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The mutation-mediated overexpression of epidermal growth
factor receptor tyrosine kinase (EGFR TK) and its activation
play an important role in the cellular proliferation and
epithelial tumorigenesis. A series of inhibitors targeting the
intracellular tyrosine kinase (TK) domain of EGFR have been
developed and applied to clinical practice. Although these
inhibitors safely and effectively restrain tumor cell prolifera-
tion and prolong survival in some patients, acquired resis-
tance ultimately arises. DNA mutations contribute to drug-
induced cancer-cell resistance. Genomic instability, espe-
cially DNA replication and repair error, provides the major
source for DNA mutations. Identifying the central mecha-
nisms underlying the generation and selection of resistance
mutations may provide critical opportunities for novel regi-
mens in combating drug resistance. In this review, we pro-
vide an overview of EGFR tyrosine kinase inhibitors (TKIs) in
non-small cell lung carcinoma (NSCLC) treatment and their
challenges. We also discuss the major source of genomic
instability in TKI resistance and hypothesize that the main-
tenance of DNA replication and repair machinery might be
used to develop novel treatment regimens for patients with
NSCLC.

EGFR is a member of the receptor tyrosine kinase (RTK)
family (Lemmon et al., 2014). The activation of cytosol
membrane EGFR via binding EGF-like ligands initiates
receptor dimerization, phosphorylation of its own tyrosine
residues, and activation of downstream signaling pathways.
Aberrant EGFR activation, due to its single-nucleotide sub-
stitutions in exons 18–21, in-frame duplications/insertions in
exon 20, or short in-frame deletions in exon 19, can amplify a
series of downstream pro-oncogenic signaling pathways
including JAK/STAT, PI3K/AKT/mTOR, PLC/PKC/NFκB and
MEK/ERK. These pathways aim to support and benefit
cancer cell survival, proliferation and tissue differentiation

(El-Hashim et al., 2017) (Fig. 1). Three generations of EGFR
TKIs have been developed to specifically target EGFR
mutations to the kinase domain in NSCLC. However, an
ever-increasing number of mutation-mediated resistances
are inevitable (Zhang, 2016b).

Due to the mutation-mediated destabilization of the EGFR
TK domain, abnormal activation of EGFR constitutively
propagates EGFR TK activity and downstream pro-onco-
genic signaling pathways to drive cancer cell survival and
proliferation. Moreover, the expressions and interactions of a
vast amount of genes and proteins are significantly changed
during EGFR activation, suggesting the profound and
extensive role of EGFRs involvement in the diverse signaling
networks of cells (Waters et al., 2012). Although there are
various pharmaceutical agents that target the proteins
involved in the EGFR-mediated network of NSCLC, EGFR
TKI remain the first line of treatment (Dong et al., 2021).
Activated EGFR can promote protein nuclear translocation
or redistribute to the nucleus via autophosphorylation, where
it functions in DNA replication and repair which is an
important process for genome fidelity (Wang et al., 2010,
2012). Reduced EGFR TK activity in response to TKIs might
impair DNA replication and repair processes and boost the
production of mutations for cancer progression. Both pre-
existing and de novo generation of genome wide mutations
have been observed in vivo and in vitro, suggesting the
EGFR TKIs initiate genomic instability to generate and select
for mutations that confer resistance to their inhibition of
cancer cell growth and induction of apoptosis (Hata et al.,
2016). Therefore, a better understanding of how TKIs initiate
genomic instability is critical for developing novel strategies
to control NSCLC progression.

Three generations of EGFR TKIs, as the ATP mimetic
inhibitors, have been developed so far to target the most
common somatic EGFR mutations, including the exon 19
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deletion and the L858 mutation in exon 21, which account for
more than 85% of all EGFR mutations (Molina-Vila et al.,
2009) (Table 1). The first-generation TKIs, including gefitinib
and erlotinib, reversibly bind to the active site of the EGFR
TK domain to prevent ATP binding for kinase activity trans-
duction. Acquired resistance to first-generation TKIs most
often arises due to the T790M mutation, occurring in around
50% of patients (Ma et al., 2011). Despite difficulties in the
detection of pre-existing mutations, pre-treatment sample
evaluations have been reported to harbor T790M mutations
(Watanabe et al., 2015). Furthermore, using a T790M-neg-
ative in vitro system, it was also demonstrated that EGFR
TKI treatment can generate T790M mutations de novo (Kim
et al., 2012). Specifically, a study conducted by Kadi and
colleagues, found that NFκB activation by TKIs promotes
activation-induced cytidine deaminase (AICDA) expression,
which leads to the deamination of 5-methylcytosine to

