Skip to main content

Advertisement

Log in

A State-Of-The-Art Review on Coronary Artery Border Segmentation Algorithms for Intravascular Ultrasound (IVUS) Images

  • Review
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Intravascular Ultrasound images (IVUS) is a useful guide for medical practitioners to identify the vascular status of coronary arteries in human beings. IVUS is a unique intracoronary imaging modality that is used as an adjunct to angioplasty to view vessel structures using a catheter with high resolutions. Segmentation of IVUS images has always remained a challenging task due to various impediments, for example, similar tissue components, vessel structures, and artifacts imposed during the acquisition process. Many researchers have applied various techniques to develop standard methods of image interpretation, however, the ultimate goal is still elusive to most researchers. This challenge was presented at the MICCAI- Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop in 2011. This paper presents a major review of recently reported work in the field, with a detailed analysis of various segmentation techniques applied in IVUS, and highlights the directions for future research. The findings recommend a reference database with a larger number of samples acquired at varied transducer frequencies with special consideration towards complex lesions, suitable validation metrics, and ground-truth definition as a standard against which to compare new and current algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. WHO (2020) Cardiovascular diseases. https://www.who.int/health-topics/cardiovascular-diseases/

  2. Gao Z, Guo W, Liu X, et al (2014) Automated detection framework of the calcified plaque with acoustic shadowing in IVUS images. PLoS ONE 9:. https://doi.org/10.1371/journal.pone.0109997

  3. Subban, Raffel OC, Vasu N, et al (2018) Intravascular ultrasound and optical coherence tomography for the assessment of coronary artery disease and percutaneous coronary intervention optimization: Specific lesion subsets. Indian Heart Journal Interventions 1:95. https://doi.org/10.4103/IHJI.IHJI_33_18

    Article  Google Scholar 

  4. Su S, Hu Z, Lin Q, et al (2017) An artificial neural network method for lumen and media-adventitia border detection in IVUS. Computerized Medical Imaging and Graphics 57:29–39. https://doi.org/10.1016/j.compmedimag.2016.11.003

    Article  PubMed  Google Scholar 

  5. Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circulation Research 114:1852–1866. https://doi.org/10.1161/CIRCRESAHA.114.302721

    Article  CAS  PubMed  Google Scholar 

  6. Katouzian A, Karamalis A, Sheet D, et al (2012) Iterative self-organizing atherosclerotic tissue labeling in intravascular ultrasound images and comparison with virtual histology. IEEE Transactions on Biomedical Engineering 59:3039–3049. https://doi.org/10.1109/TBME.2012.2213338

    Article  PubMed  Google Scholar 

  7. Lee J, Hwang YN, Kim GY, et al (2019) Automated classification of dense calcium tissues in gray-scale intravascular ultrasound images using a deep belief network. BMC Medical Imaging 19:1–13. https://doi.org/10.1186/s12880-019-0403-8

    Article  Google Scholar 

  8. Falk E (1992) Why do plaques rupture? Circulation 86:III30-42

    PubMed  Google Scholar 

  9. VIRMANI R, BURKE AP, KOLODGIE FD, FARB A (2003) Pathology of the Thin-Cap Fibroatheroma: Journal of Interventional Cardiology 16:267–272. https://doi.org/10.1034/j.1600-0854.2003.8042.x

    Article  PubMed  Google Scholar 

  10. Yock PG, Linker DT, Angelsen BAJ (1989) Two-Dimensional Intravascular Ultrasound: Technical Development and Initial Clinical Experience. Journal of the American Society of Echocardiography 2:296–304. https://doi.org/10.1016/S0894-7317(89)80090-2

    Article  CAS  PubMed  Google Scholar 

  11. Escolar E, Weigold G, Fuisz A, Weissman NJ (2006) New imaging techniques for diagnosing coronary artery disease. Cmaj 174:487–495. https://doi.org/10.1503/cmaj.050925

    Article  PubMed  PubMed Central  Google Scholar 

  12. Waller BF, Pinkerton CA, Slack JD (1992) Intravascular ultrasound: A histological study of vessels during life. The new “gold standard” for vascular imaging. Circulation 85:2305–2310. https://doi.org/10.1161/01.CIR.85.6.2305

    Article  CAS  PubMed  Google Scholar 

  13. Katouzian A, Angelini ED, Carlier SG, et al (2012) A state-of-the-art review on segmentation algorithms in intravascular ultrasound (IVUS) images. IEEE Transactions on Information Technology in Biomedicine 16:823–834. https://doi.org/10.1109/TITB.2012.2189408

    Article  PubMed  Google Scholar 

  14. Szarski M, Chauhan S (2021) Improved real-time segmentation of Intravascular Ultrasound images using coordinate-aware fully convolutional networks. Computerized Medical Imaging and Graphics 91:101955. https://doi.org/10.1016/j.compmedimag.2021.101955

    Article  PubMed  Google Scholar 

  15. Faraji M, Cheng I, Naudin I, Basu A (2018) Segmentation of arterial walls in intravascular ultrasound cross-sectional images using extremal region selection. Ultrasonics 84:356–365. https://doi.org/10.1016/j.ultras.2017.11.020

    Article  PubMed  Google Scholar 

  16. Nishi T, Yamashita R, Imura S, et al (2021) Deep learning-based intravascular ultrasound segmentation for the assessment of coronary artery disease. International Journal of Cardiology 333:55–59. https://doi.org/10.1016/j.ijcard.2021.03.020

    Article  PubMed  Google Scholar 

  17. Choi A, McPherson DD, Kim H (2017) Visualization of plaque distribution in a curved artery: three-dimensional intravascular ultrasound imaging. Computer Assisted Surgery 22:120–126. https://doi.org/10.1080/24699322.2017.1389389

    Article  PubMed  Google Scholar 

  18. Yang J, Faraji M, Basu A (2019) Robust segmentation of arterial walls in intravascular ultrasound images using Dual Path U-Net. Ultrasonics 96:24–33. https://doi.org/10.1016/j.ultras.2019.03.014

    Article  PubMed  Google Scholar 

  19. Balocco S, Gatta C, Ciompi F, et al (2014) Standardized evaluation methodology and reference database for evaluating IVUS image segmentation. Computerized Medical Imaging and Graphics 38:70–90. https://doi.org/10.1016/j.compmedimag.2013.07.001

