Skip to main content

Advertisement

Log in

Towards Longitudinal Monitoring of Leaflet Mobility in Prosthetic Aortic Valves via In-Situ Pressure Sensors: In-Silico Modeling and Analysis

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Background

Transcatheter aortic valves (TAVs) are susceptible to leaflet thrombosis which may lead to thromboembolic events, and early detection and intervention are believed to be the key to avoiding such adverse outcomes. An embedded sensor system installed on the valve stent, coupled with an appropriate machine learning-based continuous monitoring algorithm can facilitate early detection to predict severity of reduced leaflet motion (RLM) and avoid adverse outcomes.

Methods

We present a data-driven, in silico, proof-of-concept analysis of a pressure microsensor based system for quantifying RLM in TAVs. We generate a dataset of 21 high-fidelity transvalvular flow simulations with healthy and mildly stenotic TAVs to train a logistic regression model to correlate individual leaflet mobility in each simulation with principal components of corresponding hemodynamic pressure recorded at strategic locations of the TAV stent. A separate test dataset of 7 simulations is also generated for prospective assessment of model performance.

Results

An array of 6 sensors embedded on the TAV stent, with two sensors tracking individual leaflet, successfully correlates leaflet mobility with recorded pressure. The sensors are placed along leaflet centerlines, one in the sinus, and the other at the sino-tubular junction. The regression model is tuned using cross-validation to achieve high accuracy on both training (R2 = 0.93) and test (R2 = 0.77) sets.

Conclusion

Discrete blood pressure recordings on TAV stents can be successfully correlated with individual leaflet mobility. Further development of this technology can enable longitudinal monitoring of TAVs and early detection of valve failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Abraham, W. T., P. B. Adamson, R. C. Bourge, M. F. Aaron, M. R. Costanzo, L. W. Stevenson, W. Strickland, S. Neelagaru, N. Raval, S. Krueger, S. Weiner, D. Shavelle, B. Jeffries, and J. S. Yadav. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet 377:658–666, 2011.

    Article  Google Scholar 

  2. Allen, M. G. Micromachined endovascularly-implantable wireless aneurysm pressure sensors: from concept to clinic. In: The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS ’05., vol. 1, 2005, pp. 275–278.

  3. Amat-Santos, I. J., D. Messika-Zeitoun, H. Eltchaninoff, S. Kapadia, S. Lerakis, A. N. Cheema, E. Gutiérrez-Ibanes, A. J. Munoz-Garcia, M. Pan, J. G. Webb, H. C. Herrmann, S. Kodali, L. Nombela-Franco, C. Tamburino, H. Jilaihawi, J.-B. Masson, F. S. de Brito, M. C. Ferreira, V. C. Lima, J. A. Mangione, B. Iung, A. Vahanian, E. Durand, E. M. Tuzcu, S. S. Hayek, R. Angulo-Llanos, J. J. Gómez-Doblas, J. C. Castillo, D. Dvir, M. B. Leon, E. Garcia, J. Cobiella, I. Vilacosta, M. Barbanti, R. R. Makkar, H. B. Ribeiro, M. Urena, E. Dumont, P. Pibarot, J. Lopez, A. S. Roman, and J. Rodés-Cabau. Infective endocarditis after transcatheter aortic valve implantation. Circulation 131:1566–1574, 2015.

    Article  PubMed  Google Scholar 

  4. Bailoor, S., J.-H. Seo, L. Dasi, S. Schena, and R. Mittal. Prosthetic valve monitoring via in situ pressure sensors. In: Silico Concept Evaluation using Supervised Learning. Cardiovascular Engineering and Technology, 2021.

  5. Bailoor, S., J.-H. Seo, L. P. Dasi, S. Schena, and R. Mittal. A computational study of the hemodynamics of bioprosthetic aortic valves with reduced leaflet motion. J. Biomech. 120:110350, 2021.

