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Abstract
Purpose—Coronary artery stenosis, or abnormal narrowing,
is a widespread and potentially fatal cardiac disease. After
treatment by balloon angioplasty and stenting, restenosis
may occur inside the stent due to excessive neointima
formation. Simulations of in-stent restenosis can provide
new insight into this process. However, uncertainties due to
variability in patient-specific parameters must be taken into
account.
Methods—We performed an uncertainty quantification (UQ)
study on a complex two-dimensional in-stent restenosis
model. We used a quasi-Monte Carlo method for UQ of
the neointimal area, and the Sobol sensitivity analysis (SA) to
estimate the proportions of aleatory and epistemic uncer-
tainties and to determine the most important input param-
eters.
Results—We observe approximately 30% uncertainty in the
mean neointimal area as simulated by the model. Depending
on whether a fast initial endothelium recovery occurs, the
proportion of the model variance due to natural variability
ranges from 15 to 35%. The endothelium regeneration time is
identified as the most influential model parameter.
Conclusion—The model output contains a moderate quantity
of uncertainty, and the model precision can be increased by
obtaining a more certain value on the endothelium regener-
ation time. We conclude that the quasi-Monte Carlo UQ and
the Sobol SA are reliable methods for estimating uncertain-
ties in the response of complicated multiscale cardiovascular
models.

Keywords—In-Stent Restenosis model, Multiscale simula-

tion, Uncertainty quantification, Sensitivity analysis.

INTRODUCTION

Cardiac diseases are a leading cause of mortality in
developed countries.16 Coronary artery stenosis, or
abnormal narrowing, is a particularly widespread and
potentially fatal cardiac disease. This narrowing is of-

ten corrected by stenting the affected artery. There are
multiple types of stents currently in use, ranging from
simple bare metal stents, to more advanced stents, for
example ones eluting growth-inhibiting drugs, ones
designed to capture endothelial progenitor cells, and to
bioresorbable polymer scaffolds.10

In-stent restenosis (ISR) is the process of excessive
neointima formation in an artery following balloon
angioplasty and stenting, leading to a renewed nar-
rowing of the artery. In 5% to 10% cases it requires a
repeat revascularization of the target lesion.7

Restenosis is caused by damage to the vessel wall and
by disturbed flow patterns in the stented segment.10

Restenosis is an important complication of the stenting
procedure, and because of that, it has been studied
extensively in clinical trials, reviewed e.g., in Ref. 8, in-
vivo animal experiments, reviewed e.g., in Ref. 9, and
also by using computational models.3,5,13,18,34 The
computational models of ISR usually represent cells by
agents, either freely moving5,18,34 or placed on a lat-
tice.3,13 These agents take cues from the blood flow,
concentration of drugs eluted from the stent, and from
the vessel damage and mechanics, which affect the
growth and proliferation of the cells.

We perform an Uncertainty Quantification (UQ) of
an off-lattice in-stent restenosis model previously
developed by Tahir et al.,30 where we measure the
precision of the model response, not the accuracy. The
model is subject to both aleatory and epistemic
uncertainty. It includes random variables which rep-
resent the stochastic nature of the system. It also in-
cludes uncertain parameters, which theoretically can
be known precisely, although this is a rare case in
practice. Here, we study our two-dimensional version
of the ISR model.5,29,30 We do this to provide a proof-
of-concept, using a model that is computationally rel-
atively cheap, in preparation for a more in-depth study
of our later, more physiological and more computa-
tionally expensive three-dimensional ISR model.34 Our
ultimate goal was to access the model result sensitivity
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to the uncertainties in the inputs and stochastic
parameters, in order to be aware of the result uncer-
tainty and the inputs which cause a greater effect on it.
This will allow us to be aware of the result uncertainty
quantities, when model results are analyzed, and of the
inputs, which value should be as precise as possible.

A model description is given in Sect. 2. Next, in
Sect. 3, we give a brief overview of the UQ method we
used for measuring uncertainties, as well as of the
Sobol method for the analysis of the effect of uncertain
inputs on the model result. In Sect. 4, we present the
results, and we finish with a discussion and conclusions
in Sect. 5.

