ruipérez-Campillo, I. Segarra, R. Cervigón, R. Casado-Arroyo, J. L. Merino, and J. Millet. Performance assessment of electrode configurations for the estimation of omnipolar electrograms from high density arrays. Comput. Biol. Med.154:106604, 2023.

    Article  PubMed  Google Scholar 

  88. Shenasa, M., S.-M. Razavi, H. Shenasa, and A. Al-Ahmad. The ideal cardiac mapping system. Cardiac Electrophysiol. Clin. 11(4):739–748, 2019.

    Article  Google Scholar 

  89. Martinez-Iniesta, M., J. Ródenas, R. Alcaraz, and J. J. Rieta. Waveform integrity in atrial fibrillation: the forgotten issue of cardiac electrophysiology. Ann. Biomed. Eng. 45(8):1890–1907, 2017.

    Article  PubMed  Google Scholar 

  90. Unger, L. A., T. G. Oesterlein, A. Loewe, and O. Dössel, Noise quantification and noise reduction for unipolar and bipolar electrograms. In: 2019 Computing in Cardiology (CinC), p. 1, 2019. IEEE.

  91. Botteron, G. W., and J. M. Smith. A technique for measurement of the extent of spatial organization of atrial activation during atrial fibrillation in the intact human heart. IEEE Trans. Biomed. Eng. 42(6):579–586, 1995.

    Article  CAS  PubMed  Google Scholar 

  92. Berenfeld, O., R. Mandapati, S. Dixit, A. C. Skanes, J. Chen, M. Mansour, and J. Jalife. Spatially distributed dominant excitation frequencies reveal hidden organization in atrial fibrillation in the langendorff-perfused sheep heart. J. Cardiovasc. Electrophysiol. 11(8):869–879, 2000.

    Article  CAS  PubMed  Google Scholar 

  93. Ciaccio, E. J., A. B. Biviano, and H. Garan. Computational method for high resolution spectral analysis of fractionated atrial electrograms. Comput. Biol. Med. 43(10):1573–1582, 2013.

    Article  PubMed  Google Scholar 

  94. Borlich, M., and P. Sommer. Cardiac mapping systems: rhythmia, topera, ensite precision, and carto. Cardiac Electrophysiol. Clin. 11(3):449–458, 2019.

    Article  Google Scholar 

  95. Xiong, Z., M. K. Stiles, Y. Yao, R. Shi, A. Nalar, J. Hawson, G. Lee, and J. Zhao. Automatic 3d surface reconstruction of the left atrium from clinically mapped point clouds using convolutional neural networks. Front. Physiol.13:880260, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Sha, Q., L. Elliott, X. Zhang, T. Levy, T. Sharma, and A. Abdelaal. Atrial fibrillation driver identification through regional mutual information networks: a modeling perspective. J. Interv. Card. Electrophysiol. 64(3):649–660, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Rodrigo, M., M. I. Alhusseini, A. J. Rogers, C. Krittanawong, S. Thakur, R. Feng, P. Ganesan, and S. M. Narayan. Atrial fibrillation signatures on intracardiac electrograms identified by deep learning. Comput. Biol. Med.145:105451, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Sánchez, J., G. Luongo, M. Nothstein, L. A. Unger, J. Saiz, B. Trenor, A. Luik, O. Dössel, and A. Loewe, Using machine learning to characterize atrial fibrotic substrate from intracardiac signals with a hybrid in silico and in vivo dataset. Front. Physiol. 1000, 2021.

  99. Bartolucci, C., C. Fabbri, C. Tomasi, P. Sabbatani, S. Severi, and C. Corsi. Computational analysis of mapping catheter geometry and contact quality effects on rotor detection in atrial fibrillation. Front. Physiol.12:732161, 2021.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Heijman, J., H. Sutanto, H. J. Crijns, S. Nattel, and N. A. Trayanova. Computational models of atrial fibrillation: achievements, challenges, and perspectives for improving clinical care. Cardiovasc. Res. 117(7):1682–1699, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Aronis, K. N., R. Ali, and N. A. Trayanova. The role of personalized atrial modeling in understanding atrial fibrillation mechanisms and improving treatment. Int. J. Cardiol. 287:139–147, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Berte, B., K. Zeppenfeld, and R. Tung. Impact of micro-, mini-and multi-electrode mapping on ventricular substrate characterisation. Arrhythm. Electrophysiol. Rev. 9(3):128, 2020.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Barkagan, M., J. Sroubek, A. Shapira-Daniels, H. Yavin, J. Jang, R. Nezafat, and E. Anter. A novel multielectrode catheter for high-density ventricular mapping: electrogram characterization and utility for scar mapping. EP Europace. 22(3):440–449, 2020.

