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Abstract

Purpose—Residual stress tensor has an essential influence on
the mechanical behaviour of soft tissues and can be partic-
ularly useful in evaluating growth and remodelling of the
heart and arteries. It is currently unclear if one single radial
cut using the opening angle method can accurately estimate
the residual stress. In many previous models, it has been
assumed that a single radial cut can release the residual stress
in a ring of the artery or left ventricle. However, experiments
by Omens et al. (Biomech Model Mechanobiol 1:267–277,
2003) on mouse hearts, have shown that this is not the case.
The aim of this paper is to answer this question using a
multiple-cut mathematical model.
Methods—In this work, we have developed models of
multiple cuts to estimate the residual stress in the left
ventricle and compared with the one-cut model. Both two
and four-cut models are considered. Given that the collagen
fibres are normally coiled in the absence of loading, we use
the isotropic part of the Holzapfel-Ogden strain energy
function to model the unloaded myocardium.
Results—The estimated residual hoop stress from our mul-
tiple-cut model is around 8 to 9 times greater than that of a
single-cut model. Although in principle infinite cuts are
required to release the residual stress, we find four cuts seem
to be sufficient as the model agrees well with experimental
measurements of the myocardial thickness. Indeed, even the
two-cut model already gives a reasonable estimate of the
maximum residual hoop stress. We show that the results are
not significantly different using homogeneous or heteroge-
neous material models. Finally, we explain that the multiple
cuts approach also applies to arteries.
Conclusion—We conclude that both radial and circumferen-
tial cuts are required to release the residual stress in the left
ventricle; using multiple radial cuts alone is not sufficient. A
multiple-cut model gives a marked increase of residual stress

in a left ventricle ring compared to that of the commonly
used single-cut model.

Keywords—Residual stress, Opening angles, Multiple cuts,

Soft tissue, Heterogeneity, Left ventricle.

INTRODUCTION

Living tissues in the heart continuously interact with
their bio-environment, reshape and rearrange their
constituents under chemical, mechanical or genetic
stimuli during their life cycles. In the mature period,
the tissues of a healthy heart remain in a homeostatic
state. However, heart diseases disrupt this balance, and
cause the tissues to grow and remodel. Physiologically,
exercise may also induce healthy and reversible growth
and remodelling. An important ingredient in evaluat-
ing the mechanics involved in the cardiovascular sys-
tem is knowledge of the solid mechanical properties of
the soft tissues involved, including the components of
the heart, such as the left ventricle, henceforth abbre-
viated as LV. A particular aspect is that the tissues of
the heart are residually stressed, so that when the
external loading is removed, residual stresses remain in
the material. However, residual stresses, which are
generally assumed to result from growth and remod-
eling, are imprecisely characterized (experimentally) at
present, and how best to include the important effects
of residual stresses in cardiovascular applications
therefore presents a modelling challenge.

Over the last century,13 various hypotheses on the
growth and remodelling response to mechanical load-
ing have been put forward, with particular success in
arteries. In conventional elasticity theory the existence
of a stress-free reference configuration that coincides
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with the unloaded configuration is normally
assumed.19 In the present context, however, the un-
loaded configuration is not stress free, but is residually
stressed. The residual stress can be estimated using the
so-called opening angle method,2,14 in which an opening
angle indicative of the extent of the residual stress can
be measured after a single radial cut of an unloaded
arterial ring. Using the opened configuration as the
reference configuration, the residual stress in a cylin-
drical artery model can then be estimated.2,26 This
methodology has been extended to multiple cuts by
Taber and Humphrey,27 and used in a two-layered
arterial model by Holzapfel et al.10

Inclusion of residual stress is important in modelling
the mechanics of soft tissues for a number of reasons:
(a) in nonlinear elasticity theory the stress state in the
reference configuration can have a substantial effect on
the subsequent response to loads, and omission of the
residual stress can lead to significantly different stress
predictions under load9,16,24; (b) in biological tissues,
the growth and remodelling process will significantly
affect the (residual) stress statement in living tissue1,15;
(c) while the detailed process of local growth is difficult
to measure, residual stress, on the other hand, may be
estimated from experiments, as demonstrated by the
opening angle measurement. Thus, estimates of the
residual stress at particular time instants could provide
useful information about the growth history of living
tissues.

However, most work that includes residual stress in
complex organs, such as the arteries and heart,
assumed that a simple radial cut can release all the
residual stresses.23,22,7 However, this assumption is not
supported by all experiments. For example, Omens
et al.21 showed that residual stress in a primary mouse
heart could be further released by a circumferential cut
following the initial radial cut, as illustrated in Fig. 1,
They also showed that the opening angles are location-
dependent, with greater values at heart apex. This
implies that the single-cut opening angle configurations
does not correspond to the stress-free configuration,
and, as is well known, can only be considered as
approximately stress-free. Holzapfel and Ogden12 used
a three-layer (adventitia, media and intimal) model to
study residual stress in the artery, where they found
each layer has a different opening angle when cutting
open separately. In other words, it is impossible to
release all the residual stress from a single radial cut
across the three layers. By developing a model to count
for the three-layer structure of the artery, the estimated
residual stress is much greater than treating the artery
as a single-layer model.