thymine and finally generates the T790M mutation (El Kadi
et al., 2018). Second-generation TKIs, including afatinib and
dacomitinib, irreversibly bind to the mutated and wild-type
EGFR, as well as the receptors from bypass signaling
pathways, such as HER2 (Genova et al., 2014; Baraibar
et al., 2020), to provide a more sustained and potent EGFR
inhibitory function. However, the acquired mutations includ-
ing T790M still occur over the course of treatment. Recently,
the mutant-selective third generation TKI osimertinib was
designed to selectively and covalently bind to the C797
residue of EGFR at the ATP-binding pocket edge of its TK
domain to repress EGFR-activating mutations while sparing
wild-type receptors (Greig, 2016). Previously, osimertinib
was used as second-line treatment in NSCLC patients who
developed T790M-mediated resistance to first- and second-
generation TKIs (Zhang, 2016a). Recent studies suggested
that it was more effective to use osimertinib as first-line
therapy (Aguilar-Serra et al., 2019). However, the most
common mutation, C797S in exon 20, has been observed in
around 10–26% of patients with resistance to second-line
osimertinib treatment and around 7% of patients with resis-
tance to first-line treatment (Mehlman et al., 2019).

In addition to EGFR-dependent mutations, an array of
alternative EGFR-independent bypass signaling pathways
may be concurrently activated to exacerbate tumor hetero-
geneity and therapeutic difficulty under EGFR-TKI treatment.
Thus, the combination strategies which target both onco-
genic mutations of EGFR and EGFR-independent bypass
signaling pathways have been applied to delay the acquisi-
tion of resistance to some extent in many cases. The most
common mechanism for bypass signaling-mediated
acquired resistance, in 5%–50% of patients receiving sec-
ond-line osimertinib treatment and 7%–15% of patients
receiving first-line osimertinib treatment, occurs due to high
levels of MET gene amplification (Ou et al., 2016). The MET
gene amplification can induce constitutive activation of the
EGFR downstream pro-oncogenic signaling pathways, such
as JAK/STAT, PI3K/AKT/mTOR, PLC/PKC/NFκB and MEK/
ERK pathways (Rotow et al., 2020; Yu et al., 2021). Thus,
MET inhibitors have been used in combination with osimer-
tinib to overcome acquired resistance (Awad et al., 2019).
Another common bypass alteration is the overexpression of
Anexelekto (AXL), a tyrosine kinase receptor, which can
interact with EGFR and has been reported to be associated
with poor osimertinib responses (Taniguchi et al., 2019). The
combination of AXL inhibitor cabozantinib with osimertinib is
a promising strategy to prolong osimertinib sensitivity
(Reckamp et al., 2019). However, clinical trials are needed to
confirm the long-term response for these strategies in
patients. Beyond these EGFR-dependent and independent
alterations to chromosomal DNA, there are yet other routes
promoting drug resistance at the genomic level. For exam-
ple, extrachromosomal DNA (ecDNA), which can be
unevenly segregated into daughter cells due to the lack of a
centromere, has been found in nearly half of human cancers
(Turner et al., 2017). It has been reported that mutant EGFR

Figure 1. The EGFR protein structure and corresponding

gene exons. Exons 1–16 encode extracellular domains I-IV

(orange) which can form the ligand interaction conformation.

Exons 17–18 encode the transmembrane domain (blue) for

connecting extracellular domains and intracellular domains.

Exons 19–24 encode tyrosine kinase domain. Exon 19 deletion

and exon 21 L858R mutation are original mutations that cause

constant activation of tyrosine kinase activity in non-small cell

lung carcinoma. Exon 20 T790M is the dominant secondary

mutation acquired in response to the 1st and 2nd generation

TKIs, while exon 20 C797s mutation is the secondary mutation

acquired in response to the 3rd generation TKI osimertinib.

