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ABSTRACT

Dedifferentiation of cell identity to a progenitor-like or
stem cell-like state with increased cellular plasticity is
frequently observed in cancer formation. During this
process, a subpopulation of cells in tumours acquires a
stem cell-like state partially resembling to naturally
occurring pluripotent stem cells that are temporarily
present during early embryogenesis. Such characteris-
tics allow these cancer stem cells (CSCs) to give rise to
the whole tumour with its entire cellular heterogeneity
and thereby support metastases formation while being
resistant to current cancer therapeutics. Cancer devel-
opment and progression are demarcated by transcrip-
tional dysregulation. In this article, we explore the
epigenetic mechanisms shaping gene expression dur-
ing tumorigenesis and cancer stem cell formation, with
an emphasis on 3D chromatin architecture. Comparing
the pluripotent stem cell state and epigenetic repro-
gramming to dedifferentiation in cellular transformation
provides intriguing insight to chromatin dynamics. We
suggest that the 3D chromatin architecture could be
used as a target for re-sensitizing cancer stem cells to
therapeutics.
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INTRODUCTION

The development of many cancers involves a dedifferentia-
tion of cellular identity with the acquisition of a stem cell-like
state in a subpopulation of cancer cells. The arising cancer
stem cells (CSCs) are exceptionally important because their
developmental plasticity allows them to resist conventional
therapies, metastasize and give rise to new tumours. The
changes in cell identity are caused by transcriptional dys-
regulation which is a universal feature of tumorigenesis and
impacts all cancer hallmarks (Hanahan and Weinberg,
2011). It is increasingly evident that spatiotemporal changes
in 3D chromatin architecture have a central function in gov-
erning gene transcription and thereby cancer development
and cellular heterogeneity.

This review provides an overview of the roles of 3D
chromatin architecture in cancer development and progres-
sion with an emphasis on the processes that regulate the
phenotypic plasticity of cancer stem cells. We argue that
early embryonic development and cancer cell dedifferentia-
tion share similar principles in epigenetic regulation and the
dynamic changes in 3D chromatin architecture, while rep-
resenting the opposite direction of the developmental pro-
cesses. Therefore, 3D chromatin architecture of embryonic
stem cells and early lineage specification provide unique
insight to the stem cell-like properties of cancer stem cells
and intra-tumoural heterogeneity. To strengthen this argu-
ment, we draw parallels also with induced pluripotent stem
cell (iPSC) generation via reprogramming of 3D chromatin
architecture in differentiated cells. In addition, we compare
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the general features of 3D chromatin architecture in pheno-
typic plasticity during normal development as well as
tumorigenesis, which plays an important role in metastatic
spread, therapeutic resistance and tumour relapse. Lastly,
we propose therapeutic strategies targeting the 3D chro-
matin architecture in the maintenance of CSCs stemness for
the intervention of cancer progression.

THE HIERARCHY OF 3D CHROMATIN
ARCHITECTURE IN MAMMALIAN CELLS

Enhancers are key cis-regulatory elements that mediate
transcription regulation by converging signals from onco-
genic and developmental pathways (Hnisz et al., 2015). The
clustering of many enhancers on the same DNA molecule
that span tens of kilobases has been termed as super-en-
hancer (Hnisz et al., 2013, Loven et al., 2013). These large
regulatory clusters integrate signals from multiple cell fate
pathways, and provide strength and robustness to cell-
specific gene transcription (Loven et al., 2013; Hnisz et al.,
2015) via tissue-specific transcription factors binding (Spitz
and Furlong, 2012). Only approximately 7% of enhancers in
human cells have been estimated to control their closest
promoters while other enhancers can bypass their closest
genes and regulate the target promoters through long-range
physical communications and thereby impact cellular plas-
ticity and differentiation propensity. In most cases, enhan-
cers interact with their target gene promoters within the same
chromosome. However, increasing evidence suggests the
existence of interchromosomal enhancer-promoter interac-
tions (Maass et al., 2019). For example, a recent report
identified that specific super-enhancers from different chro-
mosomes come into proximity and regulate the transcription
essential for identity of olfactory neurons (Monahan et al.,
2019).

Mechanistically, enhancer-promoter contact regulates
gene expression via increasing transcriptional bursting
fraction (more transcriptional events per time frame) but not
bursting size (more RNA molecules per transcriptional
event) (Bartman et al., 2016). It should be noted that
enhancer-promoter contact may not be necessary for active
transcription as seen from a recent report showing
decreased enhancer-promoter proximity in Sonic hedgehog
(Shh) gene activation (Benabdallah et al., 2019), implying
that other mechanisms, such as phase separation may be
involved in transcription regulation (Misteli, 2020).