Myocardium does not have such a distinct layer
structure; however, it is clear from the experiment by
Omens et al.21 that multiple cuts need to be considered

when studying residual stress in the heart. Inspired by
the finding in Ref. 21 and the three-layer modelling
work by Holzapfel and Ogden12 on arteries, in this
paper, we estimate the residual stress distribution
across the wall of an intact mature heart using multiple
cuts in a simplified heart model. Unlike the approach
in Ref. 12 where the three distinct artery layers are
modelled with different material properties, we know
that any material property change across the myo-
cardium must be smooth and that the transmural stress
distributions are continuous. These considerations are
taken into account in the current work.

METHODOLOGY

There is experimental evidence that the collagen fi-
bres are coiled and wavy in their unloaded state in
arteries3,5 and heart.22 Similarly to previous stud-
ies,12,28 we assume that collagen fibres are not in ten-
sion in the unloaded configuration of the myocardium.
Therefore, for modelling the residual stress, we use the
isotropic part of the invariant-based constitutive law
for the myocardium developed by Holzapfel and
Ogden11:

FIGURE 1. A typical short-axis apical segment of a mouse
heart before and after cuts.21 The initial intact segment, shown
in a, was about 2 mm thick. The same segment after a single
radial cut and a further circumferential cut is shown in b and c,
respectively. In particular, the endocardial segment has
reversed its curvature, in c. Note that the definition of the
opening angle in Ref. 21 follows that in Chuong and Fung,2

which is different from that used in the present paper.
Reproduced from21 with permission.
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W ¼ a

2b
fexp½bðI1 � 3Þ� � 1g; ð1Þ

where I1 ¼ tr C ¼ tr ðFTFÞ, and a, b are material
constants. The Cauchy stress tensor is then11

r ¼ �pIþ 2
@W
@I1

B; ð2Þ

where B ¼ FFT is the left Cauchy–Green deformation
tensor.

For simplicity, we model the LV as an incom-
pressible single-layered cylindrical tube. We consider
different scenarios based on different numbers of cuts
and assume that the stress in the tube in the absence of
loads on its curved surfaces can be released by either a
single (radial) cut or multiple cuts (a radial cut fol-
lowed by one or three circumferential cuts). We also
assume that all the cut segments retain their cylindrical
configurations, each with its own opening angle, i.e.
each is a circular cylindrical sector.

One Cut: Radial

We take basis vectors fer; eh; ezg to correspond to
the local radial, circumferential and longitudinal
directions, respectively, in the intact circular cylindrical
ring (B3). For a single (radial) cut, the opening angle
approach has been well described2,10 for arteries, but is
summarised briefly here for completeness. Let the
geometry of the right-hand panel in Fig. 2 represent a
stress-free configuration B2, which is assumed to be a
circular cylindrical sector described by cylindrical po-
lar coordinates fR;H;Zg as

RðiÞ � R � RðoÞ;
a
2
� H � 2p� a

2
; 0 � Z � L;

ð3Þ

where RðiÞ, RðoÞ, and L denote the inner and outer radii,
and the tube length, respectively, and a is the opening
angle. Let fER;EH;EZg be the associated cylindrical
polar basis vectors in B2.

The (isochoric) deformation from B2 to the intact
configuration B3 is then expressed as

x ¼ rer þ zez; ð4Þ

where, by incompressibility,

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � RðiÞ2

kkð3Þz

þ rðiÞ
2

v

u

u

t ;

h ¼kðH� a=2Þ; z ¼ kð3Þz Z;

ð5Þ

rðiÞ being the inner radius in the configuration B3,

kð3Þz ¼ l=L is the constant axial stretch from B2 to B3, l

is the cylinder length in B3, and k ¼ 2p=ð2p� aÞ is a
measure of the opening angle in B2. The outer radius
in B3 is

rðoÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RðoÞ2 � RðiÞ2

kkð3Þz

þ rðiÞ
2

v

u

u

t : ð6Þ

The corresponding deformation gradient (from B2 to

B3), denoted Fð3Þ, is given by

Fð3Þ ¼ kð3Þ1 er � ER þ kð3Þ2 eh � EH þ kð3Þz ez � EZ; ð7Þ

where

kð3Þ1 ¼ R

rkkð3Þz

; kð3Þ2 ¼ kr

R
: ð8Þ

It follows that the invariant I1 (with the superscript ð3Þ

omitted temporarily for simplicity) is given by

I1 ¼ k21 þ k22 þ k2z : ð9Þ

The components of the Cauchy stress tensor in B3 are
then

rrr ¼� pþ 2
@W
@I1

k21; ð10Þ

rhh ¼� pþ 2
@W
@I1

k22; ð11Þ

rzz ¼� pþ 2
@W
@I1

k2z ; ð12Þ

where p is the Lagrangian multiplier. In the absence of
body forces the stress components rrr and rhh in B3

satisfy the equilibrium equation div r ¼ 0, which, for
the considered deformation, reduces to