THE ISR MODEL

The ISR2D model is a two-dimensional represen-
tation of the ISR process.6,30 Its domain is a longitu-
dinal section of the artery, in which five subprocesses
take place: stent deployment, post-deployment smooth
muscle cell proliferation into the lumen, blood flow
through the lumen, re-endothelialization, and diffusion
of antiproliferative drugs from the stent into the tissue.
As these processes take place at different temporal
scales, ISR2D is a multiscale model.4–6

Initially, the simulated artery consists of lower and
upper arterial walls (see Fig. 1a). These comprise a
tunica media, consisting of multiple layers of smooth
muscle cells (SMCs), and a layer of Internal Elastic
Lamina (IEL) elements,30 all represented by freely
moving agents. The adventitia is not modelled explic-
itly. The initial thickness of the tunica intima is
assumed to be negligible, and the endothelial cells are
not modelled explicitly. However, an implicit repre-
sentation of the regenerated endothelium as an attri-

bute of the SMCs (see below) is an important part of
the model.31 As the only function of the endothelium
in this model is to inhibit SMC growth, the lack of
endothelium cover on the IEL agents does not affect
the results. Square stent struts, also consisting of freely
moving agents, are located within the lumen, at some
distance from the wall.

The stent deployment process gradually moves the
struts outwards to the desired deployment depth,
deforming the wall through force-based interaction
between the agents. Touching agents are subject to an
adhesive Hertzian contact force, while non-touching
but nearby agents are attracted by a Hookean force
representing the extracellular matrix. Cells at the left
and right edges of the domain are constrained hori-
zontally as a boundary condition. The strut agents are
fixed in place at a stepwise increasing distance, and
forces are equilibrated, forcing the wall to conform. If
an agent sustains excessive mechanical stress, or also
strain for IEL agents, it is removed. The endothelium
is assumed to be completely removed by the angio-
plasty and stent deployment procedure. While we have
not validated this 2D model against known mechani-
cal properties of the arterial wall, our 3D version of
the cell interaction model has been validated, see
Ref. 14.

Figure 1b shows the resulting initial conditions for
the second phase of the simulation. Stent deployment
has deformed the arterial wall, and IELs have been
removed due to excessive hoop strain (near the strut)
as well as longitudinal strain (around x = 0.4 mm),
exposing the SMCs to the blood flow. No SMCs are
covered by functional endothelium at this point.

During the second phase, the exposed SMCs have
changed from contractile to synthetic, and traverse the
cell cycle, proliferating into the lumen. The neointima

FIGURE 1. ISR2D initial state, post-deployment state, and reendothelialization pattern. Orange circles are individual SMCs, red
circles are IEL agents, and grey circles make up the stent struts. Green cells are synthetic and proliferating, blue are nitric oxide
(NO) inhibited. Note the rupture of the IEL in the vicinity of the strut, and subsequent SMC proliferation in this area.
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is modelled as consisting mainly of SMCs. At each step
of the model, each endothelium-free SMC becomes
covered by functional endothelium with a time-varying
probability calculated to achieve a certain coverage
scenario.29 Figure 1c shows the model state after some
growth. In this example, to the left of the top strut, the
endothelium has recovered quickly and proliferation
has nearly stopped. On the right and at the bottom,
proliferation is ongoing. Green cells are in the cell
growth and proliferation cycle, with dark green cells
having endothelium cover. Blue cells are endothelium-
covered and have been inhibited by nitric oxide con-
centration as a result of high wall shear stress (see
below). Orange cells are quiescent.

After each step of the cell model, a fixed lattice-
based representation of the domain is constructed,
with agent-covered nodes marked as solid. A constant
parabolic velocity profile is set on the inlet, and a
Lattice Boltzmann solver is used to compute the wall
shear stress (WSS) at each SMC adjacent to the flow
under the assumption that the total flux through the
arterial segment remains constant as the restenosis
develops. At locations where an intact and functional
endothelium is present, nitric oxide (NO) is produced,
which in turn inhibits SMC growth if its concentration
is high enough.31 The drug diffusion submodel, which
operates on the same lattice, simulates antiproliferative
drugs eluting from the stent (if any) and diffusing
through the tissue, inhibiting proliferation.5 SMC
growth is also inhibited if the SMC is surrounded by
other cells.