Loop extrusion model proposed that topological struc-
tures called insulated neighbourhoods can frame and facili-
tate enhancer-promoter interactions. In this model, cohesin-
containing extrusion complex loads onto the DNA and
extrudes the DNA loop until blocked by convergently ori-
ented CTCF molecules. This loop extrusion process
depends on the hydrolysis of ATP by cohesin’s ATPase
activity (Vian et al., 2018; Davidson et al., 2019; Kim et al.,
2019). Inhibition of ATP production by oligomycin

dramatically disrupted establishment of RAD21 (a cohesin
subunit)-associated chromatin loops. In addition, encyclo-
pedia of DNA elements (ENCODE) consortium generated
RAD21-associated chromatin contact maps by ChIA-PET
(chromatin interaction analysis by paired-end tag sequenc-
ing) in 24 human cell lines and identified that 28% of all
RAD21 loops are cell-type specific and overlapped with cell-
type specific enhancers marked by H3K27ac (Grubert et al.,
2020), suggesting that specific enhancer-promoter contacts
may be orchestrated by cell-specific insulated neighbour-
hoods. In addition, insulated neighbourhoods can further
aggregate into topologically associating domains (TADs),
whose boundaries are demarcated by CTCF binding (Dowen
et al., 2014; Hnisz et al., 2016). TADs are clustered into
larger domains called A compartments (expression active)
and B compartments (expression inactive) (Lieberman-Ai-
den et al., 2009). However, degradation of CTCF by auxin
system only led to the loss of TADs but compartment
structures remained largely unchanged, suggesting that the
principles governing compartment organization are inde-
pendent from TADs (Nora et al., 2017). A recent study found
that compartment shift is correlated with suppression of the
stemness program and tumor progression, and related to
DNA hypomethylation (Johnstone et al., 2020). Whether
modulation of DNA methylation state can causally alter the
compartment switch should be further examined in the
future.

Based on cell population Hi-C data, previous studies have
demonstrated that TADs remain largely unchanged during
cellular specification (Dixon et al., 2012; Nora et al., 2012).
However, by single-cell Hi-C approach, a recent study
showed that TADs structures vary substantially at single-cell
level (Stevens et al., 2017) and CTCF prevents the interac-
tions of inter-TADs (Szabo et al., 2020). Furthermore, by
combining single-cell Hi-C and high-resolution microscopy,
the authors revealed that TADs can be subdivided into
chromatin nanodomains (CND), which depend on nucleo-
some-nucleosome interactions but are depleted of CTCF or
cohesin (Szabo et al., 2020). In trichostatin A (an inhibitor of
histone deacetylases) treated cells, TADs remain unchan-
ged but CND organization is largely disrupted, suggesting
CND organization relies on the histone acetylation state
(Szabo et al., 2020).

DEDIFFERENTIATION IN CANCER AND EPIGENETIC
REPROGRAMMING

Cancer stem cells or tumour initiating cells exhibit stem cell-
like features such as self-renewal and differentiation
capacity. CSCs are also resistant to anoikis, a form of pro-
grammed cell death when the cells are detached from the
surrounding extracellular matrix (ECM). Therefore, the
tumorigenic process with dedifferentiation of tissue cells to a
stem cell-like or progenitor state seems to be the opposite
process to normal development during early embryogenesis
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and organogenesis (Fig. 1). Dedifferentiation has a similar
developmentally reversed direction as the generation of
inducible pluripotent stem cells by epigenetic reprogram-
ming. During this reprogramming, exogenous expression of
pluripotency factors induces extensive epigenetic remod-
elling that leads to the activation of an endogenous gene
circuitry that maintains the pluripotent state of cells (Papp
and Plath, 2013). The resemblance of these two processes
—dedifferentiation and epigenetic reprogramming—is high-
lighted by the effects of tumour suppressors such as p53 and
cyclin dependent kinase inhibitors (e.g., p16) in blocking
epigenetic reprogramming, while their inactivation increases
the epigenetic reprogramming efficiency. p53 is also the
most frequently mutated gene across all tumours. For
instance, in pancreatic ductal adenocarcinoma it is, together
with p16 loss of function, a hallmark mutation.

There is a further link between reprogramming and
oncogenic transformation. Transient expression of repro-
gramming factors in vivo in mouse results in tumour devel-
opment in various tissues consisting of undifferentiated
dysplastic cells exhibiting global changes in DNA

methylation patterns. This indicates epigenetic regulation
associated with reprogramming in the absence of irre-
versible genetic transformations may drive development of
particular types of cancer (Ohnishi et al., 2014). Further-
more, transient expression of reprogramming factors
in Kras mutant mice is sufficient to induce the robust and
persistent activation of ERK signaling in acinar cells and
rapid formation of pancreatic ductal adenocarcinoma (Shi-
bata et al., 2018), indicating that reprogramming factors
promote oncogenic transformation if the anti-tumorigenic
barriers have been removed.