FIGURE 2. (a) Cross-section of a circular cylindrical LV
model with no loading on its circular boundaries in
configuration B3; b Stress-free circular cylindrical sector B2

after a single radial cut from B3. Note that maintenance of B3

as a circular cylindrical configuration requires axial and
torsional loads. The deformation gradient from B2 to B3 is
denoted Fð3Þ:
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drrr
dr

þ rrr � rhh
r

¼ 0; ð13Þ

and the associated zero-traction boundary conditions

are rrr ¼ 0 for r ¼ rðiÞ; rðoÞ.
On integration and use of the latter boundary con-

ditions Eq. (13) gives

Z rðoÞ

rðiÞ

rhh � rrr
r

dr ¼ 0; ð14Þ

which, on substitution from (10) and (11, 12), can be

used to obtain rðiÞ in B3 (and rðoÞ from (5)) when the

initial radii RðiÞ and RðoÞ and k and c are known.
Hence, given W, all the Cauchy stress components can
be obtained explicitly in B3.

It should be emphasized that r is not strictly a
residual stress since the presence of the components rzz
requires appropriate non-zero boundary conditions,
whereas true residual stress is associated with zero-
traction boundary conditions. However, the axial force
N required to maintain the circular cylindrical config-
uration B3

10

N ¼ 2p
Z rðoÞ

rðiÞ
rzzrdr ¼ p

Z rðoÞ

rðiÞ
ð2rzz � rrr � rhhÞrdr;

ð15Þ

is non-zero but small. Following, Ref. 12 we adjust the

axial stress so that rzz � N
p½ðrðoÞÞ2�ðrðiÞÞ2� is the approximate

measure of the residual axial stress. The adjusted
residual axial stress has its mean removed so that the
resulting axial load vanishes.

Two Cuts: Radial and Circumferential

For the two-cut model we consider the separation of
the sector in B2 into two separate circular cylindrical

sectors (inner and outer) by means of a circumferential
cut around the mid-wall in B2 at radius
�R ¼ ðRðiÞ þ RðoÞÞ=2. The two new sectors form the
configuration B1, which is now taken as the stress-free
reference configuration. Thus, B2 is no longer stress
free but requires torsional and axial loads to maintain
its circular cylindrical shape. It is, however, residually
stressed in the sense that there is no traction on its
curved surfaces. The transition from B2 to B3 is now
different from that in the one-cut model. The stress in
B3 is calculated from the constitutive laws based on
the reference configuration B1 with the appropriate
deformation gradients from the two sectors in B1 to
B3. The transition from B1 to B2 to B3 is depicted in
Fig. 3.

We note, in particular, that the inner sector in B1

has a negative curvature. The geometry in B1 is de-
scribed in terms of cylindrical polar coordinates
fRj;Hj;Zjg, with subscripts j = 1 and 2 corresponding

to the inner and outer sectors, respectively. Thus,

R
ðiÞ
1 6 R1 6 R

ðoÞ
1 ;

� pþ að1Þ1

2
6 H1 6 p� að1Þ1

2
; 0 6 Z1 6 L1;

ð16Þ

R
ðiÞ
2 6 R2 6 R

ðoÞ
2 ;

að2Þ1

2
6 H2 6 2p� að2Þ1

2
; 0 6 Z2 6 L1;

ð17Þ

where R
ðiÞ
j , R

ðoÞ
j , aðjÞ1 , j ¼ 1; 2, and L1 denote the inner

and outer radii, the opening angles, and the tube length

in B1. In B2, R
ðiÞ
1 and R

ðiÞ
2 both become �R, while R

ðoÞ
1

and R
ðoÞ
2 translate to RðiÞ and RðoÞ, respectively, the

opening angle is a and the axial length L.
For each sector, the isochoric deformation from B1

to B2 can be written as

FIGURE 3. The two-cut model a cylindrical model of the LV as the intact ring in B3, b after a radial cut to B2, and c followed by a
circumferential cut to B1. Notice that the inner sector in B1 has a negative curvature, as in Ref. 21. The red curve, at the mid-wall
radius �R ¼ ðRðiÞ þ RðoÞÞ=2 in (b), separates the inner and outer sectors which become the separate inner and outer sectrors in B1

after the circumferential cut. Appropriate axial and torsional loads are required to maintain the shapes in B2 and B3:
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X ¼ RER þ ZEZ; ð18Þ

with

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R
ðiÞ
1

2
� R2

1

k1k
ð21Þ
Z

þ �R
2

v

u

u

t ;

