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Oxygen, iron, and polyunsaturated fatty acids (PUFAs; fatty
acids containing more than one double bond) are all bene-
ficial to our cellular lives. Incorporation of these components
into cellular processes, however, comes at a cost: the bis-
allylic structure of PUFAs and the enrichment of cellular
environments with iron and oxygen render PUFA-containing
phospholipids (PUFA-PLs) particularly susceptible to per-
oxidation (Yang and Stockwell, 2016). Accumulation of lethal
amounts of lipid peroxides in cell membranes leads to a form
of cell death known as ferroptosis (Dixon et al., 2012;
Stockwell et al., 2017; Stockwell and Jiang, 2020). Conse-
quently, cells are equipped with strong antioxidant defense
systems that constantly dissipate toxic lipid peroxides gen-
erated in cellular membranes, thereby maintaining cell via-
bility and homeostasis (Zheng and Conrad, 2020). The most
powerful anti-ferroptosis defense system is believed to be
mediated by glutathione peroxidase 4 (GPX4), a glutathione
peroxidase that uses glutathione as its cofactor to reduce
lipid hydroperoxides to non-toxic lipid alcohols (Fig. 1)
(Zheng and Conrad, 2020). A variety of ferroptosis inducers
(FINs) act to inactivate GPX4 or deplete glutathione, causing
an imbalance between the production and detoxification of
lipid peroxides that subsequently induces ferroptotic cell
death (Yang et al., 2014). Genetic ablation of GPX4 can
have the same effect (Friedmann Angeli et al., 2014).

Exactly how lipid peroxidation occurs in PUFA-PLs is less
well understood, but lipid peroxidation is known to involve
both non-enzymatic reactions (e.g., autoxidation, which
requires iron and oxygen) and protein enzymes (Yin et al.,
2011; Conrad and Pratt, 2019). Enzymatic lipid peroxidation
was initially thought to be carried out mostly by lipoxyge-
nases (ALOXs) (Yang et al., 2016; Wenzel et al., 2017).
However, several lines of evidence from recent studies
argue against ALOXs being essential drivers of lipid perox-
idation. First, the ALOX inhibitors that were used to establish
the role of ALOX in regulating ferroptosis turned out to also

harbor a previously unrecognized radical-trapping antioxi-
dant activity (Shah et al., 2018). Therefore, whether these
compounds block ferroptosis by inhibiting ALOXs or by
trapping lipid peroxyl radicals remains unclear. Further,
ALOXs are expressed in extremely low levels in most cancer
cell lines (Zou et al., 2020b), raising further questions about
its role in regulating ferroptosis in broad contexts. Finally,
depleting ALOXs in cancer cells that already have low ALOX
expression did not affect the cells’ sensitivity to ferroptosis
(Zou et al., 2020b). These findings suggest that one or more
additional enzymes exist to mediate lipid peroxidation, the
identity of which was revealed in two recent studies (Yan
et al., 2020; Zou et al., 2020b).

In both studies, CRISPR screening identified two genes,
acyl-coenzyme A (CoA)-synthetase long-chain family mem-
ber 4 (ACSL4) and cytochrome P450 reductase (POR), as
top suppressor hits (whose inactivation suppressed FIN-in-
duced ferroptosis, resulting in relative enrichment of their
gRNAs in FIN-treated cells relative to that in control cells).
ACSL4 is an acyl-CoA synthetase that converts free long-
chain fatty acids into fatty acyl-CoA esters, with a preference
for PUFAs. ACSL4 deficiency is known to compromise
PUFA-PL biosynthesis, leading to remarkable ferroptosis
resistance in cells (Dixon et al., 2015; Doll et al., 2017;
Kagan et al., 2017). Therefore, the identification of ACSL4 as
a top suppressor hit validated these CRISPR screens.
However, the potential role of POR in ferroptosis had been
previously unknown. POR deletion was subsequently con-
firmed to promote strong resistance to ferroptosis induced by
different FINs and in a wide range of cancer cell lines. POR
deficiency did not affect levels of GPX4 or its cofactor glu-
tathione, binding between GPX4 and its inhibitors, or phos-
pholipid profiles, but POR deficiency significantly reduced
the levels of peroxidized PL species resulting from treatment
with FINs, indicating that POR promotes lipid peroxidation
during ferroptotic stress (Yan et al., 2020; Zou et al., 2020b).
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Notably, POR is expressed at high levels in most cancer cell
lines (Zou et al., 2020b), supporting its role as a general
driver of lipid peroxidation.