REGULATION OF CSC PLASTICITY BY CHROMATIN
TOPOLOGY

The presence of developmentally plastic cell states with self-
renewal capacity has been found in many tumour types
(Friedmann-Morvinski et al., 2012; Medema, 2013; Fried-
mann-Morvinski and Verma, 2014). These stem cell-like
cancer cells, CSCs, make up only a small fraction of the
whole cancer, but they have the potential to initiate stochastic

Figure 1. Formation of cancer stem cells and epigenetic reprogramming. Schematic depiction of cell state transitions during

early development and tumorigenesis indicate dynamic changes according to cell types. Pluripotent stem cells are able to

differentiate to all cell types and lead to fully differentiated cells in adult tissues. Epigenetic reprogramming by expression of various

stem cell factors (e.g., Oct4, Sox2, KLF4, Myc, Nanog, Lin28) leads to the erasure of the epigenetic barriers and generation of

induced pluripotent stem cells. Oncogenic transformation has the opposite direction to normal cell differentiation and the epigenetic

changes, expression of stem cell factors and genetic mutations, can facilitate tumorigenesis by lowering the barriers that usually

would prevent tumorigenesis and cell state changes. Tumorigenesis involves differentiation of the cell state to a dysregulated stem

cell-like identity known as cancer stem cells. These cells are developmentally plastic and can self-renew but also differentiate to other

cancer cells.
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maturation processes and transitions between differentiated
cellular phenotypes. Regardless of the initial differentiation
status, cancer cells can re-establish the heterogeneous cell
mix when cultured individually (Gupta et al., 2011). As in
ESCs, pluripotency factors such as NANOG, OCT4 and
SOX2 block cellular differentiation and maturation when
expressed in progenitor cells. The unscheduled expression of
pluripotency factors can predispose to and drive cancer
development. Many genes involved in regulating stem cell
functions and stem cell signalling pathways are dysregulated
in cancer cells and therefore promote dedifferentiation with
the emergence of cancer cells with stem cell-like character-
istics. Similar to their function in embryonic stem cells, these
genes act at all stages of tumorigenesis by preventing dif-
ferentiation and eroding barriers against dedifferentiation. For
instance, Oct4 maintains the pluripotent state of embryonic
stem cells during preimplantation development, but its acti-
vation results in dysplastic growths in epithelial tissues with
the expansion of progenitor cells and inhibition of differentia-
tion (Hochedlinger et al., 2005) while blocking Oct4 expres-
sion leads to apoptosis of CSC populations in human and
murine cancer cell lines (Hu et al., 2008). In human lung
cancer cells, SOX2 can regulate the transcriptional network of
oncogenes and affect lung tumorigenesis (Chen et al., 2012).
OCT4 and NANOG enhance malignancy in lung adenocar-
cinoma by inducing cancer stem cell-like properties and
epithelial-mesenchymal transdifferentiation (Chiou et al.,
2010), and increased metastasis in breast cancer (Lu et al.,
2014). Furthermore, inducible expression of SOX2, OCT4
and KLF4 in melanoma cells leads to partial reprogramming
of these cancer cells which start exhibiting increased invasion
potential and lung colonization (Knappe et al., 2016).
NANOG-positive cells also exhibit enhanced ability of self-
renewal, clonogenicity, and initiation of tumors, which are
consistent with crucial hallmarks in the definition of CSCs
(Shan et al., 2012) and its increased expression in cancer
cells is correlated with a worse clinical outcome in hepato-
cellular carcinoma (HCC) (Shan et al., 2012). It is hypothe-
sized that OCT4, NANOG, KLF4 and SOX2 form extensive
feed-forward and feedback loops to organize a stem-cell-like
transcriptional enhancer circuitry in ESCs, which could also
be mechanistically responsible for inducing stem cell-like
characteristics, block expression of differentiation genes, and
increase cellular heterogeneity of cancer cells. Although the
mechanisms of pluripotency factors in the transcription regu-
lation of CSCs remained largely unexplored, recent studies
showed that KLF4 is the key transcription factor mediating the
rewiring of H3K27ac-marked enhancer connectome during
iPSC reprogramming (Di Giammartino et al., 2019) and SOX2
orchestrates RNAPII-associating chromatin interactions in
neural progenitor cells (Bertolini et al., 2019). These studies
imply that pluripotency factors may possibly regulate CSC
identity through modulating enhancer-promoter interactions.

In addition to pluripotency factors, architectural proteins
can also impact cell identity and possibly cancer stem cell
formation. The loss of Insulated neighborhoods or TADs

boundary has been well documented in carcinogenesis,
which arise from structural variation or loss of CTCF binding
due to DNA methylation (Hnisz et al., 2018). Addition to
CTCF and cohesin, Brother of The Regulator of Imprinted
Sites (BORIS, also known as CTCFL) is an emerging
architectural protein, which is a paralog of CTCF and typi-
cally expressed in testis and ESCs (Loukinov et al., 2002)
but aberrantly overexpressed in several cancers (D’Arcy
et al., 2008; Bhan et al., 2011; Link et al., 2013; Cheema
et al., 2014). BORIS expression is correlated with their risk
status, tumor stage, presence of cancer stem cells
expressing CD133 marker, and response to targeted therapy
(Debruyne et al., 2019). Like CTCF, BORIS regulates gene
expression through modulating chromatin looping. In ALK
inhibitor sensitive versus resistant neuroblastoma cancer
cells, BORIS regulated chromatin loopings specific in resis-
tant cells were associated with the formation of specific
super enhancer formation that drive expression of a group of
transcription factors that define the resistance phenotype
(Debruyne et al., 2019).