H ¼p� k1H1; Z ¼ kð21ÞZ Z1

ð19Þ

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
2 � R

ðiÞ
2

2

k2k
ð22Þ
Z

þ �R
2

v

u

u

t ;

H ¼k2ðH2 � pÞ þ p; Z ¼ kð22ÞZ Z2

ð20Þ

for the inner and outer sectors, respectively, where

kj ¼ ð2p� aÞ=ð2p� aðjÞ1 Þ; j ¼ 1; 2, and k2j is the axial

stretch of sector j = 1 and 2 in B1 respectively. Note
that the negative curvature of the inner sector in B1

depicted in Fig. 3 is captured by the expression for R in
(19), and that structural compatibility in B2 is ensured

since the two expressions for R match at �R.
As indicated in Fig. 3 the deformation gradient

from B1 to B2 is denoted Fð2Þ, which is shorthand
notation for the two separate deformation gradients
from the two sectors in B1 to B2. These are denoted

Fð2jÞ; j ¼ 1; 2, and given by

Fð2jÞ ¼ kð2jÞ1 ERj
� ER þ kð2jÞ2 EHj

� EH þ kð2jÞZ EZj
� EZ;

ð21Þ

where

kð2jÞ1 ¼ Rj

kjRk
ð2jÞ
Z

; kð2jÞ2 ¼ kjR

Rj
;

kð2jÞZ ¼kð2jÞ1

�1
kð2jÞ2

�1
; j ¼ 1; 2:

ð22Þ

Similarly to the one-cut model, the equilibrium equa-
tion in B2 yields

drRR
dR

þ rRR � rHH

R
¼ 0;

Z RðoÞ

RðiÞ

rHH � rRR
R

dR ¼ 0:

ð23Þ

Equation (23)1 can be rearranged as

rHH ¼ d

dR
ðRrRRÞ; ð24Þ

from which it follows, on use of the zero-traction

boundary conditions rRR ¼ 0 on RðiÞ and RðoÞ, that

Z RðoÞ

RðiÞ
rHHdR ¼ 0; ð25Þ

i.e. the mean value of rHH through the thickness is
zero.

It is assumed that is there is no bending moment on
the faces H ¼ a=2 and H ¼ 2p� a=2 in B2, which
yields

Z RðoÞ

RðiÞ
rHHRdR ¼ 0: ð26Þ

Substitution of rHH from (24) into this equation fol-
lowed by integration by parts and a further application
of the zero-traction boundary conditions leads to

Z RðoÞ

RðiÞ
rRRRdR ¼ 0: ð27Þ

Eqs. (23)2, (26) and (27) are solved with Eqs. (19) and

(20) to obtain the radii RðiÞ and RðoÞ, and the angle a of
the sector in B2. The deformation gradient associated
with the transition F1!3 from B1 to B3 has the form

Fð3ÞFð2Þ, where Fð3Þ is given by Eq. (7) from the one-cut

approach, and Fð2Þ is either Fð21Þ or Fð22Þ, as given in

Eq. (21). Note that Fð3ÞFð21Þ and Fð3ÞFð22Þ are the values
obtained for the inner and outer sectors, respectively,

and these must match at the interface �R, i.e. the
deformation gradient must be continuous in B2, which

implies that k1=R
ðiÞ
1 ¼ k2=R

ðiÞ
2 at the interface. Enforc-

ing of this requirement will ensure that when traction
continuity is applied p is continuous and hence that all
the stress components are continuous, in particular
that rHH is continuous.

Hence, for the two-cut model, we require geometric

information, e.g. R
ðiÞ
1 , R

ðiÞ
2 , að1Þ1 , að2Þ2 in B1, from

experiments (Fig. 1c). Then the geometric information
of B2 is obtained from the two-cut model. The residual
stress of the intact-ring configuration, B3, can now be
solved using the same equilibrium equations as (23),
(26) and (27), except the deformation gradient is now

Fð3ÞFð2Þ.
An expression for the required axial load N for the

intact ring is obtained from a formula similar to that in
(15), and the corresponding residual axial stress is
adjusted to make the resulting axial load vanish.

Four cuts: one radial and three circumferential

The effect of two further circumferential cuts, one in
each of the two separated sectors, is now considered in
order to assess if there is any significant change in the
resulting calculated residual stress compared with that
obtained with a single circumferential cut, although
this is not a test that has been carried out experimen-
tally. For definiteness we consider taking a circumfer-
ential cut along the mid-wall of each of the two sectors
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of the two-cut model, leading to the four separate
sectors depicted in Fig. 4. In this model we assume that
the resulting configuration B0 is stress-free with no
further reversal of the curvature, so that the two sec-
tors in B1 are no longer stress free.