These findings prompt the question of how POR governs
the production of lipid peroxides. POR is an oxidoreductase
located in the endoplasmic reticulum that uses FAD and
FMN as its cofactors to donate electrons from NADPH to
cytochrome P450 (CYPs) as well as other proteins, and it
participates in controlling xenobiotic detoxification and redox
homeostasis (Pandey and Fluck, 2013). Re-expression of
wild-type POR, but not its mutants with defective electron
transfer activity, in POR-deficient cells restored ferroptosis
sensitivity, indicating that the electron transfer activity of
POR is required for its function in ferroptosis regulation (Yan
et al., 2020). Zou et al. speculated that by donating electrons
to CYPs, POR might facilitate Fenton reactions in the heme
component of CYPs and thereby lipid peroxidation (because
Fenton reactions are required for autoxidation during lipid
peroxidation) (Zou et al., 2020b). Yan et al. showed that
deletion of the transmembrane region in POR that mediates
the interaction of POR with CYPs abolishes the ability of

POR to donate electrons to CYPs, yet this mutant acts like
its wild-type counterpart in terms of promoting lipid peroxi-
dation and ferroptosis, indicating that POR regulates lipid
peroxidation in a manner independent of CYPs (Yan et al.,
2020). Further, deletion of other POR electron acceptor
proteins, such as heme oxygenase, cytochrome squalene
monooxygenase, or cytochrome b5, did not affect ferroptosis
sensitivity, suggesting that these other proteins downstream
of POR also do not mediate the function of POR in ferrop-
tosis regulation (Yan et al., 2020). However, because there
exist multiple CYP members and other proteins that can act
as electron acceptors downstream of POR in a highly
redundant manner, their roles in mediating POR’s function in
regulating ferroptosis cannot be completely excluded and
require further investigations (such as by compound
knockout).

Noting that the ferroptosis-resistance phenotype in POR-
deficient cells is milder than that in cells treated with fer-
roptosis inhibitors, Yan et al. reasoned that other oxidore-
ductases may operate in parallel with POR to mediate lipid
peroxidation and ferroptosis. This led to the identification of

Figure 1. POR and CYB5R1 promote lipid peroxidation and ferroptosis. Oxidoreductases POR and CYB5R1 transfer electrons

from NAD(P)H to O2 to generate H2O2, which then reacts with Fe2+ to drive lipid peroxidation. Lipid peroxides are detoxified by GPX4

and therefore are maintained at non-toxic levels under normal conditions. GPX4 inhibition leads to over-accumulation of lipid

peroxides on cellular membranes, resulting in membrane rupture and eventually ferroptotic cell death. Of note, while POR is known to

localize on the endoplasmic reticulum, the exact subcellular localization of CYB5R1 was not determined in the discussed studies.

POR: cytochrome P450 reductase; CYB5R1: NADH-cytochrome b5 reductase 1; GPX4: glutathione peroxidase 4; GSH: glutathione;

PUFA-PL: polyunsaturated fatty acid-containing phospholipid; •PUFA-PL: PUFA-PL radicals; •OO-PUFA-PLs: PUFA-PL peroxyl

radicals; HOO-PUFA-PLs: PUFA-PL hydorperoxides; •OH: hydroxyl radical; Fe2+: ferrous iron.
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NADH-cytochrome b5 reductase 1 (CYB5R1) as yet another
oxidoreductase whose deficiency suppresses lipid peroxi-
dation and ferroptosis, albeit with more moderate effects
than POR inactivation; combined deficiency of both POR
and CYB5R1 resulted in even more pronounced ferroptosis
resistance than did deficiency of either gene alone (Yan
et al., 2020). It is possible that CYB5R1 acts as a context-
specific contributor to ferroptosis, and other unidentified
oxidoreductases may be involved in regulating ferroptosis
under other cellular contexts.