    Article  PubMed  Google Scholar 

  6. Chakravarty, T., L. Søndergaard, J. Friedman, O. D. Backer, D. Berman, K. F. Kofoed, H. Jilaihawi, T. Shiota, Y. Abramowitz, T. H. Jørgensen, T. Rami, S. Israr, G. Fontana, M. de Knegt, A. Fuchs, P. Lyden, A. Trento, D. L. Bhatt, M. B. Leon, R. R. Makkar, D. Ramzy, W. Cheng, R. J. Siegel, L. M. Thomson, G. Mangat, B. Hariri, F. J. Sawaya, and H. K. Iversen. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. Lancet 389:2383–2392, 2017.

    Article  Google Scholar 

  7. Chen, L. Y., B. C.-K. Tee, A. L. Chortos, G. Schwartz, V. Tse, D. J. Lipomi, H.-S. P. Wong, M. V. McConnell, and Z. Bao. Continuous wireless pressure monitoring and mapping with ultra-small passive sensors for health monitoring and critical care. Nat. Commun. 5:5028, 2014.

    Article  CAS  PubMed  Google Scholar 

  8. Cox, D. R. The regression analysis of binary sequences. J. R. Stat. Soc. Ser. B (Methodol.) 20:215–232, 1958.

    Google Scholar 

  9. Dangas, G. D., J. I. Weitz, G. Giustino, R. Makkar, and R. Mehran. Prosthetic heart valve thrombosis. J. Am. Coll. Cardiol. 68:2670–2689, 2016.

    Article  PubMed  Google Scholar 

  10. Fonseca, M. A., M. G. Allen, J. Kroh, and J. White. Flexible wireless passive pressure sensors for biomedical applications. In: Solid-State Sensors, Actuators, and Microsystems Workshop, 2006, Hilton Head Island, South Carolina, 2006, pp. 37–42.

  11. Généreux, P., S. J. Head, R. Hahn, B. Daneault, S. Kodali, M. R. Williams, N. M. van Mieghem, M. C. Alu, P. W. Serruys, A. P. Kappetein, and M. B. Leon. Paravalvular leak after transcatheter aortic valve replacement. J. Am. Coll. Cardiol. 61:1125–1136, 2013.

    Article  PubMed  Google Scholar 

  12. Gurvitch, R., A. Cheung, J. Ye, D. A. Wood, A. B. Willson, S. Toggweiler, R. Binder, and J. G. Webb. Transcatheter valve-in-valve implantation for failed surgical bioprosthetic valves. J. Am. Coll. Cardiol. 58:2196–2209, 2011.

    Article  PubMed  Google Scholar 

  13. Gurvitch, R., D. Wood, E. Tay, J. Leipsic, J. Ye, S. Lichtenstein, C. Thompson, R. Carere, N. Wijesinghe, F. Nietlispach, R. Boone, S. Lauck, A. Cheung, and J. Webb. Transcatheter aortic valve implantation. Circulation 122:1319–1327, 2010.

    Article  CAS  PubMed  Google Scholar 

  14. Hermans, M. C., M. S. Van Mourik, H. J. Hermens, J. Baan Jr, and M. M. Vis. Remote monitoring of patients undergoing transcatheter aortic valve replacement: a framework for postprocedural telemonitoring. JMIR Cardio 2:e9, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Iung, B. and A. Vahanian. Epidemiology of valvular heart disease in the adult. Nat. Rev. Cardiol. 8:162–172, 2011.

    Article  PubMed  Google Scholar 

  16. Jorgensen, B. Exponential dispersion models. J. R. Stat. Soc. Ser. B (Methodol.) 49:127–162, 1987.

  17. Makkar, R. R., G. Fontana, H. Jilaihawi, T. Chakravarty, K. F. Kofoed, O. De Backer, F. M. Asch, C. E. Ruiz, N. T. Olsen, A. Trento, J. Friedman, D. Berman, W. Cheng, M. Kashif, V. Jelnin, C. A. Kliger, H. Guo, A. D. Pichard, N. J. Weissman, S. Kapadia, E. Manasse, D. L. Bhatt, M. B. Leon, and L. Søndergaard. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 373:2015–2024, 2015.

    Article  CAS  PubMed  Google Scholar 

  18. Marcelli, E., B. Bortolani, I. Corazza, and L. Cercenelli. A novel sensorized heart valve prosthesis: preliminary in vitro evaluation. Sensors 18, 2018.