Following one of the approaches in experimental
studies, we base our assessment of restenosis on the
remaining cross-sectional lumen area.24 We consider a
restenosis to have taken place if the final cross-sec-
tional area of the neointima is more than 50% of the
original cross-sectional lumen area of the vessel. To
estimate this area at a given simulation time, we
measure the mean width of the lumen at that time, and
estimate the cross-sectional area of the lumen as that of
a circle with that diameter. We then subtract this from
the initial post-stenting lumen area, to obtain the area
of the neointima.

Model Set-up

Our simulation set-up is essentially the same as in
the work of Tahir et al.31 We configured the model to
represent a small section of a healthy porcine coronary
artery, with a length of 1.5 mm, a lumen diameter of 1
mm, and a tunica media consisting of five layers of
SMCs. A healthy porcine artery was selected to better
facilitate the model’s validation, since the histological
data points from the corresponding in vivo experiments
are readily available. We used a bare metal stent with a

mean deployment depth of 110 lm. The blood flow
model was set to dynamic viscosity l = 4 mPa s,
density q = 1000 kg m�3 and Re = 120, resulting in a
mean steady flow velocity of 0.48 m s�1.

We considered two re-endothelialization scenarios
(Fig. 2). In the first scenario, the endothelium recovers
to a coverage of 59% after 3 days, followed by a full
recovery after 15 to 23 days (determined by an
uncertain input parameter, see Table 1). In the second
scenario, the initial fast recovery is absent, with
endothelium cover increasing linearly from zero to
100% after 15 to 23 days. These scenarios correspond
to the three endothelium recovery cases of Tahir
et al.31 The uncertainty range in Scenario 1 was chosen
to cover the space between their cases 1 and 2.

In the model, reendothelialization is driven by three
parameters: the initial fast recovery time, initial fast
recovery degree, and the time to total recovery. Rather
than having two scenarios, we could of course have
taken the initial fast recovery time and degree as
additional uncertain parameters, which would be
appropriate as the measurement they are based on has
a high relative error.33 However, reducing the number
of uncertain parameters reduces computational cost,
and with the present set-up, we can demonstrate a
comparison between scenarios in the presence of
uncertainty.

Aleatory Uncertainty in the Model

The model is stochastic because the length of the cell
cycle is chosen randomly for each SMC (normal dis-
tribution, l ¼ 32 h, r ¼ 2 h), the relative orientation of

FIGURE 2. Two re-endothelialization scenarios, showing the
percentual endothelium coverage over time. The uncertainty
in the scenarios is also shown and is expressed by the
uncertainty at which time 100% coverage is reached.
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daughter cells is chosen randomly during mitosis, and
the pattern of reendothelialization is random as well.
For a detailed description of the model, we refer to
previous publications.5,31

Epistemic Uncertainty in the Model

For our uncertainty quantification and sensitivity
analysis of the ISR2D model, we consider the uncer-
tainty in three input parameters (Table 1). Stent
deployment depth and endothelium regeneration time
were shown to strongly affect simulated neointimal
area by Tahir et al.,29 and were therefore included.
Additionally, we included blood flow velocity, because
its effect on the behavior of the model has not yet been
evaluated, and because of the potentially interesting
interaction with the endothelium regeneration time.
Blood flow in the coronaries is also variable depending
on oxygen demand in the heart muscle, and by treating
the blood flow as an uncertain parameter, we capture
this effect into our analysis.

Flow velocity was varied by 10%. The other ranges
were chosen to correspond to previously published
results,31 so that we could validate our findings.