    Article  PubMed  Google Scholar 

  20. Räber L, Mintz GS, Koskinas KC, et al (2018) Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. European heart journal 39:3281–3300. https://doi.org/10.1093/eurheartj/ehy285

    Article  PubMed  Google Scholar 

  21. Zhang P, Li H, Wang R, et al (2021) IVUS plus multivariate analysis for evaluating the stability of coronary artery plaque in coronary heart disease. American journal of translational research 13:9168–9174

    CAS  PubMed Central  Google Scholar 

  22. Kwon O, Lee PH, Lee S-W, et al (2021) Clinical outcomes of post-stent intravascular ultrasound examination for chronic total occlusion intervention with drug-eluting stents. EuroIntervention 17:e639–e646

    Article  PubMed  PubMed Central  Google Scholar 

  23. Buccheri D, Piraino D, Andolina G, Cortese B (2016) Understanding and managing in-stent restenosis: a review of clinical data, from pathogenesis to treatment. Journal of thoracic disease 8:E1150–E1162. https://doi.org/10.21037/jtd.2016.10.93

    Article  PubMed Central  Google Scholar 

  24. Si D, Liu G, Tong Y, He Y (2018) Rotational atherectomy ablation for an unexpandable stent under the guide of IVUS A case report. https://doi.org/10.1097/MD.0000000000009978

  25. Chiang M-H, Yi H-T, Tsao C-R, et al (2013) Rotablation in the treatment of high-risk patients with heavily calcified left-main coronary lesions. Journal of geriatric cardiology: JGC 10:217–225. https://doi.org/10.3969/j.issn.1671-5411.2013.03.009

    Article  PubMed  PubMed Central  Google Scholar 

  26. Guddeti RR, Matsuo Y, Matsuzawa Y, et al (2014) Clinical implications of intracoronary imaging in cardiac allograft vasculopathy. Circulation: Cardiovascular Imaging 8:1–8. https://doi.org/10.1161/CIRCIMAGING.114.002636

    Article  Google Scholar 

  27. Vijayvergiya R, Kasinadhuni G, Revaiah PC, et al (2021) Role of Intravascular Imaging for the Diagnosis of Recanalized Coronary Thrombus. Cardiovascular Revascularization Medicine 32:13–17. https://doi.org/10.1016/j.carrev.2020.12.031

    Article  PubMed  Google Scholar 

  28. Secemsky EA, Parikh SA, Kohi M, et al (2020) Intravascular ultrasound guidance for lower extremity arterial and venous interventions. EuroIntervention 18:598–608

    Article  Google Scholar 

  29. Herrington DM, Johnson T, Santago P, Snyder WE (1992) Semi-automated boundary detection for intravascular ultrasound. Proceedings - Computers in Cardiology, CIC 1992 103–106. https://doi.org/10.1109/CIC.1992.269436

  30. Sonka M, Zhang X, Siebes M, et al (1995) Segmentation of Intravascular Ultrasound Images: A Knowledge-Based Approach. IEEE Transactions on Medical Imaging 14:719–732. https://doi.org/10.1109/42.476113

    Article  CAS  PubMed  Google Scholar 

  31. Papadogiorgaki M, Mezaris V, Chatzizisis YS, et al (2008) Image Analysis Techniques for Automated IVUS Contour Detection. Ultrasound in Medicine and Biology 34:1482–1498. https://doi.org/10.1016/j.ultrasmedbio.2008.01.022

    Article  PubMed  Google Scholar 

  32. Dos Santos Filho E, Saijo Y, Yambe T, et al (2006) Segmentation of calcification regions in intravascular ultrasound images by adaptive thresholding. Proceedings - IEEE Symposium on Computer-Based Medical Systems 2006:446–450. https://doi.org/10.1109/CBMS.2006.142

  33. Katouzian A, Angelini ED, Sturm B, Laine AF (2012) Brushlet segmentation for automatic detection of lumen borders in IVUS images: A comparison study. Proceedings - International Symposium on Biomedical Imaging 242–245. https://doi.org/10.1109/ISBI.2012.6235529

  34. Mendizabal-Ruiz EG, Rivera M, Kakadiaris IA (2013) Segmentation of the luminal border in intravascular ultrasound B-mode images using a probabilistic approach. Medical Image Analysis 17:649–670. https://doi.org/10.1016/j.media.2013.02.003

    Article  PubMed  Google Scholar 

  35. (2011) Proceedings of CVII’11. In: 3rd MICCAI-Workshop on Computation and Visualization for (Intra) Vascular Imaging. Toronto, Canada

  36. Lo Vercio L, Del Fresno M, Larrabide I (2017) Detection of morphological structures for vessel wall segmentation in IVUS using random forests. 12th International Symposium on Medical Information Processing and Analysis 10160:1016012. https://doi.org/10.1117/12.2255748

  37. Destrempes F, Roy Cardinal MH, Saijo Y, et al (2017) Assessment of inter-expert variability and of an automated segmentation method of 40 and 60 MHz IVUS images of coronary arteries. PLoS ONE 12:1–22. https://doi.org/10.1371/journal.pone.0168332

    Article  CAS  Google Scholar 

  38. Nishi T, Imura S, Kitahara H, et al (2021) Head-to-head comparison of quantitative measurements between intravascular imaging systems: An in vitro phantom study. IJC Heart and Vasculature 36:100867. https://doi.org/10.1016/j.ijcha.2021.100867

    Article  PubMed  PubMed Central  Google Scholar 

  39. Peng C, Wu H, Kim S, et al (2021) Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging. Sensors (Basel, Switzerland) 21:. https://doi.org/10.3390/s21103540

  40. Finet G, Cachard C, Delachartre P, et al (1998) Artifacts in intravascular ultrasound imaging during coronary artery stent implantation. Ultrasound in Medicine and Biology 24:793–802. https://doi.org/10.1016/S0301-5629(98)00041-6

    Article  CAS  PubMed  Google Scholar 

  41. Hindi A, Peterson C, Barr RG (2013) Artifacts in diagnostic ultrasound. Reports in Medical Imaging 6:29–48. https://doi.org/10.2147/RMI.S33464

    Article  Google Scholar 

  42. Park H-B, Cho Y-H, Cho D-K (2018) IVUS Artifacts and Image Control. In: Coronary Imaging and Physiology. pp 9–17

  43. Bangalore S, Bhatt DL (2013) Coronary intravascular ultrasound. Circulation 127:868–874. https://doi.org/10.1161/CIRCULATIONAHA.113.003534