Exon 25–28 encode C-terminal phosphorylation domain which

mediates the interactions between the receptor and down-

stream substrates upon receptor activation. Abbreviations: EGF,

epidermal growth factor; ECD, extracellular domain; TM, trans-

membrane; ICD, intracellular domain; TK, tyrosine kinase; RD,

regulatory/phosphorylation domain.
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ecDNA is eliminated in tumor cells during TKI treatment,
inducing drug resistance, but restores after drug withdrawal
(Nathanson et al., 2014).

How do spontaneous somatic mutations originate, par-
ticularly under the stresses such as drug administration? A
series of repair processes coordinate with DNA replication to
reduce spontaneous mutagenesis and maintain DNA fidelity.
The key determinant of DNA fidelity depends on DNA poly-
merases selectivity and proof reading functions, which are
important in organized incorporation of nucleotides into DNA
during replication (Ludmann and Marx, 2016; Bębenek and
Ziuzia-Graczyk, 2018; Xing et al., 2019). Moreover, during
the DNA synthesis in lagging strand, the DNA polymerases,
such as Polα and primase, de novo synthesize the RNA
primer and α-segment with high error rates. Elimination of
those errors relies on the structure-specific nucleases, such
as FEN1 and DNA2, which are involved in the accurate RNA
primer removal and the editing of α-segment errors. Defi-
ciency in these processes will not only leave in those errors,
but also generate duplication mutations due to failure of RNA
primer removal which then exacerbates the mutation burden
(Zheng and Shen, 2011; Li et al., 2018; Zheng et al., 2020).
The mismatch repair (MMR) signaling is another determinant
of DNA replication fidelity by correcting the remaining mis-
matches after DNA replication to promise DNA fidelity under
homeostasis (Haradhvala et al., 2018). However, EGFR
TKIs might hijack the key DNA replication/repair components
and impair these processes for promoting single tumor cells
to acquire multi-level molecular alterations at the genetic,

transcriptional, post-translational, and epigenetic levels and
ultimately boost intrinsic tumor heterogeneity for genome
wide mutation generation (Majem and Remon, 2013).

It is established now that EGFR TK possesses more than
200 substrates (https://www.phosphosite.org/homeAction.
action; https://string-db.org/network/9606.ENSP00000275493).
These protein substrates are not only components of onco-
genic signaling pathways (JAK/STAT, PI3K/AKT/mTOR,
PLC/PKC/NFκB and MEK/ERK) that promote cancer cell
survival and proliferation, but are also involved in DNA
replication machinery (Fig. 2). Although EGFR inhibition with
TKIs may suppress pro-oncogenic pathways, it may also
result in other unintended effects such as the impairment of
DNA replication fidelity and promotion of somatic mutagen-
esis. Supporting evidence is available for such a hypothesis.
Cao and colleagues have recently demonstrated that the
expression of heat shock protein 70 (HSP70), an ATP-de-
pendent molecular chaperone, is reduced by EGFR TKI
treatment (Cao et al., 2018). They found that HSP70 physi-
cally interacts with multiple enzymes in base excision repair
(BER) and DNA replication pathways. Thus, the down reg-
ulation of HSP70 in response to TKIs enhances the gene
mutation rate and attenuates BER to facilitate acquired
resistance. Activated EGFR from the cytosol membrane can
redistribute to the nucleus via the Golgi and endoplasmic
reticulum (ER) under the assistance of translocon (Wang
and Hung, 2009). Nuclear EGFR plays an essential role in
stabilization of DNA replication and repair proteins, such as
proliferation cell nuclear antigen (PCNA). PCNA recruits and

Table 1. Summary of key EGFR-TK inhibitors

EGFR-TKIs Trade
name

Primary
target

Mechanism
of action

Dominant
secondary
mutation

Clinical trial
number

Refs

First
generation

Gefitinib Iressa EGFR Reversible T790M NCT02959749 Muhsin et al.
(2003)

Erlotinib Tarceva EGFR Reversible T790M NCT00364351 Bareschino
et al.
(2007)

Lapatinib Tyverb EGFR;
ErbB2

Reversible T790M NCT01125566 Moy et al.
(2007)

Icotinib Conmana EGFR Reversible T790M NCT03231501 Shi et al.
(2013)