Besides the core pluripotency factors and architectural
proteins, other transcription factors and components of the
epigenetic machinery impact stemness characteristics of
cancer cells. Polycomb complex protein Bmi-1 promotes
invasion and metastasis of pancreatic CSCs (Wang et al.,
2016). The YB1 transcription factor induces the stemness-
related gene expression and epithelial-mesenchymal tran-
sition in hepatocellular carcinoma (Chao et al., 2017) while
YY1 is associated with transcription factor (SOX2, OCT4,
BMI1) expression in cancers suggesting a co-regulatory role
in cancer stem cells (Kaufhold et al., 2016; Johnson et al.,
2019). The ubiquitously expressed transcription factor YY1
has been found to bind on active enhancer and promoter in
mESCs. Depletion of YY1 led to reduced contact frequency
of enhancer-promoter and decreased gene expression
(Weintraub et al., 2017). Localization of YY1 on enhancers
and promoters depends on its binding with chromatin-asso-
ciated RNAs (Sigova et al., 2015), which underlie their
potential roles in YY1-mediated enhancer-promoter looping.

MEIS1 is a key transcription factor orchestrating tran-
scriptional programs for the maintenance of CSC plasticity in
acute myeloid leukemia (AML). A recent study revealed that
MEIS1 is regulated by a frequently interacting region (FIRE)
whose intensity of interaction with MEIS1 promoter is linked
to heterogenous expression level of MEIS1 in AML patients
(Wang et al., 2020). Deletion of the FIRE in an AML cell line
led to transcription repression of MEIS1 and reduced cell
growth.

In addition, in hormone-responsive breast cancers, pro-
gestins increase the population of cancer stem cells through
the actions of transcription factor C/EBPα. In CD44+CD24−

breast cancer stem cells, C/EBPα assists progesterone
receptor (PR) binding via maintenance of chromatin opening
prior to PR binding (Nacht et al., 2019). In these regions,
C/EBPα facilitates enhancer-promoter communications for
the genes involved in progestin-regulated cell proliferation
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through interaction with architectural proteins RAD21, YY1
and CTCF. Knockdown of C/EBPα reduced the enrichment
of architectural proteins on these regions and disrupted
enhancer-promoter interactions (Nacht et al., 2019), high-
lighting the key role of C/EBPα in the regulation of 3D gen-
ome topology in breast cancer stem cells.

Moreover, a recent study identified a lncRNA, Cancer
stem cell associated distal enhancer of SOX2 (CASCADES)
as a novel epigenetic regulator for glioma cancer stem cells
(GCSCs) (Shahzad et al., 2020). Hi-C mapping revealed the
CASCADES intronic enhancer interacted with SOX2 pro-
moter in GCSCs. Knockdown of CASCADES in GCSCs led
to reduced enrichment of RAD21, YY1 and RNAPII on
CASCADES intronic enhancer and SOX2 promoter. As
enhancer RNA can bind to RNA-binding protein (RBP) and
boost enhancer-promoter looping via RBP dimerization (Cai
et al., 2020), whether CASCADES functions in a similar
mechanism to regulate SOX2 expression needs to be further
examined.

Collectively, the plasticity of CSCs might be acquired and
maintained by stem cell factors, epigenetic machineries and
stem cell signalling pathways that regulate gene expression
via epigenetic processes. These stemness-promoting epi-
genetic events are likely to involve chromatin architecture at
multiple levels: from enhancers/promoters, enhancer-pro-
moter interactions and higher-order genome organisation in
the nucleus.

THE IMPACT OF TUMOR MICROENVIRONMENT
ON 3D CHROMATIN ARCHITECTURE IN CSCS

CSCs reside in a specialized tumor microenvironment (i.e.,
niche) which provides essential cues for the self-renewal and
propensity of CSCs. Hypoxia is considered to be a major
feature of tumour niche which regulate the phenotype of
CSCs. Culture in hypoxia can expand the CD133+ glioma
cancer stem cells through activation of hypoxia inducible
factor 1α (HIF1α) (Soeda et al., 2009). Abrogation of HIF1α
can eliminate cancer stem cells in hematological malignan-
cies (Wang et al., 2011; Zhang et al., 2012). As HIF1α acti-
vate gene transcription central to metabolic rewiring and
stemness in CSC, future efforts are required to uncover
whether HIF1α induces de novo enhancer-promoter inter-
actions in CSCs or just acts on pre-established enhancer-
promoter interactions as seen for heat shock factor 1 (HSF1)
(Ray et al., 2019).