    Google Scholar 

  104. Octaray\(^{{\rm TM}}\) mapping catheter with trueref\(^{{\rm TM}}\) technology. Accessed February 21, 2023. https://www.jnjmedtech.com/en-US/product/octaray-mapping-catheter-trueref-technology.

  105. Dodeja, A. K., Y. Tan, T. Ackley, J. Russell, N. Kertesz, C. J. Daniels, and A. Kamp. Pentaray® multielectrode mapping catheter for atrial tachyarrhythmia in adults with congenital heart disease. Tex. Heart Inst. J. 49(5):207535, 2022.

    Article  Google Scholar 

  106. Advisor HD Grid\(^{{\rm TM}}\) mapping catheter, sensor enabled\(^{{\rm TM}}\). Accessed February 21, 2023. https://www.cardiovascular.abbott/us/en/hcp/products/electrophysiology/diagnostic-catheters/advisor-hd-grid.html

  107. Jiang, R., A. D. Beaser, Z. Aziz, G. A. Upadhyay, H. M. Nayak, and R. Tung. High-density grid catheter for detailed mapping of sinus rhythm and scar-related ventricular tachycardia: comparison with a linear duodecapolar catheter. Clin. Electrophysiol. 6(3):311–323, 2020.

    Article  Google Scholar 

  108. Tan, J. L., G. S. Guandalini, M. C. Hyman, J. Arkles, P. Santangeli, R. D. Schaller, F. Garcia, G. Supple, D. S. Frankel, S., Nazarian, et al. Substrate and arrhythmia characterization using the multi-electrode optrell mapping catheter for ventricular arrhythmia ablation—a single-center experience. J. Interv. Cardiac Electrophysiol. 1–11, 2023.

  109. Yavin, H. D., Z. P. Bubar, K. Higuchi, J. Sroubek, J. Yarnitsky, and E. Anter. Propagation vectors facilitate differentiation between conduction block, slow conduction, and wavefront collision. Circulation.14(8):010081, 2021.

    Google Scholar 

  110. Deno, D. C., A. Bhaskaran, D. J. Morgan, F. Goksu, K. Batman, G. K. Olson, K. Magtibay, S. Nayyar, A. Porta-Sánchez, M. A. Laflamme, et al. High-resolution, live, directional mapping. Heart Rhythm. 17(9):1621–1628, 2020.

    Article  PubMed  Google Scholar 

  111. Dittrich, S., C. Scheurlen, J.-H. van den Bruck, K. Filipovic, J. Wörmann, S. Erlhöfer, J.-H. Schipper, J. Lüker, D. Steven, and A. Sultan, The omnipolar mapping technology—a new mapping tool to overcome “bipolar blindness” resulting in true high-density maps. J. Interv. Cardiac Electrophysiol. 1–10, 2023.

  112. Ruiperez-Campillo, S., F. Castells, M. Crespo, L. Pancorbo, A. Guill, F. Chorro, J. Merino, R. Casado-Arroyo, and J. Millet. Study of the omnipolar egm reconstruction for robustness against wavefront propagation in epicardial signals. Europace. 25(Suppl 1):122–662, 2023.

    Google Scholar 

  113. Iacopino, S., F. Cecchini, A. Tripodi, P. Sorrenti, G. Fabiano, and A. Petretta. Epicardial multisite conduction blocks detected by equispaced electrode array and omnipolar technology in brugada syndrome. Heart Rhythm Case Rep. 9(1):12–16, 2023.

    Google Scholar 

  114. Van Schie, M. S., P. Knops, L. Zhang, F. Van Schaagen, Y. J. Taverne, and N. De Groot. Detection of endo-epicardial atrial low-voltage areas using unipolar and omnipolar voltage mapping. Front. Physiol. 13:1030025, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Yeo, C., V. H. Tan, and Y. Wang. Omnipolar activation egm to identify the earliest breakout site of atrial tachycardia. J. Arrhythm. 38(5):801–804, 2022.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Karatela, M. F., R. S. Dowell, D. Friedman, K. P. Jackson, and J. P. Piccini. Omnipolar versus bipolar electrode mapping in patients with atrial fibrillation undergoing catheter ablation. Clin. Electrophysiol. 8(12):1539–1552, 2022.