UNCERTAINTY QUANTIFICATION

Here we provide some relevant details of the
Uncertainty Quantification methods we applied. We
describe our uncertainty measures of the total model
response uncertainty, estimation of aleatory and epis-
temic uncertainty in the model result, and sampling
scheme. In this section, the ISR2D model, described in
‘‘The ISR Model’’, is denoted by function fðn; xÞ,
which depends on a vector of stochastic model
parameters n described in ‘‘Aleatory Uncertainty in the
Model’’ and uncertain model inputs x from Table 1
(Section ‘‘Epistemic Uncertainty in the Model’’).

Uncertainty Measures

In this study, we used the variance (Varðfðn; xÞÞ),
standard deviation (

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðfðn; xÞÞ
p

), and the coefficient

of variation (CV) as measures of model response
uncertainty:

CV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðfðn; xÞÞ
p

jEðfðn;xÞÞj � 100%; ð1Þ

where Eðfðn; xÞÞ is themean value of themodel response.
These measures were estimated using a Monte Carlo
method (Fig. 3) by running the model with different
values of x and n, and collecting samples of the model
results, in order to estimate the result uncertainty.

Aleatory Uncertainty Estimation

Aleatory uncertainty is the type of uncertainty
arising from natural variability of the model output.19

We collectively denote the stochastic variables that
describe such variability in the model, as n. We can
apply Saltelli’s method22 in order to measure the part

of variance (VarTn ), which would remain even if all

uncertainty in the model inputs is removed:

VarTn � 1

2M

X

M

j¼1

fðxj; njÞ � fðxj; njþMÞ
� �2

; ð2Þ

where fðxj; njÞ and fðxj; njþMÞ are the model results with

the uncertain inputs having the same values xj, but

stochastic parameters having different values nj and njþM.
M is the number of evaluations of the difference in 2.

Additionally, we are interested in the partial stan-

dard deviation (rTn ), since it has the same units as the

mean value. In general, we can approximate this value
using a brute force Monte Carlo approach, but this is
computationally expensive. However, Jensen’s
inequality11 provides us a way to control from above
the partial standard deviation with the square root of

the partial variance VarTn :

rTn ¼Ex

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varnðfðn; xÞjxÞ
q

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ex Varnðfðn; xÞjxÞð Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffi

VarTn

q

:

ð3Þ

Epistemic Uncertainty Estimation

Epistemic uncertainty is model imprecision, which
arises due to lack of knowledge.19 In this study, uncer-

TABLE 1. List of uncertain inputs, where a uniform distribution is assumed between the minimum and maximum values.

Parameter Unit Min value Max value Reference

Flow velocity m s�1 0.432 0.528 20

Maximum deployment depth mm 0.09 0.13 9

Endothelium regeneration time days 15 23 Fig. 2
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tain values of model inputs x generate such epistemic
uncertainty. In order to estimate the parts of uncertainty
arising due to imprecision in the value of each of the
model inputs, we applied the Sobol variance-based
sensitivity analysis method.26 The Sobol Sensitivity In-
dices (SIs) are the ratio between the partial variance and
the variance of the model function fðn; xÞ. In this work,

we compute the first-order (Sxi) and total (ST
n;xi

) SI for

each of the uncertain model inputs, which are

Sxi ¼
Varxi

Varðfðn; xÞÞ � 100%;

ST
n;xi ¼

VarTn;xi
Varðfðn; xÞÞ � 100%; for i ¼ 1 � � � n;

ð4Þ

whereVarxi andVar
T
n;xi

are the partial variances, and n is
the number of uncertain inputs. These partial variances
for a parameter xi can be expressed by Refs. 22 and 23

Varxi ¼ VarxiðEn;x�i
ðfðn; xÞjxiÞÞ;

which is the expected reduction in variance, if xi were
known precisely, and

VarTn;xi ¼ Ex�i
ðVarn;xiðfðn; xÞjx�iÞÞ;

which is the expected remaining variance, if all the
parameters except xi were known exactly.1 x�i denotes
a vector of all inputs except xi.