Perivascular niche is another key component in tumour
microenvironment, which comprises endothelial cells and
other stromal cells. For example, endothelial cells maintain
the phenotype of brain tumour stem cells through secretion
of diffusible factors. Accumulating data indicated that
microvesicles or exosomes are essential carriers for inter-
cellular communication, such as transfer of RNA. Recent
studies demonstrated that chromatin-interacting RNAs are
largely involved in enhancer-promoter/promoter-promoter

interactions (Li et al., 2017; Cai et al., 2020). In addition,
deletion of RNA binding of CTCF dramatically reduced
CTCF-mediated chromatin looping (Hansen et al., 2019;
Saldana-Meyer et al., 2019), suggesting that chromatin-in-
teracting RNAs are important regulators in 3D genome
organization. Hence it would be appealing to interrogate
whether perivascular niche-derived exosomal RNA can be
transferred into the nucleus of CSCs and regulate the 3D
chromatin architecture. A recent study revealed that cohe-
sin-mediated loop extrusion is an ATP-dependent process
(Vian et al., 2018; Kim et al., 2019). In addition, mitochondria,
the major organelle for ATP production, can be transferred
from one cell to another via tunnelling nanotubes (TNTs) or
microvesicles (Plotnikov et al., 2015) (e.g., the transfer from
leukemic microenvironment to leukemic stem cells (Gries-
singer et al., 2017)). It is plausible to speculate that the
import of mitochondria from niche will reprogram the ATP
pool and reorganize 3D chromatin topology in CSCs.

In addition, interstitial ECM provides physical and
mechanical cues to drive cancer stemness. For example,
collagen I induces EMT through nuclear translocation of β-
catenin (Li et al., 2010), a transcription factor coordinating
enhancer-promoter looping for MYC (Yochum et al., 2010).
Increasing ECM stiffness leads to activation of the LYN kinase,
which phosphorylates the EMT transcription factor TWIST1 for
nuclear translocation, thus triggering EMT and cancer pro-
gression (Fattet et al., 2020). ECM can also transmit the ten-
sion force into the nucleus via cytoskeleton, LINC complexes
(SUN and KASH domain proteins) in the nuclear membrane,
and the nuclear lamina (Osmanagic-Myers et al., 2015), thus
reprogramming gene expression. Intriguingly, softer ECM
favours the growth of nuclear condensate while stiffer ECM
inhibits the growth of nuclear condensate, suggesting that the
impact of mechanical forces on nuclear transcription might be
mediated by acting on nuclear condensates. As growing evi-
dence suggested that phase separation is a driver for 3D
genome organization (Misteli, 2020), how the rigidity of ECM
affects the 3D chromatin architecture in CSCs via phase sep-
aration deserves future investigation.

SIMILARITIES IN CHROMATIN ARCHITECTURE
IN PLURIPOTENT STEM CELLS AND CANCER
STEM CELLS?

During cancer development and progression, we hypothe-
size that the dedifferentiation of cells with expression of
some stem cell factors leads to the reorganisation of epi-
genetic signatures and 3D chromatin architecture in devel-
opmentally plastic cancer cells (Fig. 2). The arising cells
might share some or dysregulated features seen also in
normal ESCs. Interestingly, the chromatin organisation of
embryonic stem cells has several unique characteristics:
they possess open chromatin characteristics and display
chromatin hyperplasticity that distinguishes them from
somatic cells.
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Nuclei of hESCs have high physical plasticity that stiffens
upon differentiation (Pajerowski et al., 2007), a decondensed
less compact chromatin (Bartova et al., 2008; Lorzadeh
et al., 2016) with an enrichment of active histone modifica-
tions (Bartova et al., 2008) and considerably decreased
heterochromatin, including peripheral heterochromatin (Un-
derwood et al., 2017). The nuclear lamina in ESCs is largely
devoid of Lamin A, less organized and more wrinkled
(Pagliara et al., 2014). hESCs have high levels of tran-
scriptional activity and are considerably depleted for hete-
rochromatin-associated histone modifications, particularly
the Polycomb-associated H3K27me3, which spreads during
differentiation and specification to distinct cell types (Efroni

et al., 2008; Zhu et al., 2013). Structural proteins such as
heterochromatin protein 1 (HP1), the linker histone H1, his-
tone H3.3 and the core histones display highly dynamic
kinetics in their association with chromatin in ESCs, further
opening the chromatin structure (Azuara et al., 2006;
Meshorer et al., 2006; Schlesinger et al., 2017). Repro-
grammed pluripotent stem cells also have increased
dynamic association of a heterochromatin protein HP1b
compared to differentiated cells (Meshorer et al., 2006;
Manukyan and Singh, 2014). Conversely, the open chro-
matin of ESCs requires the involvement of chromatin
repressive complexes in protecting against inappropriate
transcription of differentiation factors, and for the ordered
repression of pluripotency-associated genes during differ-
entiation. Developmental specification of hESCs is accom-
panied by progressive chromatin restriction from dynamic
remodeling to generalized compaction with decreased tran-
scriptional activity. This is accompanied by the reorganiza-
tion of the histone variant H2A.Z from a broad distribution in
hESCs to more restricted regions in promoters and distal
regulatory elements in differentiated cells (Zhu et al., 2013),
and formation of large H3K9me3-positive heterochromatic
foci (Meshorer et al., 2006).