Each of the four sectors in B0 is described in terms
of cylindrical polar coordinates fq;/; fg according to

qðiÞ1 6 q 6 qðoÞ1 ; �pþ að1Þ0

2
6 / 6 p� að1Þ0

2
;

0 6 f 6 L0 ðinner IÞ;
ð28Þ

qðiÞ2 6 q 6 qðoÞ2 ; �pþ að2Þ0

2
6 / 6 p� að2Þ0

2
;

0 6 f 6 L0 ðinner IIÞ;
ð29Þ

qðiÞ3 6 q 6 qðoÞ3 ;
að3Þ0

2
6 / 6 2p� að3Þ0

2
;

0 6 f 6 L0 ðouter IÞ;
ð30Þ

qðiÞ4 6 q 6 qðoÞ4 ;
að4Þ0

2
6 / 6 2p� að4Þ0

2
;

0 6 f 6 L0 ðouter IIÞ;
ð31Þ

where qðiÞn , qðoÞn , aðnÞ0 , n ¼ 1; 2; 3; 4, and L0 are the
internal radii, the external radii, opening angles, and
the lengths of the four sectors in B0, and the notations
I and II are identified in Fig. 4.

In B1, the geometries of the two sectors are de-
scribed in terms of polar coordinates fRj;Hj;Zjg, with
indices 1 and 2, as in Eqs. (16) and (17). Next, in B2,

RðiÞ, RðoÞ, a, L denote the internal and external radii,
the opening angle and the length of the single sector
according to (19)–(20).

The deformations from the four sectors in B0 to the
two sectors in B1 are described by

R1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � qðiÞ1
2

k11k
ð11Þ
Z

þ �R
2
1

v

u

u

t ; H1 ¼ k11/;

Z1 ¼kð11ÞZ f; (inner I) ;

ð32Þ

R1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � qðoÞ2

2

k12k
ð12Þ
Z

þ �R
2
1

v

u

u

t ; H1 ¼ k12/;

Z1 ¼kð12ÞZ f; (inner II) ;

ð33Þ

R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � qðoÞ3

2

k23k
ð23Þ
Z

þ �R
2
2

v

u

u

t ; H2 ¼ k23ð/� pÞ þ p;

Z2 ¼kð23ÞZ f; (outer I) ;

ð34Þ

R2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � qðiÞ4
2

k24k
ð24Þ
Z

þ �R
2
2

v

u

u

t ;

H2 ¼k24ð/� pÞ þ p; Z2 ¼ kð24ÞZ f; (outer II) ;

ð35Þ

where

B0

α
(4)
0

α
(3)
0

α
(2)
0 α

(1)
0

outer II

outer I inner II

inner I

FIGURE 4. The stress-free configuration B0 consisting of the four sectors obtained by circumferential cuts of the two sectors in
B1:
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k1n ¼ð2p� að1Þ1 Þ=ð2p� aðnÞ0 Þ; n ¼ 1; 2;

k2n ¼ð2p� að2Þ1 Þ=ð2p� aðnÞ0 Þ; n ¼ 3; 4;

kð1nÞ1 ¼ R1

qk1nk
ð1nÞ
Z

;

kð1nÞ2 ¼ k1nq
R1

;

kð1nÞZ ¼kð1nÞ1

�1
kð1nÞ2

�1
; n ¼ 1; 2;

kð2nÞ1 ¼ R2

qk2nk
ð2nÞ
Z

;

kð2nÞ2 ¼ k2nq
R2

;

kð2nÞZ ¼kð2nÞ1

�1
kð2nÞ2

�1
; n ¼ 3; 4;

and

�Rj ¼
1

2
ðRðiÞ

j þ R
ðoÞ
j Þ; j ¼ 1; 2:

The deformation gradients from B0 in Fig. 4 to B1 in
Fig. 3 are

Fð1nÞ ¼ kð1nÞ1 ER1
� eq

þ kð1nÞ2 EH1
� e/ þ kð1nÞZ EZ1

� ef; n ¼ 1; 2;

ð36Þ

Fð2nÞ ¼ kð2nÞ1 ER2
� eq

þ kð2nÞ2 EH2
� e/ þ kð2nÞZ EZ2

� ef; n ¼ 3; 4:

ð37Þ

In this model there are four separate deformation
gradients from B0 to B1, pairs of which have to be
continuous in B1. Then, the two separate deformation
gradients from B1 to B2 also have to be continuous,
and the deformation gradient from B2 to B3 likewise

has to be continuous. The transformations between the
various internal and external radii are listed in Table 1.