We can approximate the partial variances for the
first-order and total SI for the ith parameter by Ref. 27

Varxi �
1

M

X

M

j¼1

fðnj; xjÞ � f0
� �

fðnjþM; xjþM
�i ; xjiÞ � f0

� �

;

with f0 ¼
1

M

X

M

k¼1

fðnk; xkÞ;

ð5Þ

VarTn;xi �
1

2M

X

M

j¼1

fðnj; xjÞ � fðnjþM; xj�i; x
jþM
i Þ

� �2

; ð6Þ

where fðnjþM; xjþM
�i ; xjiÞ is the result with input xi having

the same value as for fðnj; xjÞ, but the rest of the model

parameters having different values. fðnjþM; xj�i; x
jþM
i Þ

denotes the model outputs with the same values of all

inputs as for fðnj;xjÞ, except for the values of n and xi.
The total number of the model evaluations required

for computing both aleatory and epistemic uncertain-
ties is Mð2nþ 2Þ, which is equal to N in this work.

Sampling

Instead of uniform random numbers, we used the
Sobol sequence.25 This sequence is called quasirandom,
since it is not random, but preserves enough properties
of random numbers to be used in Monte Carlo meth-
ods. The Sobol sequence is low-discrepancy, which
means that it covers input space X more evenly.

For quasirandom sequences, convergence is of the

order O 1
N

� �

, where N is the number of samples, com-

pared to O 1
ffiffiffi

N
p

� �

for random numbers,15 resulting in a

lower approximation error for a given number of
samples. However, the confidence interval of the esti-
mators2 can no longer be approximated by the ratio
r
ffiffiffi

N
p .

Instead, we performed a bootstrap test.1 Originally
we have N samples of the model results. We randomly
select N samples from this original set with replace-
ment. The estimator is computed using this new col-
lection of model results, and we call I�k the kth

approximation of an estimator. After obtaining K re-

p(x1)

· · ·

p(xn)

x
(i)
1

· · ·

x
(i)
n

f(ξ,x) f(ξ(i),x(i))

for 0 ≤ i ≤ N

E(f(ξ,x))

Var(f(ξ,x))

FIGURE 3. Black-box Monte Carlo uncertainty quantification flowchart: at each Monte Carlo run i, the uncertain inputs x
ðiÞ
j (for

1 � j � n with n number of uncertain inputs) take a random value according to their distribution pðxj Þ. The model is run, and the
stochastic parameters n take some random values during the simulation. Then, the model produces a value of the output f ðnðiÞ; xðiÞÞ.
We run model in parallel N times. Using these N samples, we are able to estimate the uncertainty measures of the model result.

1Note that the total sensitivity indices includes the contributions

from the stochastic variable, since aleatory uncertainty is irreducible,

and remains when values of other inputs are known precisely.

2Here, the mean value, variances and standard deviation. For the

sensitivity indices and partial variances, instead of sample size N, we

test the number M, which is equal to the number of estimations of

the expressions inside the sums in Eqs. (2), (5) and (6).
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evaluations of the estimator, we compute the estima-

tors’ mean (�I) and standard deviation (eð�IÞ):

�I ¼ 1

K

X

K

k¼1

I�k;

eð�IÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

K� 1

X

K

k¼1

ðI�k � �IÞ2
v

u

u

t :

ð7Þ

Thus, the precision of the estimator obtained with N
samples is

�I� eð�IÞ: ð8Þ

Reliable values of �I and eð�IÞ can be obtained with the
bootstrap when K is a large number. We chose K equal
to 10,000.

In our experiment, we first set the sample size N to
480. The bootstrap test of the confidence in the mean
value and standard deviation estimators showed that

the estimators’ standard deviations (eð�IÞ) were up to
10%. We doubled the number of samples to N ¼ 960,
resulting in standard deviations not exceeding 2.3%.
This is deemed precise enough, and all results are based
on using 960 samples.

We ran the ISR2D model once for each sample, for
a total of 960 runs. The model is configured via a
configuration file that contains a description of the
model structure as well as values for its input param-
eters. We used a custom Python script to generate
these configuration files, using the SOBOL library21 to
generate the Sobol quasirandom sequences.28 As the
runs are independent, they were run in parallel, using a
single core for each run for maximum efficiency. Runs
took on average 2 h and 15 min to complete, for a total
of 4300 core hours. Approximately 100 more core
hours were spent on postprocessing the results.