Deep sequencing of cancers has revealed the occurrence
of mutations in epigenetic machinery, including regulators of
DNA methylation, histone modification and chromatin orga-
nization, across a wide variety of cancer types. Recurrent
somatic mutations in genes encoding chromatin-associated
proteins (polycomb repressive complexes, HDAC1- and
HDAC2-containing complexes) indicate that a deregulated
chromatin environment can play a causal role in cancer (You
and Jones, 2012; Laugesen and Helin, 2014). Cancers also
often have aberrant promoter CpG island hypermethylation
and transcriptional silencing of tumor suppressor genes and
pro-differentiation factors. In ESCs, these genes are held in
a “transcription-ready” state mediated by a “bivalent” pro-
moter chromatin pattern consisting of H3K27me3 (repres-
sive) and H3K4me3 (active) histone marks. Embryonic
carcinoma cells have two additional repressive marks,
H3K9me2 and H3K9me3, both associated with DNA
hypermethylation in adult cancers (Ohm et al., 2007; Sch-
lesinger et al., 2007). In human cancer, promoters with a
high H3K27me3:H3K4me3 ratio are particularly susceptible
to DNA hypermethylation (Dunican et al., 2020). These
results suggest that tumor-specific targeting of de novo
methylation is pre-programmed by an established epigenetic
system that normally has a role in marking embryonic genes
for repression. Altogether, transient silencing of regulatory
genes in stem or progenitor cells with a bivalent mark may
leave these genes vulnerable to aberrant DNA hyperme-
thylation and heritable gene silencing during tumour initiation
and progression.

Cellular differentiation leads to the formation of large
organized chromatin K9 modifications (LOCKs) comprising
repressive H3K9me2 and H3K9me3 modifications, and
together with DNA methylation, these regulate cell type-

b Figure 2. Targeting 3D chromatin architecture in CSCs. (A)

Rearrangement of the higher-order epigenome during tumori-

genesis leads to changes in the cell state from differentiated cell

to cancer cells and to cancer stem cells (CSCs). Pancreatic

ductal adenocarcinoma (PDAC) formation occurs by gradual

transitioning of normal ductal cells to pancreatic intraepithelial

neoplasia (PanIN) lesions that ultimately leads to PDAC

formation. The PDAC is a heterogenous cell population

containing cancer stem cells (CSCs) that can self-renew, are

developmental plasticity, highly metastatic and more resistant to

conventional therapeutics than other cancer cells. The simpli-

fied depiction of the higher-order epigenome inside the nuclei

during tumorigenesis indicating rearrangements of active

(green) and inactive (red) chromatin regions as well as

lamina-associated domains (blue). The genome is organized

into topologically associated domains that form gene expres-

sion domains with enhancer-promoter crosstalk. Different

chromatin regions are postulated to be brought together in

different cell states such as CSCs by transcription factors and

regulatory proteins that facilitate chromatin accessibility and

gene expression regulation. The differences in cell states are

postulated to manifest at the higher-order but also lower-order

levels of chromatin that bind RNAPII and sequence-specific

transcription factors (pink lines show interaction clusters), as

depicted schematically by four cis-regulatory elements (CREs).

(B) The Waddington landscape of normal tissue development

and tumorigenesis. In normal tissue formation, stem cells or

progenitor cells differentiated to genetically and epigenetically

stable cell types, such as ductal cells in pancreatic tissue.

Genomic instability due to the accumulation of mutations in

driver genes, and epigenomic instability leads to the formation

of CSCs and non-CSCs either from normal stem cells or

differentiated ductal cells, or through further dedifferentiation of

non-CSCs to CSCs. (C) The phenotypic plasticity of CSCs and

non-CSCs depicted on the Waddington landscape. The plas-

ticity of CSCs allows the cells to give rise to the whole tumour in

its entire cellular heterogeneity while non-CSCs are less plastic.

The plasticity is hypothetically regulated by the interplay

between 3D epigenome, epigenetic machinery, stem cell

factors and structural proteins that regulate gene expression.
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specific repression of developmental loci (Wen et al., 2009).
LOCKs are largely absent from ESCs but also cancer cell
lines, indicating that this could support the phenotypic plas-
ticity of these cells. In line with this notion, epigenetic
reprogramming during iPSC generation erases methylation
and chromatin states in part by the OCT4-mediated recruit-
ment of H3K9me2 histone demethylase and chromatin
remodelling complexes (Shakya et al., 2015). Interestingly,
during epithelial-to-mesenchymal transition (EMT), KDM1A-
mediated global loss of H3K9me2 at LOCKs occurs first, and
is followed by tumour growth factor-β (TGFβ)-induced EMT
(McDonald et al., 2011). The EMT also generates cells with
properties of stem cells among cancer cell (Mani et al., 2008)
hence suggesting a mechanism between EMT-dependent
changes in 3D chromatin architecture and the establishment
of stem cell features with cellular plasticity in cancer. The
loss of H3K9me2/me3 in chromatin regions in cancer cells
overlaps with hypomethylated blocks and the location of
increased variability in genes that are important for tumori-
genic processes or development in a range of cancer types
(Berman et al., 2011; Pujadas and Feinberg, 2012; Timp
et al., 2014). Thus, the impairment to stabilize and orches-
trate the dynamics of chromatin could give rise to cancer
cells with unstable phenotypes and incomplete differentia-
tion, some of which would acquire the capacity of self-re-
newal by expressing stem cell factors and represent cells
known as CSCs.