    Article  Google Scholar 

  44. Ye Y, Yang M, Zhang S, Zeng Y (2017) Percutaneous coronary intervention in left main coronary artery disease with or without intravascular ultrasound: A meta-analysis. PLoS ONE 12:1–13. https://doi.org/10.1371/journal.pone.0179756

    Article  CAS  Google Scholar 

  45. LEE C-H (2012) Intravascular Ultrasound Guided Percutaneous Coronary Intervention: A Practical Approach. Journal of Interventional Cardiology 25:86–94. https://doi.org/10.1111/j.1540-8183.2011.00651.x

    Article  PubMed  Google Scholar 

  46. Lee SY, Choi KH, Song Y Bin, et al (2022) Use of intravascular ultrasound and long-term cardiac death or myocardial infarction in patients receiving current generation drug-eluting stents. Scientific Reports 12:8237. https://doi.org/10.1038/s41598-022-12339-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Maria GL De, Banning AP (2018) Use of Intravascular Ultrasound Imaging in Percutaneous Coronary Intervention to Treat Left Main Coronary Artery Disease. Radcliffe Cardiology 12:8–12. https://doi.org/10.15420/icr.2017

    Article  Google Scholar 

  48. Gong X, Huang Z, Sun Z, et al (2021) Role of IVUS in the rectification of angiographically judged ramus intermedius and its clinical significance. BMC Cardiovascular Disorders 21:218. https://doi.org/10.1186/s12872-021-02034-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Vijayvergiya R, Gupta A, Kasinadhuni G, et al (2018) Intravascular ultrasound supported percutaneous coronary intervention of a large diameter right coronary artery. IHJ Cardiovascular Case Reports (CVCR) 2:106–107. https://doi.org/10.1016/j.ihjccr.2018.02.004

    Article  Google Scholar 

  50. Choi KH, Song Y Bin, Lee JM, et al (2019) Impact of Intravascular Ultrasound-Guided Percutaneous Coronary Intervention on Long-Term Clinical Outcomes in Patients Undergoing Complex Procedures. JACC: Cardiovascular Interventions 12:607–620. https://doi.org/10.1016/j.jcin.2019.01.227

    Article  PubMed  Google Scholar 

  51. Choi IJ, Lim S, Choo EH, et al (2021) Impact of Intravascular Ultrasound on Long-Term Clinical Outcomes in Patients With Acute Myocardial Infarction. JACC Cardiovascular interventions 14:2431–2443. https://doi.org/10.1016/j.jcin.2021.08.021

    Article  PubMed  Google Scholar 

  52. Kang DY, Ahn JM, Yun SC, et al (2021) Long-Term Clinical Impact of Intravascular Ultrasound Guidance in Stenting for Left Main Coronary Artery Disease. Circulation Cardiovascular interventions 14:e011011. https://doi.org/10.1161/CIRCINTERVENTIONS.121.011011

    Article  CAS  PubMed  Google Scholar 

  53. Vemmou E, Khatri J, Doing AH, et al (2020) Impact of Intravascular Ultrasound Utilization for Stent Optimization on 1-Year Outcomes After Chronic Total Occlusion Percutaneous Coronary Intervention. The Journal of invasive cardiology 32:392–399

    PubMed  Google Scholar 

  54. Shlofmitz E, Torguson R, Zhang C, et al (2021) Impact of intravascular ultrasound on Outcomes following PErcutaneous coronary interventioN for In-stent Restenosis (iOPEN-ISR study). International Journal of Cardiology 340:17–21. https://doi.org/10.1016/j.ijcard.2021.08.003

    Article  PubMed  Google Scholar 

  55. Andres V, Mistry N, Singh J (2014) Impact of Intravascular Ultrasound in Clinical Practice. Redcliffe Cardiology 9:156–163

    Google Scholar 

  56. Gao Z, Chung J, Abdelrazek M, et al (2020) Privileged Modality Distillation for Vessel Border Detection in Intracoronary Imaging. IEEE Transactions on Medical Imaging 39:1524–1534. https://doi.org/10.1109/tmi.2019.2952939

    Article  PubMed  Google Scholar 

  57. Taha AA, Hanbury A (2015) Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool. BMC Medical Imaging 15:29. https://doi.org/10.1186/s12880-015-0068-x

    Article  PubMed  PubMed Central  Google Scholar 

  58. Müller D, Soto-Rey I, Kramer F (2022) Towards a guideline for evaluation metrics in medical image segmentation. BMC Research Notes 15:210. https://doi.org/10.1186/s13104-022-06096-y

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yan J, Lv D, Cui Y (2017) A Novel Segmentation Approach for Intravascular Ultrasound Images. Journal of Medical and Biological Engineering 37:386–394. https://doi.org/10.1007/s40846-017-0233-5

    Article  Google Scholar 

  60. Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Sciences of the United States of America 93:1591–1595. https://doi.org/10.1073/pnas.93.4.1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Deschamps T, Cohen LD (2001) Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Medical Image Analysis 5:281–299. https://doi.org/10.1016/S1361-8415(01)00046-9

    Article  CAS  PubMed  Google Scholar 

  62. Udupa JK, Samarasekera S (1996) Fuzzy Connectedness and Object Definition: Theory, Algorithms, and Applications in Image Segmentation. Graphical Models and Image processing 58:246–261. https://doi.org/10.1109/TPAMI.2004.1265723

    Article  Google Scholar 

  63. Unal G, Bucher S, Carlier S, et al (2008) Shape-driven segmentation of the arterial wall in intravascular ultrasound images. IEEE Transactions on Information Technology in Biomedicine 12:335–347. https://doi.org/10.1109/TITB.2008.920620

    Article  PubMed  Google Scholar 

  64. Cardinal MHR, Soulez G, Tardif JC, et al (2010) Fast-marching segmentation of three-dimensional intravascular ultrasound images: A pre- and post-intervention study. Medical Physics 37:3633–3647. https://doi.org/10.1118/1.3438476

    Article  PubMed  Google Scholar 

  65. Mikolajczyk K, Tuytelaars T, Schmid C, et al (2005) A comparison of affine region detectors. International Journal of Computer Vision 65:43–72. https://doi.org/10.1007/s11263-005-3848-x