RESULTS

We observe a single output parameter of the model,
the cross-sectional area of the neointimal growth, as a
function of time. We compare the two endothelial
recovery scenarios, taking into account the uncertainty
of the model output, and estimate the contributions of
the aleatory and epistemic uncertainty. We then
investigate the relative importance of the input
parameters as well as the inherent model stochasticity,
in a sensitivity analysis. Finally, we show the spatial
distribution of (explained) uncertainty.

Neointimal Growth

Figure 4 shows the probability of SMC presence
over the domain at the end of the simulation run,
giving an idea of the shape and size of the final
neointimal growth produced by the model. Colors
show the fraction of samples in which the given
location was covered by neointima. On the whole,
the results are similar for the two scenarios, an oval-
shaped neointima surrounding the stent strut, shifted
somewhat in the direction of the blood flow. As ex-
pected, the slower endothelium recovery in Scenario
2 leads to larger overall growth. Since this is a lon-
gitudinal view, the area difference is distorted; see
below for a quantitative analysis. Note that in Sce-
nario 2, it appears that the vessel can become fully
closed. In fact, the top and bottom halves of the
neointima sometimes form asymmetrically, and these
different asymmetric runs are responsible for the
innermost portions of neointima. In reality, the wall
shear stress-induced growth inhibition will keep the
lumen from closing up entirely in individual instances
of the model.

FIGURE 4. Probability of presence of SMCs in the simulated domain at the final simulation time step for respectively re-
endothelialization Scenario 1 (left) and Scenario 2 (right).
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Uncertainty Propagation

Figures 5(i) show the neointimal area over time as
well as its estimated uncertainty. Initially, growth is
slow as only a few SMCs are active, but as the size of
the neointima increases, so does its growth rate (black
line). Growth slows down again as the endothelium
recovers and SMCs are increasingly inhibited, until a

final state is reached. As expected, Scenario 2 leads to
higher growth than Scenario 1 (� 0.38 mm2 and � 0.28
mm2 at the final time step). For the 1 mm vessel we
simulated, a 50% cross-sectional area reduction cor-
responds to a neointimal area of approximately
0.39 mm2 (horizontal dashed line). For both scenarios,
the mean neointimal area is below this restenosis
threshold.

FIGURE 5. Uncertainty estimation results: (i) mean value, aleatory and total uncertainty of the neointimal area as a function of
time; (ii) relative total uncertainty (red line) and relative aleatory uncertainty (blue line) as a function of time; (iii) Probability Density
Function (PDF) of the neointimal area at the final time step, where red dashed curve is a fit of a normal distribution.
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Overall uncertainty is fairly high however, with a
standard deviation of 0.07 mm2 for Scenario 1, and
0.09 mm2 for Scenario 2 (red dashed lines). There are
two sources of this uncertainty: the three uncertain
input parameters give rise to epistemic uncertainty,
while the internal stochastic variables result in aleatory
uncertainty. Our results show that if the uncertain
parameters were known exactly, the remaining alea-
tory standard deviation in the final state would be at
most � 0.04 mm2 in both scenarios (purple dashed
lines). With respect to the occurrence of restenosis, we
can conclude that in Scenario 1 a restenosis occurs in
less than 10% of cases, while in Scenario 2 the prob-
ability is close to 50%.

The relative uncertainty (coefficient of variation,
Eq. (1)) is depicted in Fig. 5(ii). Total relative uncer-
tainty (red lines) is initially around 30%, then drops to
� 25% as the growth slows and the slower growing
runs catch up to some extent. The serrations on the left
are due to all SMCs starting their cell cycle simulta-
neously; they later smooth out due to the variability in
cycle length.