  19. Marchena, E. D., J. Mesa, S. Pomenti, C. M. y Kall, X. Marincic, K. Yahagi, E. Ladich, R. Kutys, Y. Aga, M. Ragosta, A. Chawla, M. E. Ring, and R. Virmani. Thrombus formation following transcatheter aortic valve replacement. JACC 8:728 – 739, 2015. TAVR Focus Issue.

  20. Martí, D., M. Rubio, N. Escribano, R. de Miguel, I. Rada, and C. Morís. Very late thrombosis of a transcatheter aortic valve-in-valve. JACC 8:e151–e153, 2015.

  21. Mittal, R., H. Dong, M. Bozkurttas, F. Najjar, A. Vargas, and A. von Loebbecke. A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227:4825–4852, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nelder, J. A. and R. W. M. Wedderburn. Generalized linear models. J. R. Stat. Soc. Ser. A (General) 135:370–384, 1972.

  23. Nishimura, R. A., C. M. Otto, R. O. Bonow, B. A. Carabello, J. P. Erwin, R. A. Guyton, P. T. O’Gara, C. E. Ruiz, N. J. Skubas, P. Sorajja, T. M. Sundt, and J. D. Thomas. 2014 aha/acc guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines. J. Am. Coll. Cardiol. 63:2438–2488, 2014.

    Article  PubMed  Google Scholar 

  24. Puri, R., V. Auffret, and J. Rodés-Cabau. Bioprosthetic valve thrombosis. J. Am. Coll. Cardiol. 69:2193–2211, 2017.

    Article  PubMed  Google Scholar 

  25. Puvimanasinghe, J. P. A., E. W. Steyerberg, J. J. M. Takkenberg, M. J. C. Eijkemans, L. A. van Herwerden, A. J. J. C. Bogers, and J. D. F. Habbema. Prognosis after aortic valve replacement with a bioprosthesis. Circulation 103:1535–1541, 2001.

    Article  CAS  PubMed  Google Scholar 

  26. Reardon, M. J., N. M. Van Mieghem, J. J. Popma, N. S. Kleiman, L. Søndergaard, M. Mumtaz, D. H. Adams, G. M. Deeb, B. Maini, H. Gada, S. Chetcuti, T. Gleason, J. Heiser, R. Lange, W. Merhi, J. K. Oh, P. S. Olsen, N. Piazza, M. Williams, S. Windecker, S. J. Yakubov, E. Grube, R. Makkar, J. S. Lee, J. Conte, E. Vang, H. Nguyen, Y. Chang, A. S. Mugglin, P. W. Serruys, and A. P. Kappetein. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 376:1321–1331, 2017.

    Article  PubMed  Google Scholar 

  27. Rosseel, L., O. De Backer, and L. Søndergaard. Clinical valve thrombosis and subclinical leaflet thrombosis following transcatheter aortic valve replacement: Is there a need for a patient-tailored antithrombotic therapy? Front. Cardiovasc. Med. 6:44, 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Smith, C. R., M. B. Leon, M. J. Mack, D. C. Miller, J. W. Moses, L. G. Svensson, E. M. Tuzcu, J. G. Webb, G. P. Fontana, R. R. Makkar, M. Williams, T. Dewey, S. Kapadia, V. Babaliaros, V. H. Thourani, P. Corso, A. D. Pichard, J. E. Bavaria, H. C. Herrmann, J. J. Akin, W. N. Anderson, D. Wang, and S. J. Pocock. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364:2187–2198, 2011.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare they have no conflicts of interest.

Research Involved Human and Animal Rights

No human studies were carried out by the authors for this article. No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajat Mittal.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bailoor, S., Seo, JH., Dasi, L. et al. Towards Longitudinal Monitoring of Leaflet Mobility in Prosthetic Aortic Valves via In-Situ Pressure Sensors: In-Silico Modeling and Analysis. Cardiovasc Eng Tech 14, 25–36 (2023). https://doi.org/10.1007/s13239-022-00635-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-022-00635-1

Navigation