TARGETING 3D CHROMATIN ARCHITECTURE
IN CSCS

Targeting stemness factors-mediated super enhancer
connectome in CSCs

Cancer cells can establish de novo oncogenic super-en-
hancers that induce proliferation. In turn, disruption of super-
enhancers can selectively inhibit tumour oncogenes (Loven
et al., 2013). Since super-enhancers of stem cells receive
signals from the extracellular milieu and this regulates stem
cell/progenitor plasticity and lineage choice (Adam et al.,
2015), it is possible that similar microenvironmental effects
play important roles also for super-enhancer regulation in
cancer cells, thus underlining the importance of the CSC
niche. While targeting the tumour microenvironment or CSC
niche is considered as a potential cancer therapeutic
and alternative strategy could be to directly target the super
enhancers and epigenetic machineries in CSCs that control
the expression of key oncogenes or stemness regulators,
thereby blocking CSC self-renewal capacity and develop-
mental plasticity. This would reduce the metastatic spreading
of CSCs and cancer relapse if this strategy would be com-
bined with conventional therapeutic strategies that would
aim to target the main hallmarks of cancers.

Several factors known to play a central role in embryonic
stem cells and used in epigenetic reprogramming, such as
pluripotency factors OCT4, NANOG, SOX2 and Klf4, have

been reported to be expressed in subpopulations of cancer
cells from different tumour types (Hochedlinger et al., 2005;
Feinberg et al., 2006; Lengner et al., 2007; Doi et al., 2009;
Fischedick et al., 2014; Lu et al., 2014; Marucci et al., 2014;
Ohnishi et al., 2014; Xiong et al., 2018). This indicates an
aberrant and partial reactivation of stem cell circuitries in
cancer stem cells that usually would regulate the self-re-
newal and pluripotency of embryonic stem cells during early
embryogenesis. Such stem cell factor expression has
tumorigenic effects due to effects resembling their function in
stem cells such as stem cell maintenance and self-renewal
which block differentiation. Pluripotency gene loci form
contacts with each other in cis and in trans in the nucleo-
plasm and utilize shared cell type-specific transcriptional
machineries (de Wit et al., 2013). Pluripotency factors are
involved in regulating the genomic architecture of pluripotent
stem cells. Super enhancers bound by pluripotency factors
OCT4, NANOG, SOX2 and KLF4 colocalize in the pluripo-
tent cell nucleus (Whyte et al., 2013) and establish the
prevalent regulatory hubs (Novo et al., 2018). In line with
this, recent study uncovered that KLF4 is a key driver for the
organization of pluripotency-associated three-dimensional
enhancer networks which are disassembled during differ-
entiation (Denholtz et al., 2013; Di Giammartino et al., 2019).

The expression of pluripotency factors such as OCT4,
NANOG and SOX2 in CSCs could similarly promote the
emergence of stem-like cell states by reprogramming of 3D
enhancer—promoter interaction that otherwise would pre-
vent developmental plasticity and maintain differentiated cell
states. Targeting the stem cell factors not only would reduce
cancer risk, but also antagonize the growth of the primary
tumour and metastatic derivatives. Tryptophan derivatives
and the AhR signalling pathway regulate the transcription of
Oct4 and cancer cell stemness, opening a new therapeutic
avenue to target stem-like cancer cells (Cheng et al., 2015).
Hence, these mechanisms are intriguing targets for small
molecule compounds that would aim to reverse the devel-
opmental plasticity of CSCs and trap it to a more restricted
cell fate that would re-sensitise these cancer cells to com-
bined chemotherapeutic treatments. This would target the
epigenetic instability and the emergence of CSCs during
tumour evolution and formation of therapeutic resistance.

Forced 3D genome repositioning in CSCs

Approximately 36% of A/B compartments switch from one
type to another as hESCs differentiate into lineages (Dixon
et al., 2015) and many pluripotency loci become re-posi-
tioned close to the nuclear lamina as they get repressed
(Peric-Hupkes et al., 2010). In the reverse-directional pro-
cess, the reprogramming of cells into induced pluripotent
stem cells re-established the pluripotent genome topology
including A/B compartments and enhancer-promoter inter-
actions at pluripotency loci (Beagan et al., 2016; Krijger
et al., 2016). For example, downregulation of OCT4 coin-
cides with the formation of compact chromatin at the lamina
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during differentiation (Ahmed et al., 2010), indicating the
compaction process itself could lead to repression (Eskeland
et al., 2010; Therizols et al., 2014; Joshi et al., 2015). The
localization of genomic regions to the repressive conditions
at the nuclear envelope is promoted by transcriptional
repressors (Harr et al., 2015), DNA methylation-binding
proteins (Guarda et al., 2009), factors that deposit and rec-
ognize repressive histone marks H3K9me2/me3 and
H3K27me3 (Towbin et al., 2012; Harr et al., 2015), and
components of the nuclear envelope (Harr et al., 2015). In
turn, the lamina modulates chromatin states by attracting
repressive epigenetic modifiers that maintain a repressive
environment at the nuclear periphery (Finlan et al., 2008;
Lemaitre and Bickmore, 2015; van Steensel and Belmont,
2017). These epigenetic modifiers balance self-renewal and
differentiation, affect epigenetic reprogramming and cancer
development (Flavahan et al., 2017) indicating that similar
spatiotemporal chromatin compartmentalization mecha-
nisms occur in these counter-directional cellular processes.
Hence, epigenetic modifying enzymes repressing differenti-
ation-induced genes by relocating them to the nuclear
periphery (KDM1A, EHMT2, HDAC3, N-CoR) could be
considered an option for diminishing the plasticity and
stemness of CSCs.