As stent deployment is only affected by deployment
depth and not by any internal stochasticity, relative
aleatory uncertainty (blue lines) starts out at zero. The
aleatory uncertainty increases as SMCs start to pro-
liferate and the stochastic variables come into effect,
then drops slightly as the total uncertainty does to
settle at � 14% and � 9% respectively. The final
absolute aleatory uncertainty is actually nearly the
same for both scenarios, but as the total area is larger
in Scenario 2, the relative uncertainty is lower.

The probability density functions for the final
neointimal area (Fig. 5(iii)) show nearly normal shape,
validating our choice to use the variance as a measure
of uncertainty.

Sensitivity Analysis

The sensitivity analysis results over simulation time
are shown in Fig. 6. For each of the uncertain inputs,
we computed the first order Sensitivity Index Sxi , as

well as the total sensitivity index ST
n;xi

, the latter

including the combined stochastic model variables n.
Shaded bands indicate a one standard deviation
uncertainty interval of the estimate. Although at the
number of samples we took there is a fairly large
amount of uncertainty in the estimates, the relative
importance of the input parameters is clear.

Figure 6(i) show the variance in the neointimal area
as a function of time. As we saw before, the total
variance (black) is larger for Scenario 2 than for Sce-
nario 1. The total (absolute) aleatory uncertainty
(blue) is the same however. This measure includes the

aleatory uncertainty by itself, and all combined effects
of the aleatory uncertainty and the uncertain inputs. If
all uncertain inputs were known exactly, this would be
the remaining variance of the neointimal area.

For the final state of the simulation, the endothe-
lium recovery time (red) is the most important
parameter in both scenarios, followed by stent
deployment depth (cyan) and flow velocity (green).
This order is different in the beginning of the simula-
tion, but this is difficult to see as the overall variance is
close to zero.

Figure 6(ii) show the first order sensitivity indices of
the input parameters. As these are relative to the total
variance, the relative importance over time can be
studied more easily, although there is some noise for
the early stages. Still, for both scenarios, it is now clear
that the deployment depth explains almost all variance
at the start of the growth process, while regeneration
time becomes more important during the later stages.
This makes sense, as the deployment depth affects the
initial activation of the SMCs, while the regeneration
time influences their inhibition. The importance of the
flow velocity remains low throughout, which would
suggest a low sensitivity to physiological variability of
the blood flow. The importance of the regeneration
time relative to the other parameters appears to be
larger for Scenario 2; this is mostly due to the smaller
relative share of the aleatory uncertainty however.

The black line in these graphs is the sum of the three
first-order sensitivity indices, plus the total aleatory
uncertainty. It thus represents all the sources of
uncertainty except for the higher order combined ef-
fects of the input parameters. This shows that these
combined effects explain at most in the order of 20%
of the uncertainty.

In Fig. 6(iii), the total sensitivity indices (TSIs) for
the input parameters are shown, which include all
first-order and combined effects, including combined
effects with the stochastic variables. Here we see the
same pattern, with deployment depth dominating in
the early stages, and regeneration time in the late
stages of the simulation. A bump in the aleatory TSI
is visible at days 10–15, and since this is included in
the other plotted values, shows up in them as well.
This is likely due to the stochastic variation in the
SMC cell cycle lengths, which results in some simu-
lation runs growing faster than others. Near the end
of the growth phase, the slower runs catch up, and
the variance decreases again. For Scenario 2, the flow
velocity now shows a clear effect. This must be a
combined effect, presumably with the regeneration
time, as the timing is correct and the mechanism
clear. For Scenario 1, flow velocity only shows a
small combined effect at around day 7.
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Spatial Distribution of Uncertainty

Figures 7 and 8 show the variance and SI in space
for the final time step of the simulation for Scenarios 1
and 2, respectively. We can conclude that none of the
uncertain inputs bring high uncertainty in a particular
area of the observed space solely. In the results for the
first scenario, we observe that the total SI for the
deployment depth shows especially high value on the
outflow side of the SMC growth. Moreover, we see
that the SI of the deployment depth in average over

space shows a higher value in comparison of the SI for
other parameters.