Because ferroptosis is a form of oxidative stress-induced
cell death, and both POR and CYB5R1 have roles in redox
regulation, Yan et al. further reasoned that POR and
CYB5R1’s function in governing lipid peroxidation and fer-
roptosis could relate to their potential abilities to generate
reactive oxygen species, likely through electron transfer. In
support of this hypothesis, they showed that purified POR
could produce H2O2 (but not superoxide) in an NADPH- and
oxygen-dependent manner and that POR-deficient cells
exhibit lower levels of intracellular H2O2 (Yan et al., 2020).
CYB5R1 had similar, albeit more moderate effects, which is
consistent with the effects of these two proteins in inducing
lipid peroxidation and ferroptosis. Moreover, treatment with
H2O2 re-sensitized POR-deficient cells (which are resistant
to ferroptosis) to ferroptosis. This series of elegant experi-
ments strongly suggests that POR (as well as CYB5R1)
promotes lipid peroxidation and ferroptosis through the
generation of H2O2 (Fig. 1). H2O2 can participate in lipid
peroxidation probably through the following reactions (Con-
rad and Pratt, 2019): H2O2 is first converted to hydroxyl
radicals (•OH) via its reaction with Fe2+. The •OH can sub-
sequently abstract a hydrogen from the bis-allylic moieties in
PUFA-PLs, resulting in PUFA-PL radicals (•PUFA-PLs),
which then react with oxygen to produce PUFA-PL peroxyl
radicals (•OO-PUFA-PLs) and PUFA-PL hydroperoxides
(HOO-PUFA-PLs) (Fig. 1).

Exactly how lipid peroxidation eventually triggers ferrop-
totic cell death remains a central question (Stockwell et al.,
2020). Thus far, two non-mutually exclusive models have
been developed to address this question. In one model, lipid
peroxidation is thought to damage cellular membranes
directly, leading to membrane rupture and cell demise; in the
other model, lipid peroxidation is thought to trigger down-
stream signaling events culminating in the activation of a
cell-death “executioner” that can perforate cellular mem-
branes and kill cells, much like MLKL in necroptosis or
gasdermins in pyroptosis (Galluzzi et al., 2018). (This latter
model would predict that, unlike ACSL4 or POR deficiency,
inactivation of such a ferroptosis executioner should not
affect FIN-induced lipid peroxidation but would still drive
ferroptosis resistance, thereby uncoupling lipid peroxidation
from ferroptotic cell death. However, no gene with this
characteristic has been identified so far.) In a remarkable
experiment, Yan and colleagues demonstrated that purified
recombinant POR, together with iron and NADPH, caused
significant leakage from PUFA-containing liposomes in a

cell-free system, accompanied by liposomal rupture; this
POR-induced liposome leakage could be rescued by treat-
ment with a ferroptosis inhibitor (Yan et al., 2020). These
analyses provide compelling evidence that POR-catalyzed
lipid peroxidation is sufficient to induce membrane rupture.

To place their findings in the context of ferroptosis-asso-
ciated diseases, Yan et al. studied the potential role of POR
in Concanavalin A (ConA)-induced acute liver injury, which
has been causally linked with ferroptosis (Zeng et al., 2020).
POR depletion in mouse liver markedly suppressed ConA-
induced liver damage and animal lethality; likewise, ConA
treatment induced higher levels of the ferroptosis markers
PTGS2 and malondialdehydes in mouse liver, whereas POR
depletion attenuated these ConA-induced ferroptosis mark-
ers, indicating that POR is required for ConA-induced acute
liver injury, probably by inducing lipid peroxidation and fer-
roptosis in vivo (Yan et al., 2020).