Second
generation

Afatinib Gilotrif EGFR;
ErbB2;
ErbB4

Irreversible T790M NCT02094573 Dungo and
Keating
(2013)

Dacomitinib Vizimpro EGFR;
ErbB2;
ErbB4

Irreversible T790M NCT01000025 Wu et al.
(2017)

Neratinib Nerlynx EGFR;
ErbB2;
ErbB4

Irreversible T790M NCT01000025 Sequist
(2010)

Third
generation

Osimertinib Tagrisso EGFR
T790M

Irreversible C797S NCT01449461 Greig (2016)
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coordinates DNA synthesis machinery to ensure accurate
DNA replication and repair at the replication forks (Moldovan
et al., 2007). Nuclear EGFR mediates the phosphorylation of
PCNA in its chromatin-bound form, which is important for
maintenance of PCNA stability and protection of chromatin-
bound PCNA from proteasome-dependent degradation via
lysine polyubiquitination (Wang et al., 2006; Lo et al., 2012).
Blockage of its phosphorylation by EGFR TKIs may impair
the assembly of the replication and repair machinery and
lead to genome instability. The other important example is
DNA-dependent protein kinase (DNA-PK) which is required
for rejoining double-strand breaks to repair DNA. The
nuclear EGFR can physically interact with DNA-PK and
trigger DNA-PK phosphorylation (Bandyopadhyay et al.
1998; Dittmann et al., 2005a). Impaired DNA-PK phospho-
rylation due to the blockage of EGFR nuclear translocation
reduces DNA-PK activity and promotes DNA damage (Ditt-
mann et al., 2005b, 2008). These pieces of evidence sug-
gest that EGFR TKIs may not cause DNA damage directly
but can impair DNA replication and repair machinery due to
degradation of the component proteins that missing

phosphorylation protection and then lead to the acquired
genome wide mutations.

Mimicking the therapeutic approach of the HIV “cocktail”
regimens, the recently approved combination therapeutic
regimen with the 3rd generation EGFR TKI osimertinib and
MET inhibitor Tepotinib is based on the observation that MET
gene amplification bypasses the EGFR TK activity and
upregulates the EGFR downstream pro-oncogenic signaling
pathway in EGFR TKI-treated patients (Markham, 2020).
The combinations of EGFR-TKIs with immune checkpoint
inhibitors are an emerging trend in NSCLC treatment (Jin
et al., 2020). The immune checkpoint inhibitors include the
ones for the programmed cell death-1 receptor and its ligand
(PD-1/PD-L1) and cytotoxic T-lymphocyte-associated anti-
gen 4 (CTLA-4) (Johnson et al., 2014). However, these
regimens do not include a strategy to minimize the mutations
from its origin. Our proposal for a therapeutic avenue is to
protect the integrity of the DNA replication machinery and to
suppress the S-phase cell cycle checkpoint activation in
order to avoid drug-induced mutations. To maintain DNA
replication fidelity, the employment of a proteasome inhibitor

b Figure 2. The network of EGFR-dependent phosphorylation cascade. This network is created based on KEGG database and

current literatures. The EGFR ligands, such as EGF, TGFα, HG-EGF, Epiregulin, Betacellulin, and Amphiregulin, interact with EGFR

extracellular domain to activate it via inducing its TK domain trans-autophosphorylation. The other kinases, such as SRC, are also

able to phosphorylate EGFR from cytosol and be phosphorylated by activated EGFR in reverse. The expression of a number of genes

is significantly changed during EGFR activation, which is accompanied with the various dynamic modifications, particularly

phosphorylation. The most characterized pro-oncogenic signaling pathways phosphorylated and activated upon EGFR activation are

listed at the left, including JAK/STAT, PI3K/AKT/mTOR, PLC/PKC/NFκB and MEK/ERK signaling pathways. The downstream

transcription factors, including STAT3/5, p50/p65 NFκB dimer, E2F, c-MYC and c-JUN/c-FOS, play the oncogenic function to benefit

cancer cell survival and proliferation. Furthermore, the stabilities of DNA replication and repair proteins, which are controlled by EGFR

activation and nuclear EGFR, are illustrated at the right, including HSP70, PCNA and DNA-PK. Inhibition of EGFR TK activity with

TKIs not only blocks pro-oncogenic pathways, but also DNA replication and repair pathways which are important for maintaining

genomic stability. Genomic instability is the major source for resistance mutation generation, which might reduce EGFR TKI efficiency

and activate the receptors from bypass signaling pathways, such as MET and AXL receptors, to further support cancer progression.