Recently, a new approach called CRISPR-genome orga-
nization (CRISPR-GO) was developed for 3D genome
engineering. Mechanistically, the ABI protein will be fused
with dCas9 and recruited to the locus of interest via guide
RNA. Simultaneously, the PYL1 protein will be fused with the
protein specific to the nuclear compartment (e.g., lamina-
associating domains (LADs)). Through heterodimerization of
ABI and PYL1 by adding ABA, the guide RNA targeted locus
will be relocated into the intended compartment (Wang et al.,
2018). This powerful method enables us to examine the
functional consequence of forced 3D genome repositioning
of the genes encoding stemness factors in CSCs. As chro-
matin compaction is influenced by phase separation, whe-
ther and how the artificial tethering force of CRIPSR-GO can
overcome the impact of phase separation deserves future
investigation.

FUTURE DIRECTIONS

In this article, we discussed the recent findings on chromatin
architecture and explored their potential mechanisms in
shaping transcriptional dysregulation in CSC formation. A
comparison of pluripotent stem cells and the heterogeneous
cancer cell populations continues to provide intriguing insight

Figure 3. Hypothesis on the pre-establishment of 3D chromatin architectures during CSCs reprogramming. As a

presumption, a portion of chromatin interactions (e.g., enhancer-promoter contacts) regulating cell fate decision of CSCs may be

pre-established in pre-cancerous stem cells (pre-CSCs) via transcription factor (1) binding. These chromatin interaction changes

occur prior to the gene transcription. Transcription factor (2) binding on those loci with pre-established enhancer-promoter contacts

drives the gene transcription implicated for CSCs reprogramming, leading to the formation of CSCs.
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into the regulatory landscapes of phenotypic plasticity and
helps uncovering novel mechanisms that provide CSCs their
stem cell-like characteristics and resistance to cancer
therapeutics.

Currently, the 3D chromatin dynamics during CSCs ded-
ifferentiation remain elusive. A recent study uncovered that a
portion of enhancer-promoter interactions orchestrating
human epidermal keratinocyte differentiation were pre-
established in the progenitor cells prior to gene expression
(Rubin et al., 2017). In addition, glucocorticoid receptors
(GR) do not induce de novo enhancer-promoter contacts but
act on the genes with pre-established enhancer-promoter
interactions (D’Ippolito et al., 2018). Moreover, the alteration
of gene expression with RAD21-associated loop variation
are modest, suggesting that a portion of chromatin topology
have not immediate functional impact on gene expression
but are poised to alter gene expression in specific develop-
mental and chromatin contexts (Grubert et al., 2020). Hence,
future work on the 3D genome mapping in non-CSCs, pre-
cancerous stem cells (pre-CSCs) and CSCs can demystify
whether enhancer-promoter contacts or insulated neigbour-
hoods are pre-established in earlier stages for genes that are
essential for CSCs dedifferentiation, prior to their transcrip-
tion activation (Fig. 3).

Recent explosion of single cell-omics techniques enables
decoding the unexplored population of CSCs and their niche
cells related to tumour initiation and therapeutic resistance.
However, the 3D genome mapping for primary CSCs and the
niche cells remains challenging due to their limited cell
number in isolated tumours. Recently, a new method called
HiCAR (high-throughput chromosome conformation capture
on Accessible DNA with mRNA-seq co-assay) can simulta-
neously map the transcriptome, accessible regulatory ele-
ments and their interactions in a single assay using only
100,000 cells (Wei et al., 2020), dramatically reducing the
input materials as compared to traditional techniques (e.g.,
HiChIP (Mumbach et al., 2016) /PLAC-seq (Fang et al.,
2016) /in situ ChIA-PET (Bertolini et al., 2019)). Different
from these proximity-ligation based approaches, another
method called genome architecture mapping (GAM) can
examine multiplex chromatin interactions at single-cell res-
olution by performing nucleus cryosectioning and sequenc-
ing of DNA on nuclear slices (Beagrie et al., 2017). Future
efforts (e.g., reducing sectioning thickness) might be able to
further increase its resolution.

Collectively, this review article will motivate the study of
3D chromatin architecture in CSCs for a better understand-
ing of their transcription regulation and for manipulating their
3D chromatin topology to improve the therapeutic sensitivity
in cancers.
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