Yan et al. further suggested that POR could be consid-
ered an “executioner” for ferroptosis, as it likely to be the
protein involved in the final step in triggering ferroptotic cell
death. It should be noted that there are several notable dif-
ferences between POR and other classic cell death execu-
tioners such as MLKL and gasdermins. First, unlike MLKL
and gasdermins, POR does not have the pore-forming
activity. In addition, cell death modalities, such as apoptosis,
necroptosis, and pyroptosis, are considered cell “suicide”
programs that utilize evolutionarily conserved developmental
pathways to actively clear unwanted cells in an organism
and are triggered by dedicated cell death executioner pro-
teins, whose activation is often governed by upstream sig-
naling. In contrast, ferroptosis is viewed as a cell “sabotage”
program, wherein the cell death results from metabolic
imbalance that goes beyond the control of cellular antioxi-
dant buffering systems (Green and Victor, 2012). As such, it
appears that the pro-ferroptosis factors identified so far are
not proteins dedicated in cell death regulation, but rather
those incidentally involved in generating ferroptosis-trigger-
ing metabolites in a constitutive fashion. For example,
ACSL4’s professional function is to regulate PUFA-PL
biosynthesis. Because PUFA-PLs are susceptible to perox-
idation, ACSL4 appears to participate in ferroptosis induction
in a more “incidental” manner. The same principle can be
applied to the role of POR in triggering ferroptosis. For these
considerations, whether POR can be classified as a cell
death executioner is certainly debatable.

Together, these two recent studies identified POR as a
key player to “fuel” ferroptosis. Mechanistically, POR (and
CYB5R1) can transfer electrons from NAD(P)H to oxygen to
produce H2O2, which then drives lipid peroxidation, mem-
brane rupture, and ferroptosis (Fig. 1). These intriguing
studies also raised several important questions. The exact
roles of H2O2 (and metabolic enzymes involved in H2O2

production or detoxification) in ferroptosis regulation remain
to be further studied. A previous study showed that
replacement of the selenocysteine residue in GPX4 with
cysteine (GPX4cys/cys mutant) rendered cells exquisitely
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sensitive to H2O2-induced cell death; interestingly, while
H2O2-induced cell death in GPX4cys/cys cells could be res-
cued by ferroptosis inhibitors, these inhibitors failed to res-
cue cell death induced by H2O2 at much higher
concentrations in wild-type counterparts (Ingold et al., 2018).
Therefore, it appears that H2O2 induces ferroptosis in a
context- and dose-dependent manner. Further, while over-
expression of a genetically engineered cytosol-localized
catalase (an enzyme that normally localizes in peroxisomes
and catalyzes H2O2 decomposition in peroxisomes) in POR-
proficient cells promoted ferroptosis resistance (Yan et al.,
2020), another recent study showed that deleting endoge-
nous catalase (and thereby abolishing H2O2 decomposition
in peroxisomes) did not affect ferroptosis sensitivity in other
cancer cell lines (Zou et al., 2020a), suggesting a cellular
compartment- or cell line-dependent role of catalase in fer-
roptosis protection. The exact role of catalase in ferroptosis
protection therefore remains to be studied in broader con-
texts. Finally, given the association of ferroptosis with diverse
diseases and conditions such as cancer, ischemia/reperfu-
sion-induced organ damage, and degenerative diseases
(Gao et al., 2015; Jiang et al., 2015; Stockwell et al., 2017;
Zhang et al., 2018; Lee et al., 2020; Zheng and Conrad,
2020), future investigations should also be directed to
understanding the role of POR in these other ferroptosis-
associated diseases and the potential applications of POR
inhibitors for treating diseases caused by excessive
ferroptosis.
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