    Article  Google Scholar 

  66. Faraji M, Shanbehzadeh J, Nasrollahi K, Moeslund TB (2015) Extremal Regions Detection Guided by Maxima of Gradient Magnitude. IEEE Transactions on Image Processing 24:5401–5415. https://doi.org/10.1109/TIP.2015.2477215

    Article  PubMed  Google Scholar 

  67. Ridler TW, Calvard S (1978) Picture Thresholding Using Iterative Selection Method. IEEE Transactions on Systems, Man and Cybernetics SMC-8:630–632

    Article  Google Scholar 

  68. Xia M, Yan W, Huang Y, et al (2019) IVUS images segmentation using spatial fuzzy clustering and hierarchical level set evolution. Computers in Biology and Medicine 109:207–217. https://doi.org/10.1016/j.compbiomed.2019.04.029

    Article  PubMed  Google Scholar 

  69. Osher S, Sethian JA (1988) Fronts Propagating with Curvature Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations. Journal of Computational Physics 79:12–49

    Article  Google Scholar 

  70. Lo Vercio L, Orlando JI, del Fresno M, Larrabide I (2016) Assessment of image features for vessel wall segmentation in intravascular ultrasound images. International Journal of Computer Assisted Radiology and Surgery 11:1397–1407. https://doi.org/10.1007/s11548-015-1345-4

    Article  PubMed  Google Scholar 

  71. Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Transactions on Image Processing 19:3243–3254. https://doi.org/10.1109/TIP.2010.2069690

    Article  PubMed  Google Scholar 

  72. Hammouche A, Cloutier G, Tardif JC, et al (2019) Automatic IVUS lumen segmentation using a 3D adaptive helix model. Computers in Biology and Medicine 107:58–72. https://doi.org/10.1016/j.compbiomed.2019.01.023

    Article  PubMed  Google Scholar 

  73. Kermani A, Ayatollahi A (2019) A new nonparametric statistical approach to detect lumen and Media-Adventitia borders in intravascular ultrasound frames. Computers in Biology and Medicine 104:10–28. https://doi.org/10.1016/j.compbiomed.2018.10.024

    Article  PubMed  Google Scholar 

  74. Yang J, Tong L, B MF, Basu A (2018) IVUS-Net: An Intravascular Ultrasound Segmentation Network. In: Basu A. BS (ed) Smart Multimedia ICSM 2018 Lecture Notes in Computer Science. Springer International Publishing, Springer, Cham, pp 367–377

    Google Scholar 

  75. Jodas DS, Pereira AS, Tavares JMRS (2017) Automatic segmentation of the lumen region in intravascular images of the coronary artery. Medical Image Analysis 40:60–79. https://doi.org/10.1016/j.media.2017.06.006

    Article  PubMed  Google Scholar 

  76. Lo Vercio L, del Fresno M, Larrabide I (2019) Lumen-intima and media-adventitia segmentation in IVUS images using supervised classifications of arterial layers and morphological structures. Computer Methods and Programs in Biomedicine 177:113–121. https://doi.org/10.1016/j.cmpb.2019.05.021

    Article  PubMed  Google Scholar 

  77. Xia M, Yan W, Huang Y, et al (2019) IVUS image segmentation using superpixel-wise fuzzy clustering and level set evolution. Applied Sciences (Switzerland) 9:1–18. https://doi.org/10.3390/APP9224967

    Article  Google Scholar 

  78. Wang YY, Peng WX, Qiu CH, et al (2019) Fractional-order Darwinian PSO-based feature selection for media-adventitia border detection in intravascular ultrasound images. Ultrasonics 92:1–7. https://doi.org/10.1016/j.ultras.2018.06.012

    Article  PubMed  Google Scholar 

  79. Essa E, Xie X (2017) Automatic segmentation of cross-sectional coronary arterial images. Computer Vision and Image Understanding 165:97–110. https://doi.org/10.1016/j.cviu.2017.11.004

    Article  Google Scholar 

  80. Balocco S, Gatta C, Ciompi F, et al (2011) Combining growcut and temporal correlation for IVUS lumen segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 6669 LNCS:556–563. https://doi.org/10.1007/978-3-642-21257-4_69

  81. Michael K, Andrew W, Terzopoulos D (1988) Snakes: Active Contour Models. International Journal of Computer Vision 1:321–331. https://doi.org/10.1016/B978-0-12-386454-3.00786-7

    Article  Google Scholar 

  82. Williams DJ, Shah M (1992) A Fast Algorithm for Active Contours and Curvature Estimation. CVGIP: Image Understanding 55:14–26

    Article  Google Scholar 

  83. Klingensmith JD, Shekhar R, Vince D (2000) Evaluation of three- dimensional segmentation algorithms for the identification of luminal and medial-adventitial borders in intravascular ultrasound images. IEEE Transactions on Medical Imaging 19:996–1011. https://doi.org/10.1109/42.887615

    Article  CAS  PubMed  Google Scholar 

  84. Kovalski G, Beyar R, Shofti R, Azhari H (2000) Three-dimensional automatic quantitative analysis of intravascular ultrasound images. Ultrasound in Medicine and Biology 26:527–537. https://doi.org/10.1016/S0301-5629(99)00167-2

    Article  CAS  PubMed  Google Scholar 

  85. Xu C, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing 7:359–369. https://doi.org/10.1109/83.661186

    Article  CAS  PubMed  Google Scholar 

  86. China D, Nag MK, Mandana KM, et al (2016) Automated in vivo delineation of lumen wall using intravascular ultrasound imaging. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),. pp 4125–4127

  87. Plissiti ME, Fotiadis DI, Michalis LK, Bozios GE (2004) An automated method for lumen and media-adventitia border detection in a sequence of IVUS frames. IEEE Transactions on Information Technology in Biomedicine 8:131–141. https://doi.org/10.1109/TITB.2004.828889

    Article  PubMed  Google Scholar 

  88. Giannoglou GD, Chatzizisis YS, Koutkias V, et al (2007) A novel active contour model for fully automated segmentation of intravascular ultrasound images: In vivo validation in human coronary arteries. Computers in Biology and Medicine 37:1292–1302. https://doi.org/10.1016/j.compbiomed.2006.12.003