In B1, the radial equilibrium equation for each of
the two sectors yields

Z R
ðoÞ
j

R
ðiÞ
j

rHjHj
� rRjRj

Rj
dR ¼ 0; j ¼ 1; 2: ð38Þ

The radial traction rRjRj
should be continuous across

each interface �Rj; j ¼ 1; 2, and hence, since the defor-

mation gradient is required to be continuous, p is
continuous and the other stress components are also
continuous. For the considered deformation, with kZj

given, continuity of both the radial and circumferential
stresses guarantees that both p and the deformation are
continuous. Note that continuity of the circumferential
stress at the interfaces in B1 requires that

rHjHj
is continuous for R1 ¼ �R1 ðR2 ¼ �R2Þ

in the inner (outer) sector :

ð39Þ

Also, similarly to the two-cut model,

Z R
ðoÞ
j

R
ðiÞ
j

rHjHj
RjdR ¼

Z R
ðoÞ
j

R
ðiÞ
j

rRjRj
RjdR ¼ 0; j ¼ 1; 2:

ð40Þ

The corresponding deformation gradient from B1 to

B2 is F0!2 ¼ Fð2ÞFð1Þ, where again Fð2Þ is either Fð21Þ or

Fð22Þ, Fð1Þ is the appropriate Fð1nÞ, n ¼ 1; 2, or Fð2nÞ,
n ¼ 3; 4, and the governing equations for the single
sector in B2 are

Z RðoÞ

RðiÞ

rHH � rRR
R

dR ¼ 0;

Z RðoÞ

RðiÞ
rHHRdR ¼

Z RðoÞ

RðiÞ
rRRRdR ¼ 0;

ð41Þ

as in (23)2, (26) and (27).
This model involves eight independent Eqs. (38)–

(41), and eight unknown geometrical parameters in B0:

qðiÞn ; aðnÞ0 , n ¼ 1; 2; 3; 4. The required external axial load

is then calculated similar to (15), and made to vannish
by adjuing the residual axial stress.

In summary, for the four-cut model, we require
geometric information of both B1 and B2 from
experiments. Once we obtain all the details, e.g,
opening angles and radii of all the sectors in B0, we
estimate the (residual) stress components rrr and rhh in
the intact-ring configuration B3, with the total defor-

mation gradient F0!3 ¼ Fð3ÞFð2ÞFð1Þ.

TABLE 1. Transformations between the various internal and
external radii in the different configurations.

B0 B1 B2 B3

qðiÞ1 ! �R1

qðoÞ1 ! R
ðoÞ
1 ! RðiÞ ! r ðiÞ

qðiÞ2 ! R
ðiÞ
1 ! 1

2 ðRðiÞ þ RðoÞÞ

qðoÞ2 ! �R1

qðiÞ3 ! R
ðiÞ
2 ! 1

2 ðRðiÞ þ RðoÞÞ

qðoÞ3 ! �R2

qðiÞ4 ! �R2

qðoÞ4 ! R
ðoÞ
2 ! RðoÞ ! r ðoÞ
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RESULTS

Modelling Parameters

The reference configuration is different for the dif-
ferent models, so we need to define the parameters
according to each specific model considered. From B2

in the one-cut model, we assume that the axial stretch

has the constant value kð3Þz ¼ 1:14, and RðiÞ ¼ 2:06,

RðoÞ ¼ 3:20 a ¼ 65� are estimated from the experi-
ments.21

For the two-cut model, in addition to the parame-
ters used in the one-cut model, we use additional
measurements in B1 of the two-cut model in Ref. 21:

R
ðiÞ
1 ¼ 5:28, R

ðiÞ
2 ¼ 1:97, að1Þ1 ¼ 268� and að2Þ1 ¼ 180�.

We also assume that there is no axial stretch in the

transformation from B1 to B2, i.e. k
ð2jÞ
Z ¼ 1, j=1,2.

For the four-cut model, in addition to the parame-
ters used in the two-cut model, we need more geo-
metrical information in B1, which is again estimated
from the measurements21 as listed in Table 2. We also

assume that kð1nÞZ ¼ kð2nÞZ ¼ 1 for the deformation from

B0 to B1, i.e. no axial deformation occurs as a result of
the circumferential cuts.

Initially, we consider a homogeneous myocardium
model, for which the material parameters of the con-

stitutive law (1) are fitted to the data of mice.20 This
gives a ¼ 2:21kPa, and b ¼ 1:8.

However, the dramatic difference in the maximum
hoop stress between the single-cut and multiple-cut
models raises a question about the rationale of con-
sidering homogeneous material properties. Novak
et al.18 showed that canine myocardium is heteroge-
neous with location dependent material properties. In
particular, they showed that the mid myocardium is
softer than epicardium or endocardium, although they
didn’t find differences in regional (anterior wall vs
septum) stiffness. We therefore also consider an inho-
mogeneous myocardium model, and fit the data from18

with the strain-energy function (1).
The parameters are spatially dependent, as shown in

Fig. 5. Since our model is for mice, and there are no
experimental data on the heterogeneous properties of
mice myocardium, we take the spatial variation of the
canine data, but keep the mean values of the mice data
from our fitted parameters, and include these in our
calculations.