DISCUSSION AND CONCLUSIONS

We performed uncertainty quantification and sen-
sitivity analysis for a 2D in-stent restenosis model,
demonstrating how the variation of a few selected
parameters of the model affects the simulation results
as well as whether knowing the exact value of a

FIGURE 6. Sensitivity analysis with the Bootstrap test results: (i) partial and total variances; (ii) first-order sensitivity indices of
uncertain inputs, where solid black line denotes the sum of the first order effect of uncertain inputs plus the total effect of the
model stochastic variables; (iii) total sensitivity indices of uncertain parameters together with the stochastic variables. The shadow
areas is one standard deviation of the estimators.
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FIGURE 7. Sensitivity maps for Scenario 1 at the final time step: variance, first-order (FOSI) and total (TSI) sensitivity indices of
the neointimal area for each of the uncertain model parameters.
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FIGURE 8. Sensitivity maps for Scenario 2 at the final time step: variance, first-order (FOSI) and total (TSI) sensitivity indices of
the neointimal area for each of the uncertain model parameters.
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parameter is important for the precision of the simu-
lation results.

From the sensitivity analysis we find that the largest
contribution to the uncertainty comes from the
endothelium regeneration speed, followed by the
deployment depth. This is similar to results obtained in
an earlier studies for a similar 3D model.34 There it was
also demonstrated that a difference in re-endothelial-
ization speed changes growth to a large extent, while
the effects of the deployment depth are smaller, but
still quite pronounced. As the re-endothelialization has
such significant impact on the neointimal area, this
part of the ISR model requires further study and val-
idation. We are currently undertaking more detailed
modelling, based on controlled experiments of
endothelial cell migration on substrates. The results
once more confirm our hypothesis31 that development
of a restenosis is very much driven by the inability to
quickly regenerate a functional endothelium.

However, these results cannot be considered final.
The model parameters were based on a previous pub-
lication,31 which considered a largely simplified model
geometry, and some other parameters also were
assumed without a thorough investigation on their
distribution or variability range. For instance, the ef-
fect of the flow velocity requires a deeper study,
looking in more detail at the actual physiological
variability that may be expected (instead of the 10%
variability that we now assumed). Additionally, it is
hard to determine physiological values and draw con-
clusions about real systems for the 2D model, since the
model considers a very simplified short and straight
segment of the vessel. In real arteries, the curvature of
the artery also plays a big role, causing uneven flow
and also causing side effects such as hinging during the
stent deployment.12 Also, the model calculates a steady
flow in the vessel, while in reality pulsatile flow results
in a time-varying WSS and sometimes even WSS
reversal.32

Still, the results do show that once we have a rea-
sonable understanding of the model and its parame-
ters, we can extract important observations from the
model (i.e. would a certain stent deployment lead to an
actual restenosis) with a well defined uncertainty, even
though this is a relatively involved multiscale model
showing a complex biomechanical response. This
method for uncertainty quantification and sensitivity
analysis will therefore contribute strongly to the vali-
dation of these kinds of models.

On the other hand, we need to acknowledge the
limited validity of the 2D model we used. We should
therefore apply the methods described in this paper to
the 3D version of the ISR model,34 which is closer to
the real system and also better validated. However, the
3D model contains millions of cell agents compared to

a few thousand agents in the 2D model, and the 3D
flow calculations are much more expensive as well.
This makes the computational cost of Uncertainty
Quantification and Sensitivity Analysis for the 3D
model much higher or even prohibitive. We have
therefore started to develop UQ algorithms for multi-
scale models that are capable of reliable estimation of
the uncertainties while reducing the computational
costs.17 We are planning to test these algorithms with
the ISR3D model.

We conclude that quasi-Monte Carlo UQ and Sobol
sensitivity analysis are reliable methods for estimating
uncertainties in the response of complicated multiscale
cardiovascular models such as the ISR. They can be
used to determine which parameters affect the model
results the most, and are therefore the most important
ones to obtain precise measurements on. Given mea-
surements of the parameters, output uncertainty can
then be assessed. We believe that using these methods
to assess the quality and usability of a simulation
model is a crucial step on the way to certification and
use in for instance in-silico clinical trials for coronary
stenting.
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