    Article  PubMed  Google Scholar 

  89. Tayel MB, Massoud MA, Shehata YF (2014) An Automatic Segmentation for Determination of IV Vessel Boundaries. International Journal of Bioscience, Biochemistry and Bioinformatics 4:218–223. https://doi.org/10.7763/ijbbb.2014.v4.343

    Article  Google Scholar 

  90. Tayel MB, Massoud MA, Farouk Y (2017) A modified segmentation method for determination of IV vessel boundaries. Alexandria Engineering Journal 56:449–457. https://doi.org/10.1016/j.aej.2017.04.002

    Article  Google Scholar 

  91. Gao Z, Hau WK, Lu M, et al (2015) Automated framework for detecting lumen and media-adventitia borders in intravascular ultrasound images. Ultrasound in Medicine and Biology 41:2001–2021. https://doi.org/10.1016/j.ultrasmedbio.2015.03.022

    Article  PubMed  Google Scholar 

  92. Chan TF, Vese LA (2001) Active Contours Without Edges. IEEE Transactions on Image Processing 10:266–277

    Article  CAS  PubMed  Google Scholar 

  93. Sofian H, Than J, Ming C, et al (2015) Detection of the Lumen Boundary in the Coronary Artery Disease. In: IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE). Dhaka, Bangladesh, pp 143–146

  94. Destrempes F, Roy Cardinal M-H, Allard L, et al (2014) Segmentation method of intravascular ultrasound images of human coronary arteries. Computerized Medical Imaging and Graphics 38:91–103. https://doi.org/10.1016/j.compmedimag.2013.09.004

    Article  PubMed  Google Scholar 

  95. Taki A, Najafi Z, Roodaki A, et al (2008) Automatic segmentation of calcified plaques and vessel borders in IVUS images. International Journal of Computer Assisted Radiology and Surgery 3:347–354. https://doi.org/10.1007/s11548-008-0235-4

    Article  Google Scholar 

  96. Zakeri FS, Setarehdan SK, Norouzi S (2017) Automatic media-adventitia IVUS image segmentation based on sparse representation framework and dynamic directional active contour model. Computers in Biology and Medicine 89:561–572. https://doi.org/10.1016/j.compbiomed.2017.03.022

    Article  PubMed  Google Scholar 

  97. Elad M (2010) Sparse and Redundant Representations: from Theory to Applications in Signal and Image Processing. Springer New York

    Book  Google Scholar 

  98. Wang G, Liang J, Wang Y (2011) Dynamic Directional Convolution Vector Field. In: International Conference on Internet Computing and Information Services. IEEE, Hong Kong, pp 107–110

  99. Garcia D (2010) Robust smoothing of gridded data in one and higher dimensions with missing values. Computational statistics & data analysis 54:1167–1178. https://doi.org/10.1016/j.csda.2009.09.020.Robust

    Article  Google Scholar 

  100. Cheng J, Foo SW (2006) Dynamic Directional Gradient Vector Flow for Snakes. IEEE Transactions on Image Processing 15:1563–1571

    Article  PubMed  Google Scholar 

  101. Santos Filho E, Saijo Y, Tanaka A, Yoshizawa M (2008) Detection and Quantification of Calcifications in Intravascular Ultrasound Images by Automatic Thresholding. Ultrasound in Medicine and Biology 34:160–165. https://doi.org/10.1016/j.ultrasmedbio.2007.06.025

    Article  CAS  PubMed  Google Scholar 

  102. Basij M, Taki A, Yazdchi M (2014) Automatic Shadow Enhancement in Intra Vascular Ultrasound (IVUS) Images. In: Middle East Conference on Biomedical Engineering (MECBME). pp 309–312

  103. Basij M, Yazdchi M, Taki A, Moallem P (2017) An automatic approach for artifacts detection and shadow enhancement in intravascular ultrasound images. Signal, Image and Video Processing 11:1009–1016. https://doi.org/10.1007/s11760-016-1051-x

    Article  Google Scholar 

  104. Lee JH, Hwang YN, Kim GY, Sung Min K (2018) Segmentation of the lumen and media-adventitial borders in intravascular ultrasound images using a geometric deformable model. IET Image Processing 12:1881–1891. https://doi.org/10.1049/iet-ipr.2017.1143

    Article  Google Scholar 

  105. Werlberger M, Trobin W, Pock T, et al (2009) Anisotropic huber-L1 optical flow. British Machine Vision Conference, BMVC 2009 - Proceedings 1–11. https://doi.org/10.5244/C.23.108

  106. Preparata FP, Shamos MI (1985) Computational geometry: an introduction. Springer-Verlag, Berlin, Heidelberg.

    Book  Google Scholar 

  107. Downe RW, Wahle A, Kovarnik T, et al (2008) Segmentation of intravascular ultrasound images using graph search and a novel cost function. In: 2nd MICCAI Workshop on Computer Vision for Intravascular and Intracardiac Imaging. New York, pp 71–79

  108. Wang Y, Gao X, Wang Y, Sun J (2021) Adventitia segmentation in intravascular ultrasound images based on improved Snake algorithm. Optik 241:167175. https://doi.org/10.1016/j.ijleo.2021.167175

    Article  Google Scholar 

  109. Moshfegh A, Javadzadegan A, Mohammadi M, et al (2019) Development of an innovative technology to segment luminal borders of intravascular ultrasound image sequences in a fully automated manner. Computers in Biology and Medicine 108:111–121. https://doi.org/10.1016/j.compbiomed.2019.03.008

    Article  PubMed  Google Scholar 

  110. Gil D, Radeva P, J. Saludes, Mauri J (2000) Automatic segmentation of artery wall in coronary IVUS images: A probabilistic approach. Computers in Cardiology 27:687–690. https://doi.org/10.1109/CIC.2000.898617

    Article  Google Scholar 

  111. Yan J, Liu H, Cui Y (2014) A random walk-based method for segmentation of intravascular ultrasound images. In: Molthen RC, Weaver JB (eds) Proc. SPIE 9038, Medical Imaging 2014: Biomedical Applications in Molecular, Structural, and Functional Imaging, 903825. SPIE, San Diego, California, United States, pp 529–537

  112. Sun S, Sonka M, Beichel RR (2013) Graph-based IVUS segmentation with efficient computer-aided refinement. IEEE Transactions on Medical Imaging 32:1536–1549. https://doi.org/10.1109/TMI.2013.2260763