Results for the Homogeneous Myocardium Model

The geometry of the intact ring predicted in the
three different models is summarized in Table 3, and
compared with the measured data in Ref. 21.

It is clear that the agreement of the estimated radius
and thickness of the unloaded configuration gets better
as the number of cuts increases. Although in principle
the true zero-stress configuration requires infinite cuts,
Table 3 suggests that two or four cuts provides a good
approximation of the zero-stressed configuration, gi-
ven that the measured geometry is not exactly circular,
although it is assumed to be circular in each model.

The components of the residual stress distribution in
the intact-ring configuration B3 from the three differ-
ent models are shown in Fig. 6. The residual axial
stress for each model is adjusted to remove the impact

TABLE 2. Measured geometrical input for the four-cut
model, estimated from Ref. 21.

Configuration B1 Configuration B2

R
ðiÞ
1 ¼ 5:28 1

2 ðR
ðiÞ þ R ðoÞÞ

R
ðoÞ
1 ¼ 6:29 R ðiÞ ¼ 2:06

að1Þ1 ¼ 268� a ¼ 65�

R
ðiÞ
2 ¼ 1:97 1

2 ðR
ðiÞ þ R ðoÞÞ

R
ðoÞ
2 ¼ 3:04 R ðoÞ ¼ 3:20

að2Þ1 ¼ 180� a ¼ 65�

FIGURE 5. The heterogeneous material parameters a (left), and b (right), fitted to experiments. The red dashed lines indicate the
constants used for the homogeneous models, and the red solid lines are for the heterogeneous mice models, with the spatial
distributions taken from the canine data in Ref. 18 (black solid lines).
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of the non-zero values of N (=5:67� 10�3,

1:71� 10�3, and 1:42� 10�3, respectively, in the one-
cut, two-cut, and four-cut models.) Although the
overall distributions are similar in all these models,
there is marked difference in the magnitudes of the
hoop stresses. In particular, the maximum rhh is 1.75,
17.13, and 17.15 kPa, respectively, for the one-cut,
two-cut, and four-cut models. Comparing to the one-
cut model, the ratio of the maximum hoop stresses
over the single cut is about 9.78 times for the two-cut
model, and 9.80 times for the four-cut model. We also
notice that although the four-cut model gives much

smoother stress distribution, the two-cut model leads
to a similar magnitude of the maximum hoop stress.
This suggests that the significant rise in the residual
stress is due to the negative curvature at the first cir-
cumferential cut.

Results for the Heterogeneous Myocardium Model

The results of the intact ring from the heterogeneous
myocardium model are computed. Again, the residual
axial stress for each model is adjusted to remove the

impact of the non-zero values of N (=4:59� 10�3,

TABLE 3. Computed intact ring for the homogeneous models, compared to measurements.21

Measurements (mm) One-cut model Two-cut model Four-cut model

r ðiÞ ¼ 0:565 0.555 0.347 0.364

r ðoÞ ¼ 2:185 2.147 1.9561 1.9950

r ðoÞ � r ðiÞ ¼ 1:620 1.5920 1.6438 1.6310

Difference in thickness 1.73% 1.47% 0.68%

FIGURE 6. Distribution of the residual stress components in the intact ring from a single cut, b two-cut, and c four-cut models
based on the homogenous material assumption.
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1:35� 10�3, and 1:09� 10�3, respectively, in the one-
cut, two-cut, and four-cut models.) . All the stess
compoenets are plotted in Fig. 7, which shows that the
maximum rhh is 1.85, 16.12, and 16.63 kPa, respec-
tively, for the one-cut, two-cut, and four-cut models.
The ratio of the maximum hoop stresses over the single
cut is slightly lower than that of the homogeneous
material, at about 8.71 times for the two-cut model and
8.73 times for the four-cut model. Again, apart from
smoother and somewhat different stress distributions,
the four-cut model predicts very similar maximum
hoop stress as the two-cut model.

DISCUSSION

The issue of multiple cuts has been studied before.
In particular, Fung suggested that one radial cut might
be sufficient to release all the residual stress. This was
supported by his experiments which showed that after
two or more radial cuts, no obvious deformation oc-
curs from the one-radial-cut configuration of the

arteries.6 Using our models we can show, however,
that multiple radial cuts do not indeed release more
residual stress, since due to the symmetry of the con-
sidered geometry, once a radial cut is made, no further
elastic deformation can occur after more radial cuts.