    Article  Google Scholar 

  117. Burg, M. R., R. D. Anderson, S. Massé, and K. Nanthakumar. Cardiac mapping with irreverence to time: replacing isochrones with omnipolar vectors. Heart Rhythm. 19(11):1802–1803, 2022.

    Article  PubMed  Google Scholar 

  118. van Schie, M. S., R. K. Kharbanda, C. A. Houck, E. A. Lanters, Y. J. Taverne, A. J. Bogers, and N. M. de Groot. Identification of low-voltage areas: a unipolar, bipolar, and omnipolar perspective. Circulation.14(7):009912, 2021.

    Google Scholar 

  119. Haldar, S. K., K. Magtibay, A. Porta-Sanchez, S. Massé, N. Mitsakakis, P. F. Lai, M. A. Azam, J. Asta, M. Kusha, P. Dorian, et al. Resolving bipolar electrogram voltages during atrial fibrillation using omnipolar mapping. Circulation.10(9):005018, 2017.

    Google Scholar 

  120. Ollitrault, P., L. Champ-Rigot, V. Ferchaud, A. Pellissier, O. Coffin, and P. Milliez. Vascular entrapment of a multipolar basket catheter (oriontm) during catheter ablation. J. Cardiovasc. Electrophysiol. 32(2):545–546, 2021.

    Article  PubMed  Google Scholar 

  121. Pathik, B., G. Lee, F. Sacher, M. Haïssaguerre, P. Jaïs, G. Massoullié, N. Derval, P. Sanders, P. Kistler, and J. M. Kalman. Epicardial-endocardial breakthrough during stable atrial macroreentry: evidence from ultra-high-resolution 3-dimensional mapping. Heart Rhythm. 14(8):1200–1207, 2017.

    Article  PubMed  Google Scholar 

  122. Oesterlein, T., D. Frisch, A. Loewe, G. Seemann, C. Schmitt, O. Dössel, and A. Luik, Basket-type catheters: diagnostic pitfalls caused by deformation and limited coverage. BioMed Res. Int., 2016.

  123. Ruipérez-Campillo, S., M. Crespo, Á. Tormos, A. Guill, A. Cebrián, A. Alberola, J. Heimer, F. J., Chorro, J., Millet, and F. Castells, Evaluation and assessment of clique arrangements for the estimation of omnipolar electrograms in high density electrode arrays: an experimental animal model study. Phys. Eng. Sci. Med. 1–12, 2023.

  124. Jeong, C., J. Park, and H. Yu. Random access in millimeter-wave beamforming cellular networks: issues and approaches. IEEE Commun. Mag. 53(1):180–185, 2015.

    Article  Google Scholar 

  125. Wang, M., F. Gao, S. Jin, and H. Lin. An overview of enhanced massive mimo with array signal processing techniques. IEEE J. Sel. Topics Signal Process. 13(5):886–901, 2019.

    Article  ADS  Google Scholar 

  126. Trayanova, N. A., D. M. Popescu, and J. K. Shade. Machine learning in arrhythmia and electrophysiology. Circ. Res. 128(4):544–566, 2021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Alhusseini, M. I., F. Abuzaid, A. J. Rogers, J. A. Zaman, T. Baykaner, P. Clopton, P. Bailis, M. Zaharia, P. J. Wang, W.-J. Rappel, et al. Machine learning to classify intracardiac electrical patterns during atrial fibrillation: machine learning of atrial fibrillation. Circulation.13(8):008160, 2020.

    Google Scholar 

  128. Corrado, C., S. Williams, C. Roney, G. Plank, M. O’Neill, and S. Niederer. Using machine learning to identify local cellular properties that support re-entrant activation in patient-specific models of atrial fibrillation. EP Europace. 23(Suppl 1):12–20, 2021.

    Article  Google Scholar 

Download references

Acknowledgements

Acknowledgments are not compulsory. Where included they should be brief. Grant or contribution numbers may be acknowledged. Please refer to Journal-level guidance for any specific requirements.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Simanto Saha.

Ethics declarations

Conflict of interest

None of the authors has any conflict of interest.

Ethical Approval

Not applicable.

Consent for Publication

Not applicable.

Additional information

Associate Editor Derek J. Dosdall, Ph.D. oversaw review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saha, S., Linz, D., Saha, D. et al. Overcoming Uncertainties in Electrogram-Based Atrial Fibrillation Mapping: A Review. Cardiovasc Eng Tech 15, 52–64 (2024). https://doi.org/10.1007/s13239-023-00696-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-023-00696-w

Keywords

Navigation