    Article  PubMed  Google Scholar 

  113. Y Y, X Z, R W, et al (2010) LOGISMOS–layered optimal graph image segmentation of multiple objects and surfaces: cartilage segmentation in the knee joint. IEEE Transactions on Medical Imaging 29:2023–2037. https://doi.org/10.1109/TMI.2010.2058861

  114. Oguz I, Sonka M (2014) LOGISMOS-B: Layered Optimal graph image segmentation of multiple objects and surfaces for the brain. IEEE Transactions on Medical Imaging 33:1220–1235. https://doi.org/10.1109/TMI.2014.2304499

    Article  PubMed  PubMed Central  Google Scholar 

  115. Sonka M, Abramoff MD (2016) Quantitative Analysis of Retinal OCT. Medical Image Analysis 33:165–169. https://doi.org/10.1016/j.media.2016.06.001

    Article  PubMed  Google Scholar 

  116. Quo Z, Zhang L, Lu L, et al (2018) Deep LOGISMOS: Deep learning graph-based 3D segmentation of pancreatic tumors on CT scans. Proceedings - International Symposium on Biomedical Imaging 2018-April:1230–1233. https://doi.org/10.1109/ISBI.2018.8363793

  117. Zhang H, Lee K, Chen Z, et al (2019) LOGISMOS-JEI: Segmentation using optimal graph search and just-enough interaction. Elsevier Inc.

  118. Oguz I, Bogunović H, Kashyap S, et al (2016) LOGISMOS: A FAMILY OF GRAPH-BASED OPTIMAL IMAGE SEGMENTATION METHODS. In: Medical Image Recognition, Segmentation and Parsing. pp 179–208

  119. Will S, Hermes L, Buhmann JM, Puzicha J (2000) On learning texture edge detectors. Proceedings 2000 International Conference on Image Processing (Cat No00CH37101) 3:877–880. https://doi.org/10.1109/ICIP.2000.899596

  120. Dempster AP, Laird NM, Rubin DB (1977) Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society Series B (Methodological) 39:1–38

    Article  Google Scholar 

  121. Mendizabal-Ruiz E, Rivera M, Kakadiaris I (2008) A probabilistic segmentation method for the identification of luminal borders in intravascular ultrasound images. In: IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, AK, pp 1–8

  122. Laws KI (1980) Rapid texture identification. In: Wiener TF (ed) SPIE 0238 Conference on Image Processing for Missile Guidance. SPIE, San Diego, United States

  123. Cortes C, Vapnik V (1995) Support-vector networks. Machine Learning 20:273–297. https://doi.org/10.1007/BF00994018

    Article  Google Scholar 

  124. Nocedal J, Stephen JW (1999) Numerical Optimization. Springer, New York, NY

    Book  Google Scholar 

  125. Otsu N (1979) A Thresholding Selection Method from Gray-Level Histograms. IEEE Transactions on Systems, Man and Cybernetics SMC-9:62–66

    Article  Google Scholar 

  126. Ciompi F, Pujol O, Gatta C, et al (2012) Holimab: A holistic approach for media–adventitia border detection in intravascular ultrasound. Medical Image Analysis 16:1085–1100

    Article  PubMed  Google Scholar 

  127. Starck JL, Murtagh F, Bijaou A (1998) Image Processing and Data Analysis: The Multiscale Approach. Cambridge Univ. Press, U.K.

    Book  Google Scholar 

  128. Valois R De, Valois K De (1988) Spatial Vision. NY: Oxford Univ. Press, New York

    Google Scholar 

  129. Beck J, A. Sutter, Ivry R (1987) Spatial frequency channels and perceptual grouping in texture segregation. Computer Vision, Graphics and Image Processing 37:299–325

  130. Klingensmith E, Nair A, Kuban B, Vince D (2004) Segmentation of three- dimensional intravascular ultrasound images using spectral analysis and a dual active surface model. In: IEEE International Ultrasonics Symposium. IEEE, Montreal, Quebec, Canada, pp 1765–1768

  131. G.Meyer F, R.Coifman R (1997) Brushlets: A Tool for Directional Image Analysis and Image Compression. Applied and Computational Harmonic Analysis 4:147–187. https://doi.org/10.1006/acha.1997.0208

    Article  Google Scholar 

  132. Freeman WT, Adelson EH (1991) The Design and Use of Steerable Filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 13:891–906

    Article  Google Scholar 

  133. Besag J (1986) On the Statistical Analysis of Dirty Pictures. Journal of the Royal Statistical Society Series B (Methodological) 48:259–302

    Article  Google Scholar 

  134. Essa E, Xie X, Sazonov I, et al (2013) Shape Prior Model for Media-Adventitia Border Segmentation in IVUS Using Graph Cut. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). pp 114–123

  135. Breiman L (2001) Random forests. Machine Learning 45:5–32. https://doi.org/10.1023/A:1010933404324

    Article  Google Scholar 

  136. Chen F, Ma R, Liu J, et al (2018) Lumen and media-adventitia border detection in IVUS images using texture enhanced deformable model. Computerized Medical Imaging and Graphics 66:1–13. https://doi.org/10.1016/j.compmedimag.2018.02.003

    Article  PubMed  Google Scholar 

  137. Awad J, Krasinski A, Parraga G, Fenster A (2010) Texture analysis of carotid artery atherosclerosis from three-dimensional ultrasound images. Medical Physics 37:1382–1391. https://doi.org/10.1118/1.3301592

    Article  PubMed  Google Scholar 

  138. Wu CM, Chen YC (1992) Statistical feature matrix for texture analysis. CVGIP: Graphical Models and Image Processing 54:407–419. https://doi.org/10.1016/1049-9652(92)90025-S

    Article  Google Scholar 

  139. Haralick RM, Shanmugam K, Dinstein I (1973) Texture features for image classification. IEEE Transactions on Systems, Man and Cybernetics SMC-3:610–621

    Article  Google Scholar 

  140. Christodoulou CI, Pattichis CS, Pantziaris M, Nicolaides A (2003) Texture-based classification of atherosclerotic carotid plaques. IEEE Transactions on Medical Imaging 22:902–912. https://doi.org/10.1109/TMI.2003.815066