In other words, the deformation gradient in each of
our different models is independent of the azimuthal
angle and the solutions are also independent of this
angle. However, this does not indicate that the one-cut
configuration is a stress-free one. To further release
residual stress circumferential cuts following a radial
cut are necessary. We note that even with multiple cuts,
we may not release all the residual stresses. In princi-
ple, only infinite cuts can release all the residual
stresses. This explains why the stress distributions are
not smooth and appear to have deflections around
where the cuts are, since we have to assume the con-
figuration after two or four cuts is stress-free. This
process could be improved with more cuts, though
more than four cuts cannot be modelled in this paper
without further experimental data. However, the
curves in the four-cut model are almost smooth, the

FIGURE 7. Distribution of the residual stress components from a one-cut, b two-cut, and c four-cut models based on the
heterogeneous myocardium assumption.
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required axial load to maintain the cylindrical shape of
the intact ring reduces is smaller, and the predicted
intact ring thickness agrees very well with the mea-
surements. All these tentatively suggest that the four-
cut model is already a good approximation for the
residual stresses. Indeed, in terms of estimating the
residual stress magnitude, even the two-cut model
seems to be good enough.

The fact that our two-cut and four-cut models
predict a much higher (about 8-9 times!) hoop stress is
perhaps not unexpected given the large negative cur-
vature revealed by the experiments.21 The increased
value of the residual hoop stress agrees with the rough
estimation by Omens et al.21 based on a simplified
concentric cylindrical shell model, where they showed
that the maximum loop stress was about 20kPa, which
is close to our estimation of about 17kPa.

We argue that the significant stress underestimate of
the one-cut model does not just occur in the heart
models. In the residual stress modelling of arteries, by
treating the artery wall as three separate layers (intima,
media and adventitia), and measuring the opening
angles for each of the three layers, Holzapfel and
Ogden12 have essentially developed a three-cut model
(one radial cut followed by two circumferential cuts, in
this case separating the layers with different proper-
ties). Their model is also heterogeneous, as different
material parameters are used for different layers. We
now compare the residual stress distribution across the

artery wall in Fig. 8 using their three-cut approach and
the one-cut model. The results from the one-cut (or
one-layer) model are reproduced here using the same
parameters as in Ref. 12. The maximum values of the
hoop stress and their ratio to the one-cut model results
in different layers of the three-cut model are listed in
Table 4, which shows that the ratio of the hoop stress
in the different layers ranges from 24 to 50 times. This
difference is even greater than that of the mouse heart.

In this study, we assume that the deformation gra-
dient is diagonal. Note this is in general not true for the
heart under loading.8 However, since residual stresses
are estimated from the unloaded configuration, the fi-
bres are in general coiled and do not bear the load.
Therefore the myocardium behaves like an isotropic
material, and the radial, circumferential and axial
directions are the principal directions of the deforma-
tion, i.e. the deformation gradient is diagonal in these
directions. This is different from artery modelling,
when the two families of fibres are assumed symmet-
rical about the axial direction. Hence, even when loa-
ded with pressure, tensioned fibres do not alter the
principal directions of the deformation. Therefore, the
diagonal deformation gradient (e.g. Ref. 12) is
assumed in arteries for a different reason.

Finally, we would like to state the limitations of the
study. We have assumed that cross-sections of the
heart are cylindrical, and all the cut segments retain
their cylindrical configurations, each with its own

FIGURE 8. Residual stress distributions through the intima, media and adventitia of the artery wall as functions of the radial
coordinate r: a residual stress is recomputed here using a one-cut model, all other parameters being the same, so that the
comparison can be made with the multi-layer approach, and b the original result with layer separations from Ref. 12, reused with
permission

TABLE 4. Residual stress computed using a single-cut and the original (three-cut) HO model.12

Max. hoop stress (kPa) One-cut model Three-cut model12 Ratio of stresses

Adventitia 0.57 15.08 26.45

Media 0.47 23.74 50.51

Intima � 0.97 � 23.20 23.91
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opening angle, i.e. each is a circular cylindrical sector.
Needless to say, this is not always true, particularly in
opening angle studies of arteries, where a single cut of
an arterial ring can have a non-uniform curvature.25 In
addition, with the cylindrical assumption, we cannot
model the experimental observation that opening an-
gles are location-dependent, with higher values at heart
apex.21 Indeed, the ‘‘true’’ residual stress can only be
achieved through infinite cuts using the opening angle
method, which is not practical. We believe the residual
stress estimation, although an approximation, is a step
forward to the physiological range compared with
using the single cut opening angle method.

CONCLUSION

Based on experimental observations that a single
radial cut does not release all residual stress, we have
used multiple cuts to estimate the residual stress dis-
tributions in a mouse left ventricle model. Our results
show that both radial and circumferential cuts are
required to release the residual stresses in the middle
wall of the left ventricle. Remarkably, using radial cuts
alone leads to a significant underestimate of the
residual stress, which will be around 8 to 9 times
greater if estimated on the basis of combined radial
and circumferential cuts. Similar findings apply to
arteries based on the model in Ref. 12. We remark that
the results are not significantly different using the
homogeneous or heterogeneous material models. In
addition, although the stress distributions are different
and much smoother in the four-cut model, the two-cut
model can already estimate the maximum hoop resid-
ual stress quite satisfactorily.
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