Thus, maintaining genomic stability, especially by protecting the expression and stability of DNA replication and repair components,

may forestall the generation and evolution of tumor cell mutations, ultimately reducing drug resistance. Abbreviations: SRC, Proto-

oncogene tyrosine-protein kinase Src; JAK, Janus kinase; STAT3/5, Signal transducer and activator of transcription3/5; PI3K,

Phosphatidylinositol-4,5-bisphosphate 3-kinase; PTEN, Phosphatase and tensin homolog; PIP3, Phosphatidylinositol (3,4,5)-

trisphosphate; PDK, 3-phosphoinositide-dependent protein kinase; PKB, Protein kinase B; AKT, v-Akt murine thymoma viral

oncogene homolog; mTOR, Mechanistic target of rapamycin kinase; p70S6K, Ribosomal protein S6 kinase; eIF-4EBP, Eukaryotic

translation initiation factor 4E binding protein; EIF4E, Eukaryotic translation initiation factor 4E; S6, Ribosomal protein S6; PLC,

Phospholipase C; IP3, Inositol trisphosphate; DAG, Diacylglycerol; PKC, Protein kinase C; RINCK1, E3 ligase RING finger protein

that interacts with C kinase 1; NEMO, Inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; IKK, inhibitor of nuclear

factor kappa B kinase subunit; CARMA3, Caspase recruitment domain family member 10; BCL-10, B cell lymphoma protein 10;

MALT1, Mucosa-associated lymphoid tissue lymphoma translocation gene 1; TRAF6, TNF receptor associated factor 6; p50, NFκB

Subunit 1; p65, RELA proto-oncogene, NFκB subunit; SHC, SHC adaptor protein 1; GRB2, Growth factor receptor bound protein 2;

SOS, Ras/Rac guanine nucleotide exchange factor; RAS, Rat sarcoma virus; RAF, Rapidly accelerated fibrosarcoma; MEK, Mitogen-

activated protein kinase kinase; ERK, Extracellular signal-regulated kinase; RSK, MAP kinase-activated protein kinase; MNK,

ATPase copper transporting alpha; CCND1, Cyclin D1; CDK, Cyclin dependent kinase; E2F, E2F transcription factor; RB1, RB

transcriptional corepressor 1; ELK-1, ETS transcription factor; c-MYC, Myc proto-oncogene protein; c-JUN, Transcription factor AP-1;

c-FOS, AP-1 transcription factor subunit; HSP70, Heat shock 70 kDa protein; SEC61, Translocon subunit alpha 1; PCNA,

Proliferation cell nuclear antigen; DNA-PK, DNA-dependent protein kinase; FEN1, Flap endonuclease 1; ER, Endoplasmic reticulum.
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in combination with EGFR-TKI therapies may preserve DNA
replication protein stability and should be considered. As
previously mentioned, HSP70 is susceptible to proteasome
degradation in response to EGFR TKIs. Recent experiments
in our laboratory showed that when administering a protease
inhibitor, Bortezomib, there is a clear reduction of HSP70
degradation. Furthermore, after conducting cellular based
assays we observed a significant improvement to EGFR TKI
sensitivity as well. A vast majority of the somatic mutations
are generated through error prone DNA synthesis including
aberrant Okazaki fragment maturation in the S-phase cells,
which requires extended S-phase time and activation of the
checkpoints. Combining the checkpoint inhibitors, such as
ATR inhibitors, with TKIs, to reduce the acquired resistance
is an alternative proposed strategy (Vendetti et al., 2015). In
summary, EGFR serves a multifaceted role in cells and its
inhibition can prove deleterious effects to genome stability.
As we continue to face the persistent challenge of drug
resistance in EGFR TKIs, we turn our focus to maintaining
the integrity of DNA replication and repair pathways. By
conserving the fidelity of the DNA replication and repair
machinery we may increase drug sensitivity and impede
tumor cell mutations that aid in the acquisition of drug
resistance.
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