    Article  CAS  PubMed  Google Scholar 

  141. Loizou CP, Theofanous C, Pantziaris M, Kasparis T (2014) Despeckle filtering software toolbox for ultrasound imaging of the common carotid artery. Computer Methods and Programs in Biomedicine 114:109–124. https://doi.org/10.1016/j.cmpb.2014.01.018

    Article  PubMed  Google Scholar 

  142. Rodríguez J, Kuncheva L, Alonso C (2006) Rotation Forest: A New Classifier Ensemble Method. IEEE transactions on pattern analysis and machine intelligence 28:1619–1630. https://doi.org/10.1109/TPAMI.2006.211

    Article  PubMed  Google Scholar 

  143. Tong J, Li K, Lin W, et al (2021) Automatic lumen border detection in IVUS images using dictionary learning and kernel sparse representation. Biomedical Signal Processing and Control 66:102489. https://doi.org/10.1016/j.bspc.2021.102489

    Article  Google Scholar 

  144. Marone J, Balocco S, Bolanos M, et al (2016) Learning the Lumen Border using a Convolutional Neural Networks classifier. In: CVII-Stent Workshop - MICCAI. Athens, pp 1–8

    Google Scholar 

  145. Su S, Gao Z, Zhang H, et al (2017) A Detection of Lumen and Media-Adventitia Borders in IVUS images using Sparse Auto-Encoder Neural Network. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017). pp 1120–1124

  146. Litjens G, Kooi T, Bejnordi BE, et al (2017) A survey on deep learning in medical image analysis. Medical Image Analysis 42:60–88. https://doi.org/10.1016/j.media.2017.07.005

    Article  PubMed  Google Scholar 

  147. Badrinarayanan V, Kendall A, Cipolla R (2017) SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 39:2481–2495. https://doi.org/10.1109/TPAMI.2016.2644615

    Article  PubMed  Google Scholar 

  148. Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 9351:234–241. https://doi.org/10.1007/978-3-319-24574-4_28

  149. He K, Zhang X, Ren S, Sun J (2015) Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In: 2015 IEEE International Conference on Computer Vision (ICCV). Santiago, pp 1026–1034

  150. Molony D, Hosseini H, Samady H (2018) TCT-2 Deep IVUS: A machine learning framework for fully automatic IVUS segmentation. Journal of the American College of Cardiology. https://doi.org/10.1016/j.jacc.2018.08.1077

    Article  PubMed  Google Scholar 

  151. Kim S, Yeonggul J, Byunghwan J, et al (2018) Fully Automatic Segmentation of Coronary Arteries Based on Deep Neural Network in Intravascular Ultrasound Images. In: Springer Nature Switzerland AG. Springer International Publishing, pp 161–168

  152. Molony D, Samady H (2019) TCT-342 DeepIVUS: A Machine Learning Platform for Fully Automatic IVUS Segmentation and Phenotyping. Journal of the American College of Cardiology 74:B339. https://doi.org/10.1016/j.jacc.2019.08.424

    Article  Google Scholar 

  153. Mehta R, Sivaswamy J (2017) M-NET: A Convolutional Neural Network for Deep Brain Structure Segmentation. In: IEEE International Symposium on Biomedical Imaging 2017. Melbourne, Australia, pp 437–440

  154. Maturana D, Scherer S (2015) VoxNet: A 3D Convolutional Neural Network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Hamburg, pp 922–928

  155. Jeelani H, Martin J, Vasquez F, et al (2018) Image quality affects deep learning reconstruction of MRI. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). Washington, DC, pp 357–360

  156. Abadi M, Agarwal A, Barham P, et al (2015) TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems

  157. Kingma DP, Ba J (2014) Adam: A Method for Stochastic Optimization. In: International Conference on Learning Representations (ICLR)

  158. Vapnik V, Vashist A (2009) A new learning paradigm: Learning using privileged information. Neural Networks 22:544–557. https://doi.org/10.1016/j.neunet.2009.06.042

    Article  PubMed  Google Scholar 

  159. Vapnik V, Izmailov R (2015) Learning using privileged information: Similarity control and knowledge transfer. Journal of Machine Learning Research 16:2023–2049

    Google Scholar 

  160. Pociask E, Malinowski KP, Ślęzak M, et al (2018) Fully Automated Lumen Segmentation Method for Intracoronary Optical Coherence Tomography. Journal of Healthcare Engineering 2018:1–13. https://doi.org/10.1155/2018/1414076

    Article  Google Scholar 

  161. Cao Y, Jin Q, Chen Y, et al Automatic Side Branch Ostium Detection and Main Vascular Segmentation in Intravascular Optical Coherence Tomography Images

  162. Amrute JM, Athanasiou LS, Rikhtegar F, et al (2018) Polymeric endovascular strut and lumen detection algorithm for intracoronary optical coherence tomography images. Journal of Bioemdical Optics 23:1–14

    Article  Google Scholar 

  163. Ziemer PGP, Bulant CA, Orlando JI, et al (2020) Automated lumen segmentation using multi-frame convolutional neural networks in intravascular ultrasound datasets. European Heart Journal - Digital Health 1:75–82. https://doi.org/10.1093/ehjdh/ztaa014

    Article  PubMed  PubMed Central  Google Scholar 

  164. Li K, Tong J, Zhu X, Xia S (2021) Automatic Lumen Border Detection in IVUS Images Using Deep Learning Model and Handcrafted Features. Ultrasonic Imaging 43:59–73. https://doi.org/10.1177/0161734620987288

    Article  PubMed  Google Scholar 

  165. Jung-Eun P, Jihoon K, Do-Yoon K, et al (2021) TCTAP A-044 Deep Learning Segmentation of Lumen and Vessel on IVUS Images. Journal of the American College of Cardiology 77:S27–S27. https://doi.org/10.1016/j.jacc.2021.03.075

    Article  Google Scholar 

  166. Shinohara H, Kodera S, Ninomiya K, et al (2021) Automatic detection of vessel structure by deep learning using intravascular ultrasound images of the coronary arteries. Plos One 16:1–14. https://doi.org/10.1371/journal.pone.0255577

    Article  CAS  Google Scholar 

  167. Zhu F, Gao Z, Zhao C, et al (2022) A Deep Learning-based Method to Extract Lumen and Media-Adventitia in Intravascular Ultrasound Images. Ultrasonic Imaging. https://doi.org/10.1177/01617346221114137

    Article  PubMed  Google Scholar 

  168. Cui H, Xia Y, Zhang Y (2020) Supervised machine learning for coronary artery lumen segmentation in intravascular ultrasound images. International Journal of Newmerical Methods in Biomedical Engineering 36:e3348

    Google Scholar 

  169. Bargsten L, Raschka S, Schlaefer A (2021) Capsule networks for segmentation of small intravascular ultrasound image datasets. International Journal of Computer Assisted Radiology and Surgery 16:1243–1254. https://doi.org/10.1007/s11548-021-02417-x

    Article  PubMed  PubMed Central  Google Scholar 

  170. Eslamizadeh M, Attarodi G, Dabanloo NJ, et al (2017) The segmentation of lumen boundaries at intravascular ultrasound images using fuzzy approach. Computing in Cardiology 44:1–4. https://doi.org/10.22489/CinC.2017.288-285

    Article  Google Scholar 

  171. Zheng S, Bing-Ru L (2016) Fast retrieval of calcification from sequential intravascular ultrasound gray-scale images. Bio-Medical Materials and Engineering 27:183–195. https://doi.org/10.3233/BME-161575

    Article  PubMed  Google Scholar 

  172. Anam S, Uchino E, Suetake N (2014) Coronary plaque boundary enhancement in IVUS image by using a modified Perona-Malik diffusion filter. International Journal of Biomedical Imaging 2014:. https://doi.org/10.1155/2014/740627

    Article  Google Scholar 

  173. Gronningsaeter A, Angelsen BAJ, Torp HG, et al (1995) Blood Noise Reduction in Intravascular Ultrasound Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 42:200–209. https://doi.org/10.1109/58.365234

    Article  Google Scholar 

  174. Hibi K, Takagi A, Zhang X, et al (2000) Feasibility of a novel blood noise reduction algorithm to enhance reproducibility of ultra-high-frequency intravascular ultrasound images. Circulation 102:1657–1663. https://doi.org/10.1161/01.CIR.102.14.1657

    Article  CAS  PubMed  Google Scholar 

  175. China D, Mitra P, Chakraborty C, Mandana KM (2015) Wavelet based non local means filter for despeckling of intravascular ultrasound image. 2015 International Conference on Advances in Computing, Communications and Informatics, ICACCI 2015 1361–1365. https://doi.org/10.1109/ICACCI.2015.7275802

  176. Katouzian A, Baseri B, Konofagou EE, Laine AF (2008) Automatic detection of blood versus non-blood regions on intravascular ultrasound (IVUS) images using wavelet packet signatures. In: SPIE 6920, Medical Imaging 2008: Ultrasonic Imaging and Signal Processing, 69200H

  177. Yu Y, Acton ST (2002) Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing 11:1260–1270. https://doi.org/10.1109/TIP.2002.804276

    Article  PubMed  Google Scholar 

  178. Haralick, Robert M., Shanmugam. K A, Dinstein I (1973) Textural Features for Image Classification. IEEE Transactions on Systems, Man and Cybernetics SMC-3:610–621

    Article  Google Scholar 

  179. Ojala T, Pietikäinen M, Mäenpää T (2002) Multiresolution Gray scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Analysis and Machine Intelligence 24:971–987. https://doi.org/10.1007/3-540-45054-8_27

    Article  Google Scholar 

  180. Lo Vercio L, Del Fresno M, Larrabide I (2017) Detection of morphological structures for vessel wall segmentation in IVUS using random forests. In: 12th International Symposium on Medical Information Processing and Analysis

  181. Huang G-B, Zhu Q-Y, Siew C-K (2006) Extreme learning machine: Theory and applications. Neurocomputing 79:489–501. https://doi.org/10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  182. Couceiro MS, Rocha RP, Ferreira NMF, Machado JAT (2012) Introducing the fractional-order Darwinian PSO. Signal, Image and Video Processing 6:343–350. https://doi.org/10.1007/s11760-012-0316-2

    Article  Google Scholar 

  183. Liu S, Neleman T, Hartman EMJ, et al (2020) Automated Quantitative Assessment of Coronary Calcification Using Intravascular Ultrasound. Ultrasound in Medicine and Biology 46:2801–2809. https://doi.org/10.1016/j.ultrasmedbio.2020.04.032

    Article  PubMed  Google Scholar 

  184. Wongwarn J, Rasmequan S (2019) Tunica Media Localization in Intravascular Image with Shadow Artifact Constraint using Circular-like Estimating Techniques. In: Proceedings of 2019 4th International Conference on Information Technology: Encompassing Intelligent Technology and Innovation Towards the New Era of Human Life, InCIT 2019. IEEE, Bangkok, Thailand, pp 83–88

  185. Sinha P, Wu Y, Psaromiligkos I, Zilic Z (2020) Lumen Media Segmentation of IVUS Images via Ellipse Fitting Using a Wavelet-Decomposed Subband CNN. In: IEEE International Workshop on Machine Learning for Signal Processing, MLSP. ESPOO, Finland

  186. Huang Y, Yan W, Xia M, et al (2020) Vessel membrane segmentation and calcification location in intravascular ultrasound images using a region detector and an effective selection strategy. Computer Methods and Programs in Biomedicine 189:105339. https://doi.org/10.1016/j.cmpb.2020.105339

    Article  PubMed  Google Scholar 

  187. Dong L, Jiang W, Lu W, et al (2021) Automatic segmentation of coronary lumen and external elastic membrane in intravascular ultrasound images using 8-layer U-Net. BioMedical Engineering Online 20:1–11. https://doi.org/10.1186/s12938-021-00852-0

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Guru Nanak Dev Engineering College, Ludhiana, Punjab (India) and IKG Punjab Technical University, Kapurthala, Punjab (India) for their support in this research work.

Funding

.

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Arora.

Additional information

Communicated by Christine P. Hendon.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Appendix I

Appendix I

Table A1 Existing IVUS Segmentation Algorithms along with their specifications
Table A2 IVUS catheters from the top 5 manufacturers

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, P., Singh, P., Girdhar, A. et al. A State-Of-The-Art Review on Coronary Artery Border Segmentation Algorithms for Intravascular Ultrasound (IVUS) Images. Cardiovasc Eng Tech 14, 264–295 (2023). https://doi.org/10.1007/s13239-023-00654-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-023-00654-6

Index Terms

Navigation